File: PendulumSystem.h

package info (click to toggle)
simbody 3.7%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 72,876 kB
  • sloc: cpp: 248,828; ansic: 18,240; sh: 29; makefile: 24
file content (550 lines) | stat: -rw-r--r-- 22,072 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
#ifndef SimTK_SIMMATH_PENDULUMSYSTEM_H_
#define SimTK_SIMMATH_PENDULUMSYSTEM_H_

/* -------------------------------------------------------------------------- *
 *                      SimTK Core: SimTK Simmath(tm)                         *
 * -------------------------------------------------------------------------- *
 * This is part of the SimTK Core biosimulation toolkit originating from      *
 * Simbios, the NIH National Center for Physics-Based Simulation of           *
 * Biological Structures at Stanford, funded under the NIH Roadmap for        *
 * Medical Research, grant U54 GM072970. See https://simtk.org.               *
 *                                                                            *
 * Portions copyright (c) 2006-7 Stanford University and the Authors.         *
 * Authors: Michael Sherman, Peter Eastman                                    *
 * Contributors:                                                              *
 *                                                                            *
 * Permission is hereby granted, free of charge, to any person obtaining a    *
 * copy of this software and associated documentation files (the "Software"), *
 * to deal in the Software without restriction, including without limitation  *
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,   *
 * and/or sell copies of the Software, and to permit persons to whom the      *
 * Software is furnished to do so, subject to the following conditions:       *
 *                                                                            *
 * The above copyright notice and this permission notice shall be included in *
 * all copies or substantial portions of the Software.                        *
 *                                                                            *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR *
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,   *
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL    *
 * THE AUTHORS, CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,    *
 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR      *
 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE  *
 * USE OR OTHER DEALINGS IN THE SOFTWARE.                                     *
 * -------------------------------------------------------------------------- */

/**
 * This is a simple System that is used by various test cases.
 */

#include "SimTKcommon.h"
#include "SimTKcommon/internal/SystemGuts.h"

using namespace SimTK;

class PendulumSystem;
class PendulumSystemGuts: public System::Guts {
    friend class PendulumSystem;

    // TOPOLOGY STATE
    SubsystemIndex subsysIndex;

    // TOPOLOGY CACHE
    mutable DiscreteVariableIndex massIndex, lengthIndex, gravityIndex;
    mutable QIndex q0;
    mutable UIndex u0;
    mutable QErrIndex qerr0;
    mutable UErrIndex uerr0;
    mutable UDotErrIndex udoterr0;
    mutable EventTriggerByStageIndex event0;
    mutable CacheEntryIndex mgForceIndex; // a cache entry m*g calculated at Dynamics stage
public:
    PendulumSystemGuts() : Guts() {
        // Index types set themselves invalid on construction.
    }

    const PendulumSystem& getPendulumSystem() const {
        return reinterpret_cast<const PendulumSystem&>(getSystem());
    }
    
    SubsystemIndex getSubsysIndex() const {
        return subsysIndex;
    }

    /*virtual*/PendulumSystemGuts* cloneImpl() const override {return new PendulumSystemGuts(*this);}

        /////////////////////////////////////////////////////////
        // Implementation of continuous DynamicSystem virtuals //
        /////////////////////////////////////////////////////////

    /*virtual*/int realizeTopologyImpl(State&) const override;
    /*virtual*/int realizeModelImpl(State&) const override;
    /*virtual*/int realizeInstanceImpl(const State&) const override;
    /*virtual*/int realizePositionImpl(const State&) const override;
    /*virtual*/int realizeVelocityImpl(const State&) const override;
    /*virtual*/int realizeDynamicsImpl(const State&) const override;
    /*virtual*/int realizeAccelerationImpl(const State&) const override;

    // qdot==u here so these are just copies
    /*virtual*/void multiplyByNImpl(const State& state, const Vector& u, 
                                 Vector& dq) const override {dq=u;}
    /*virtual*/void multiplyByNTransposeImpl(const State& state, const Vector& fq, 
                                          Vector& fu) const override {fu=fq;}
    /*virtual*/void multiplyByNPInvImpl(const State& state, const Vector& dq, 
                                     Vector& u) const override {u=dq;}
    /*virtual*/void multiplyByNPInvTransposeImpl(const State& state, const Vector& fu, 
                                              Vector& fq) const override {fq=fu;}

    // No prescribed motion.
    /*virtual*/bool prescribeQImpl(State&) const override {return false;}
    /*virtual*/bool prescribeUImpl(State&) const override {return false;}

    /*virtual*/void projectQImpl(State&, Vector& qErrEst, 
             const ProjectOptions& options, ProjectResults& results) const override;
    /*virtual*/void projectUImpl(State&, Vector& uErrEst, 
             const ProjectOptions& options, ProjectResults& results) const override;

};

class PendulumSystem: public System {
public:
    PendulumSystem() : System()
    { 
        adoptSystemGuts(new PendulumSystemGuts());
        DefaultSystemSubsystem defsub(*this);
        updGuts().subsysIndex = defsub.getMySubsystemIndex();

        setHasTimeAdvancedEvents(false);
    }

    const PendulumSystemGuts& getGuts() const {
        return dynamic_cast<const PendulumSystemGuts&>(getSystemGuts());
    }

    PendulumSystemGuts& updGuts() {
        return dynamic_cast<PendulumSystemGuts&>(updSystemGuts());
    }

    // Instance variables are written to our defaultState.
    void setDefaultMass(Real mass) {
        const PendulumSystemGuts& guts = getGuts();
        updDefaultState().updDiscreteVariable(guts.subsysIndex, guts.massIndex) = Value<Real>(mass);
    }

    void setDefaultLength(Real length) {
        const PendulumSystemGuts& guts = getGuts();
        updDefaultState().updDiscreteVariable(guts.subsysIndex, guts.lengthIndex) = Value<Real>(length);
    }

    void setDefaultGravity(Real gravity) {
        const PendulumSystemGuts& guts = getGuts();
        updDefaultState().updDiscreteVariable(guts.subsysIndex, guts.gravityIndex) = Value<Real>(gravity);
    }

    void setDefaultTimeAndState(Real t, const Vector& q, const Vector& u) {
        const PendulumSystemGuts& guts = getGuts();
        updDefaultState().updU(guts.subsysIndex) = u;
        updDefaultState().updQ(guts.subsysIndex) = q;
        updDefaultState().updTime() = t;
    }

    Real getMass(const State& s) const {
        const PendulumSystemGuts& guts = getGuts();
        const AbstractValue& m = s.getDiscreteVariable(guts.subsysIndex, guts.massIndex);
        return Value<Real>::downcast(m).get();
    }
    Real getDefaultMass() const {return getMass(getDefaultState());}

    Real getLength(const State& s) const {
        const PendulumSystemGuts& guts = getGuts();
        const AbstractValue& d = s.getDiscreteVariable(guts.subsysIndex, guts.lengthIndex);
        return Value<Real>::downcast(d).get();
    }
    Real getDefaultLength() const {return getLength(getDefaultState());}

    Real getGravity(const State& s) const {
        const PendulumSystemGuts& guts = getGuts();
        const AbstractValue& g = s.getDiscreteVariable(guts.subsysIndex, guts.gravityIndex);
        return Value<Real>::downcast(g).get();
    }
    Real getDefaultGravity() const {return getGravity(getDefaultState());}
};

/*
 * This system is a 2d pendulum swinging in gravity. It is modeled as
 * a point mass free in the plane, plus a distance constraint to model
 * the rod.
 *
 *    y       | g               O
 *    ^       v                  \  d
 *    |                           \
 *    |                            * m
 *     ------> x
 *
 * Gravity acts in the y direction, the rod is length d, mass m, pivot
 * location is the ground origin (0,0).
 *
 * The DAE for a generic multibody system is:
 *       qdot = Qu
 *       M udot = f - ~A lambda
 *       A udot = b
 *       perr(t,q) = 0
 *       verr(t,q,u) = 0
 *
 * Let   r^2 = x^2  + y^2
 *       v^2 = x'^2 + y'^2
 * We will express the "rod length=d" constraint as 
 *       (r^2 - d^2)/2 = 0    (perr)
 *           xx' + yy' = 0    (verr)
 *         xx'' + yy'' = -v^2 (aerr)
 *
 * So the matrix A = d perr/dq = [x y] and b = -v^2, and the
 * equations of motion are:
 *     [ m 0 x ] [ x'' ]   [  0  ]
 *     [ 0 m y ] [ y'' ] = [ -mg ]
 *     [ x y 0 ] [ L   ]   [-v^2 ]
 * where L (the Lagrange multiplier) is proportional to
 * the rod tension. You can solve this to get
 *     L   = (m*v^2 - mg*y)/(r^2)
 *     x'' = - x*L/m
 *     y'' = - y*L/m - g
 *               
 */ 
int PendulumSystemGuts::realizeTopologyImpl(State& s) const {
    // Instance variables mass, length, gravity
    massIndex = s.allocateDiscreteVariable(subsysIndex, Stage::Instance,
                                                      new Value<Real>(1));
    lengthIndex = s.allocateDiscreteVariable(subsysIndex, Stage::Instance,
                                                      new Value<Real>(1));
    gravityIndex = s.allocateDiscreteVariable(subsysIndex, Stage::Instance,
                                                      new Value<Real>(13.7503716373294544));
    const Vector init(2, Real(0));
    q0 = s.allocateQ(subsysIndex, init);
    u0 = s.allocateU(subsysIndex, init);

    mgForceIndex = s.allocateCacheEntry(subsysIndex, Stage::Dynamics,
                                             new Value<Real>());
    System::Guts::realizeTopologyImpl(s);
    return 0;
}
int PendulumSystemGuts::realizeModelImpl(State& s) const {
    System::Guts::realizeModelImpl(s);
    return 0;
}
int PendulumSystemGuts::realizeInstanceImpl(const State& s) const {
    qerr0 = s.allocateQErr(subsysIndex, 1);
    uerr0 = s.allocateUErr(subsysIndex, 1);
    udoterr0 = s.allocateUDotErr(subsysIndex, 1); // and multiplier
//    event0 = s.allocateEvent(subsysIndex, Stage::Position, 3);
    System::Guts::realizeInstanceImpl(s);
    return 0;
}
int PendulumSystemGuts::realizePositionImpl(const State& s) const {
    const Real    d = getPendulumSystem().getLength(s);
    const Vector& q = s.getQ(subsysIndex);
    // This is the perr() equation.
    s.updQErr(subsysIndex)[0] = (q[0]*q[0] + q[1]*q[1] - d*d)/2;
    
//    s.updEventsByStage(subsysIndex, Stage::Position)[0] = 100*q[0]-q[1];
//
//    s.updEventsByStage(subsysIndex, Stage::Position)[1] = 
//        s.getTime() > 1.49552 && s.getTime() < 12.28937;
//
//    s.updEventsByStage(subsysIndex, Stage::Position)[2] = s.getTime()-1.495508;
    System::Guts::realizePositionImpl(s);
    return 0;
}

int PendulumSystemGuts::realizeVelocityImpl(const State& s) const {
    const Vector& q    = s.getQ(subsysIndex);
    const Vector& u    = s.getU(subsysIndex);
    Vector&       qdot = s.updQDot(subsysIndex);

    qdot[0] = u[0]; // qdot=u
    qdot[1] = u[1];

    // This is the verr() equation.
    s.updUErr(subsysIndex)[0]  = q[0]*u[0] + q[1]*u[1];
    System::Guts::realizeVelocityImpl(s);
    return 0;
}

int PendulumSystemGuts::realizeDynamicsImpl(const State& s) const {
    const Real m  = getPendulumSystem().getMass(s);
    const Real g  = getPendulumSystem().getGravity(s);

    Real& mg = Value<Real>::updDowncast
                            (s.updCacheEntry(subsysIndex, mgForceIndex)).upd();
    // Calculate the force due to gravity.
    mg = m*g;
    System::Guts::realizeDynamicsImpl(s);
    return 0;
}

int PendulumSystemGuts::realizeAccelerationImpl(const State& s) const {
    const Real m  = getPendulumSystem().getMass(s);
    const Real g  = getPendulumSystem().getGravity(s);
    // we're pretending we couldn't calculate this here!
    const Real mg = Value<Real>::updDowncast
                       (s.updCacheEntry(subsysIndex, mgForceIndex)).get();

    const Vector& q    = s.getQ(subsysIndex);
    const Vector& u    = s.getU(subsysIndex);
    Vector&       udot = s.updUDot(subsysIndex);

    const Real r2 = q[0]*q[0] + q[1]*q[1];
    const Real v2 = u[0]*u[0] + u[1]*u[1];
    const Real L  = (m*v2 - mg*q[1])/r2;
    udot[0] = - q[0]*L/m;
    udot[1] = - q[1]*L/m - g;
    s.updQDotDot() = udot;
    s.updMultipliers(subsysIndex)[0] = L;
    s.updUDotErr(subsysIndex)[0] = q[0]*udot[0] + q[1]*udot[1] + v2;
    System::Guts::realizeAccelerationImpl(s);
    return 0;
}

/*
 * Here we want to remove any constraint errors from the current state,
 * and project out any component of the integrator's error estimate
 * perpendicular to the constraint manifold. We will do this sequentially
 * rather than handling position and velocity simultaneously.
 *
 * For this system we have P = d perr/dq = V = d verr/du = [x y].
 * Weighted, we have PW=tp*[x/wx y/wy] VW=tv*[x/wxd y/wyd]. 
 * With pinv(A)=~A*(A*~A)^-1, we have:
 *
 *    pinv(P)  = ~[            x             y] /  (    x ^2+     y ^2)
 *    pinv(PW) = ~(1/tp)*[(wx *wy ^2)*x (wx ^2*wy) *y] / ((wy *x)^2+(wx *y)^2)
 *    pinv(VW) = ~(1/tv)*[(wxd*wyd^2)*x (wxd^2*wyd)*y] / ((wyd*x)^2+(wxd*y)^2)
 *      (the latter assuming x,y already projected on position manifold)
 *
 * We want to solve
 *    |perr(q0 - dq)|_TRMS <= accuracy, such that dq=min_WLS(dq)
 *    PW(q0) dq = Tp * perr(q0); q = q0-dq
 * Then
 *    |verr(q,u0 - du)|_TRMS <= accuracy, du=min_WLS(du)
 *    VW(q) du = Tv * verr(q,u0); u = u0-du
 *
 *
 * To remove the corresponding error estimates:
 *    PW(q) qperp = PW(q) qerrest; qerrest -= qperp
 *    VW(q) uperp = VW(q) uerrest; uerrest -= uperp
 * 
 *
 */
static Real wrms(const Vector& y, const Vector& w) {
    Real sumsq = 0;
    for (int i=0; i<y.size(); ++i)
        sumsq += square(y[i]*w[i]);
    return std::sqrt(sumsq/y.size());
}

//int PendulumSystemGuts::projectImpl(State& s, Real consAccuracy,
//                                const Vector& yweights, const Vector& ctols,
//                                Vector& yerrest, System::ProjectOptions opts) const // yerrest is in/out
//{
//    const Vec2& wq = Vec2::getAs(&yweights[0]);
//    const Vec2& wu = Vec2::getAs(&yweights[2]);
//    const Real& tp = ctols[0]; // inverse tolerances 1/ti
//    const Real& tv = ctols[1];
//
//    const Vec2& q = Vec2::getAs(&s.getQ(subsysIndex)[0]); // set up aliases
//    const Vec2& u = Vec2::getAs(&s.getU(subsysIndex)[0]);
//    Real& ep = s.updQErr(subsysIndex)[0];
//    Real& ev = s.updUErr(subsysIndex)[0];
//
//    //cout << "BEFORE wperr=" << tp*ep << endl;
//
//    Real wqchg;
//    if (opts.hasAnyPositionOptions()) {
//        do {
//            // Position projection
//            Real r2 = ~q*q; // x^2+y^2
//            Real wqr2 = square(wq[1]*q[0]) + square(wq[0]*q[1]);
//            Row2 P(~q), PW(tp*q[0]/wq[0], tp*q[1]/wq[1]);
//            Vec2 Pinv(q/r2);
//            Vec2 PWinv = Vec2(square(wq[1])*wq[0]*q[0], 
//                              square(wq[0])*wq[1]*q[1]) / (tp*wqr2);
//            Vec2 dq  = Pinv*(ep);      //cout << "dq=" << dq << endl;
//            Vec2 wdq = PWinv*(tp*ep);  //cout << "wdq=" << wdq << endl;
//    
//            wqchg = std::sqrt(wdq.normSqr()/q.size()); // wrms norm
//    
//            s.updQ(subsysIndex)[0] -= wdq[0]/wq[0]; 
//            s.updQ(subsysIndex)[1] -= wdq[1]/wq[1]; 
//            realize(s, Stage::Position); // recalc QErr (ep)
//    
//            //cout << "AFTER q-=wdq/W wperr=" << tp*ep << " wqchg=" << wqchg << endl;
//        } while (std::abs(tp*ep) > consAccuracy && wqchg >= 0.01*consAccuracy);
//    }
//
//    // Do velocity projection at new values of q
//    Real r2 = ~q*q; // x^2+y^2
//    Real wur2 = square(wu[1]*q[0]) + square(wu[0]*q[1]);
//    Row2 V(~q), VW(tv*q[0]/wu[0], tv*q[1]/wu[1]);
//    Vec2 Vinv(q/r2);
//    Vec2 VWinv = Vec2(square(wu[1])*wu[0]*q[0], 
//                      square(wu[0])*wu[1]*q[1]) / (tv*wur2);
//    realize(s, Stage::Velocity); // calculate UErr (ev)
//
//    //cout << "BEFORE wverr=" << tv*ev << endl;
//    Vec2 du  = Vinv*(ev);      //cout << "du=" << du << endl;
//    Vec2 wdu = VWinv*(tv*ev);  //cout << "wdu=" << wdu << endl;
//
//    s.updU(subsysIndex)[0] -= wdu[0]/wu[0]; 
//    s.updU(subsysIndex)[1] -= wdu[1]/wu[1];
//
//    realize(s, Stage::Velocity); // recalc UErr
//    //cout << "AFTER u-=wdu wverr=" << tv*ev << endl;
//
//    // Now do error estimates.
//
//
//    if (yerrest.size()) {
//        Vec2& eq = Vec2::updAs(&yerrest[0]);
//        Vec2& eu = Vec2::updAs(&yerrest[2]);
//
//        // Recalc PW, PWInv:
//        const Real wqr2 = square(wq[1]*q[0]) + square(wq[0]*q[1]);
//        const Row2 PW = Row2(tp*q[0]/wq[0], tp*q[1]/wq[1]);
//        const Vec2 PWinv = Vec2(wq[0]*square(wq[1])*q[0], 
//                                square(wq[0])*wq[1]*q[1]) / (tp*wqr2);
//
//        Vec2 qperp = PWinv*(PW*eq);
//        Vec2 uperp = VWinv*(VW*eu);
//
//        //cout << "ERREST before=" << yerrest 
//        //     << " wrms=" << wrms(yerrest,yweights) << endl;
//        //cout << "PW*eq=" << PW*eq << " VW*eu=" << VW*eu << endl;
//        eq -= qperp; eu -= uperp;
//
//        //cout << "ERREST after=" << yerrest 
//        //     << " wrms=" << wrms(yerrest,yweights) << endl;
//        //cout << "PW*eq=" << PW*eq << " VW*eu=" << VW*eu << endl;
//    }
//
//    return 0;
//}

// qerrest is in/out
void PendulumSystemGuts::projectQImpl(State& s, Vector& qerrest, 
                                const ProjectOptions& opts,
                                ProjectResults& results) const 
                                
{
    const Real consAccuracy = opts.getRequiredAccuracy();
    const Vector& uweights = s.getUWeights(subsysIndex);
    const Vector& ctols = s.getQErrWeights(subsysIndex);
    // Since qdot=u here we can use uweights directly as qweights.
    const Vec2& wq = Vec2::getAs(&uweights[0]);
    const Real& tp = ctols[0]; // inverse tolerances 1/ti

    const Vec2& q = Vec2::getAs(&s.getQ(subsysIndex)[0]); // set up aliases
    Real& ep = s.updQErr(subsysIndex)[0];

    //cout << "BEFORE wperr=" << tp*ep << endl;

    Real wqchg;
    do {
        // Position projection
        Real r2 = ~q*q; // x^2+y^2
        Real wqr2 = square(wq[1]*q[0]) + square(wq[0]*q[1]);
        Row2 P(~q), PW(tp*q[0]/wq[0], tp*q[1]/wq[1]);
        Vec2 Pinv(q/r2);
        Vec2 PWinv = Vec2(square(wq[1])*wq[0]*q[0], 
                            square(wq[0])*wq[1]*q[1]) / (tp*wqr2);
        Vec2 dq  = Pinv*(ep);      //cout << "dq=" << dq << endl;
        Vec2 wdq = PWinv*(tp*ep);  //cout << "wdq=" << wdq << endl;
    
        wqchg = std::sqrt(wdq.normSqr()/q.size()); // wrms norm
    
        s.updQ(subsysIndex)[0] -= wdq[0]/wq[0]; 
        s.updQ(subsysIndex)[1] -= wdq[1]/wq[1]; 
        realize(s, Stage::Position); // recalc QErr (ep)
    
        //cout << "AFTER q-=wdq/W wperr=" << tp*ep << " wqchg=" << wqchg << endl;
    } while (std::abs(tp*ep) > consAccuracy && wqchg >= 0.01*consAccuracy);

    // Now do error estimates.

    if (qerrest.size()) {
        Vec2& eq = Vec2::updAs(&qerrest[0]);

        // Recalc PW, PWInv:
        const Real wqr2 = square(wq[1]*q[0]) + square(wq[0]*q[1]);
        const Row2 PW = Row2(tp*q[0]/wq[0], tp*q[1]/wq[1]);
        const Vec2 PWinv = Vec2(wq[0]*square(wq[1])*q[0], 
                                square(wq[0])*wq[1]*q[1]) / (tp*wqr2);

        Vec2 qperp = PWinv*(PW*eq);

        //cout << "ERREST before=" << yerrest 
        //     << " wrms=" << wrms(qerrest,qweights) << endl;
        //cout << "PW*eq=" << PW*eq << endl;
        eq -= qperp;

        //cout << "ERREST after=" << yerrest 
        //     << " wrms=" << wrms(qerrest,qweights) << endl;
        //cout << "PW*eq=" << PW*eq << endl;
    }

    results.setExitStatus(ProjectResults::Succeeded);
}

void PendulumSystemGuts::projectUImpl(State& s, Vector& uerrest, 
             const ProjectOptions& opts, ProjectResults& results) const
{
    const Real consAccuracy = opts.getRequiredAccuracy();
    const Vector& uweights = s.getUWeights(subsysIndex);
    const Vector& ctols = s.getUErrWeights(subsysIndex);

    const Vec2& wu = Vec2::getAs(&uweights[0]);
    const Real& tv = ctols[0];

    const Vec2& q = Vec2::getAs(&s.getQ(subsysIndex)[0]); // set up aliases
    const Vec2& u = Vec2::getAs(&s.getU(subsysIndex)[0]);
    Real& ev = s.updUErr(subsysIndex)[0];

    //cout << "BEFORE wperr=" << tp*ep << endl;

    // Do velocity projection at current values of q, which should have
    // been projected already.
    Real r2 = ~q*q; // x^2+y^2
    Real wur2 = square(wu[1]*q[0]) + square(wu[0]*q[1]);
    Row2 V(~q), VW(tv*q[0]/wu[0], tv*q[1]/wu[1]);
    Vec2 Vinv(q/r2);
    Vec2 VWinv = Vec2(square(wu[1])*wu[0]*q[0], 
                      square(wu[0])*wu[1]*q[1]) / (tv*wur2);
    realize(s, Stage::Velocity); // calculate UErr (ev)

    //cout << "BEFORE wverr=" << tv*ev << endl;
    Vec2 du  = Vinv*(ev);      //cout << "du=" << du << endl;
    Vec2 wdu = VWinv*(tv*ev);  //cout << "wdu=" << wdu << endl;

    s.updU(subsysIndex)[0] -= wdu[0]/wu[0]; 
    s.updU(subsysIndex)[1] -= wdu[1]/wu[1];

    realize(s, Stage::Velocity); // recalc UErr
    //cout << "AFTER u-=wdu wverr=" << tv*ev << endl;

    // Now do error estimates.


    if (uerrest.size()) {
        Vec2& eu = Vec2::updAs(&uerrest[0]);
        Vec2 uperp = VWinv*(VW*eu);

        //cout << "ERREST before=" << uerrest 
        //     << " wrms=" << wrms(uerrest,uweights) << endl;
        //cout << " VW*eu=" << VW*eu << endl;
        eu -= uperp;

        //cout << "ERREST after=" << yerrest 
        //     << " wrms=" << wrms(uerrest,uweights) << endl;
        //cout << " VW*eu=" << VW*eu << endl;
    }

    results.setExitStatus(ProjectResults::Succeeded);
}

#endif /*SimTK_SIMMATH_PENDULUMSYSTEM_H_*/