1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
|
/* -------------------------------------------------------------------------- *
* Simbody(tm) *
* -------------------------------------------------------------------------- *
* This is part of the SimTK biosimulation toolkit originating from *
* Simbios, the NIH National Center for Physics-Based Simulation of *
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody. *
* *
* Portions copyright (c) 2008-12 Stanford University and the Authors. *
* Authors: Michael Sherman *
* Contributors: Peter Eastman *
* *
* Licensed under the Apache License, Version 2.0 (the "License"); you may *
* not use this file except in compliance with the License. You may obtain a *
* copy of the License at http://www.apache.org/licenses/LICENSE-2.0. *
* *
* Unless required by applicable law or agreed to in writing, software *
* distributed under the License is distributed on an "AS IS" BASIS, *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
* See the License for the specific language governing permissions and *
* limitations under the License. *
* -------------------------------------------------------------------------- */
/**@file
Private implementation of CompliantContactSubsystem and the built in contact
patch analysis methods.
**/
#include "SimTKcommon.h"
#include "simbody/internal/common.h"
#include "simbody/internal/ForceSubsystem.h"
#include "simbody/internal/ForceSubsystemGuts.h"
#include "simbody/internal/CompliantContactSubsystem.h"
#include "simbody/internal/ContactTrackerSubsystem.h"
#include "simbody/internal/SimbodyMatterSubsystem.h"
#include "simbody/internal/MultibodySystem.h"
namespace SimTK {
//==============================================================================
// COMPLIANT CONTACT SUBSYSTEM IMPL
//==============================================================================
class CompliantContactSubsystemImpl : public ForceSubsystemRep {
typedef std::map<ContactTypeId, const ContactForceGenerator*> GeneratorMap;
public:
CompliantContactSubsystemImpl(const ContactTrackerSubsystem& tracker)
: ForceSubsystemRep("CompliantContactSubsystem", "0.0.1"),
m_tracker(tracker), m_transitionVelocity(Real(0.01)),
m_ooTransitionVelocity(1/m_transitionVelocity),
m_trackDissipatedEnergy(false), m_defaultGenerator(0)
{
}
Real getTransitionVelocity() const {return m_transitionVelocity;}
Real getOOTransitionVelocity() const {return m_ooTransitionVelocity;}
void setTransitionVelocity(Real vt)
{ m_transitionVelocity=vt; m_ooTransitionVelocity=1/vt;}
void setTrackDissipatedEnergy(bool shouldTrack) {
if (m_trackDissipatedEnergy != shouldTrack) {
m_trackDissipatedEnergy = shouldTrack;
invalidateSubsystemTopologyCache();
}
}
bool getTrackDissipatedEnergy() const {return m_trackDissipatedEnergy;}
int getNumContactForces(const State& s) const {
ensureForceCacheValid(s);
const Array_<ContactForce>& forces = getForceCache(s);
return (int)forces.size();
}
const ContactForce& getContactForce(const State& s, int n) const {
const int numContactForces = getNumContactForces(s); // realize if needed
SimTK_ERRCHK2_ALWAYS(n < numContactForces,
"CompliantContactSubsystem::getContactForce()",
"There are currently only %d contact forces but force %d"
" was requested (they are numbered from 0). Use getNumContactForces()"
" first to determine how many are available.", numContactForces, n);
const Array_<ContactForce>& forces = getForceCache(s);
return forces[n];
}
const ContactForce& getContactForceById(const State& s, ContactId id) const {
static const ContactForce invalidForce;
const int numContactForces = getNumContactForces(s); // realize if needed
const Array_<ContactForce>& forces = getForceCache(s);
// TODO: use a map
for (int i=0; i < numContactForces; ++i)
if (forces[i].getContactId()==id)
return forces[i];
return invalidForce;
}
bool calcContactPatchDetailsById(const State& state,
ContactId id,
ContactPatch& patch_G) const
{
SimTK_STAGECHECK_GE_ALWAYS(getStage(state), Stage::Velocity,
"CompliantContactSubystemImpl::ensureForceCacheValid()");
const ContactSnapshot& active = m_tracker.getActiveContacts(state);
const Contact& contact = active.getContactById(id);
if (contact.isEmpty() || contact.getCondition() == Contact::Broken) {
patch_G.clear();
return false;
}
const Transform& X_S1S2 = contact.getTransform();
const ContactSurfaceIndex surf1(contact.getSurface1());
const ContactSurfaceIndex surf2(contact.getSurface2());
const MobilizedBody& mobod1 = m_tracker.getMobilizedBody(surf1);
const MobilizedBody& mobod2 = m_tracker.getMobilizedBody(surf2);
const Transform X_GS1 = mobod1.findFrameTransformInGround
(state, m_tracker.getContactSurfaceTransform(surf1));
const Transform X_GS2 = mobod2.findFrameTransformInGround
(state, m_tracker.getContactSurfaceTransform(surf2));
const SpatialVec V_GS1 = mobod1.findFrameVelocityInGround
(state, m_tracker.getContactSurfaceTransform(surf1));
const SpatialVec V_GS2 = mobod2.findFrameVelocityInGround
(state, m_tracker.getContactSurfaceTransform(surf2));
// Calculate the relative velocity of S2 in S1, expressed in S1.
const SpatialVec V_S1S2 =
findRelativeVelocity(X_GS1, V_GS1, X_GS2, V_GS2);
// Get the right force generator to use for this kind of contact.
const ContactForceGenerator& generator =
getForceGenerator(contact.getTypeId());
// Calculate the contact patch measured and expressed in S1.
generator.calcContactPatch(state, contact, V_S1S2,
patch_G); // it is actually in S1 at this point
// Re-express the contact patch in Ground for later use.
if (patch_G.isValid()) {
patch_G.changeFrameInPlace(X_GS1); // switch from S1 to Ground
return true;
}
return false;
}
const ContactTrackerSubsystem& getContactTrackerSubsystem() const
{ return m_tracker; }
~CompliantContactSubsystemImpl() {
delete m_defaultGenerator;
for (GeneratorMap::iterator p = m_generators.begin();
p != m_generators.end(); ++p)
delete p->second; // free the generator
// The map itself gets freed by its destructor here.
}
// We're going to take over ownership of this object. If the generator map
// already contains a generator for this type of contact, the new one replaces
// it.
void adoptForceGenerator(CompliantContactSubsystem* subsys,
ContactForceGenerator* generator) {
assert(generator);
generator->setCompliantContactSubsystem(subsys);
invalidateSubsystemTopologyCache();
GeneratorMap::iterator p=m_generators.find(generator->getContactTypeId());
if (p != m_generators.end()) {
// We're replacing an existing generator.
delete p->second;
p->second = generator; // just copying the pointer
} else {
// Insert the new generator.
m_generators.insert(std::make_pair(generator->getContactTypeId(),
generator));
}
}
// Set the default force generator, deleting the previous one. Null is OK.
void adoptDefaultForceGenerator(CompliantContactSubsystem* subsys,
ContactForceGenerator* generator) {
invalidateSubsystemTopologyCache();
delete m_defaultGenerator;
m_defaultGenerator = generator; // just copying the pointer
if (m_defaultGenerator)
m_defaultGenerator->setCompliantContactSubsystem(subsys);
}
// Do we have a generator registered for this type? If not, we'll invoke our
// default generator.
bool hasForceGenerator(ContactTypeId type) const
{ return m_generators.find(type) != m_generators.end(); }
bool hasDefaultForceGenerator() const
{ return m_defaultGenerator != 0; }
// Get the generator registered for this type of contact or the default
// generator if nothing is registered.
const ContactForceGenerator& getForceGenerator(ContactTypeId type) const
{ GeneratorMap::const_iterator p=m_generators.find(type);
return p != m_generators.end() ? *p->second : getDefaultForceGenerator(); }
// Get the default generator.
const ContactForceGenerator& getDefaultForceGenerator() const
{ assert(m_defaultGenerator); return *m_defaultGenerator; }
// These override default implementations of virtual methods in the
// Subsystem::Guts class.
CompliantContactSubsystemImpl* cloneImpl() const override
{ return new CompliantContactSubsystemImpl(*this); }
// Allocate lazy evaluation cache entries to hold potential energy (calculable
// after position stage) and forces and power (calculable after velocity stage).
int realizeSubsystemTopologyImpl(State& s) const override {
// Get writability briefly to fill in the Topology cache.
CompliantContactSubsystemImpl* wThis =
const_cast<CompliantContactSubsystemImpl*>(this);
// Calculating forces includes calculating PE for each force.
wThis->m_forceCacheIx = allocateLazyCacheEntry(s,
Stage::Velocity, new Value<Array_<ContactForce> >());
// This usually just requires summing up the forceCache PE values, but
// may also have to be calculated at Position stage in which case we can't
// calculate the forces.
wThis->m_potEnergyCacheIx = allocateLazyCacheEntry(s,
Stage::Position, new Value<Real>(NaN));
// This state variable is used to integrate power to get dissipated
// energy. Allocate only if requested.
if (m_trackDissipatedEnergy) {
Vector einit(1, Real(0));
wThis->m_dissipatedEnergyIx = allocateZ(s,einit);
}
return 0;
}
int realizeSubsystemModelImpl(State& s) const override {
return 0;
}
int realizeSubsystemInstanceImpl(const State& s) const override {
return 0;
}
int realizeSubsystemTimeImpl(const State& s) const override {
return 0;
}
int realizeSubsystemPositionImpl(const State& s) const override {
return 0;
}
int realizeSubsystemVelocityImpl(const State& s) const override {
return 0;
}
int realizeSubsystemDynamicsImpl(const State& s) const override {
ensureForceCacheValid(s);
const MultibodySystem& mbs = getMultibodySystem(); // my owner
const SimbodyMatterSubsystem& matter = mbs.getMatterSubsystem();
// Get access to System-global force cache array.
Vector_<SpatialVec>& rigidBodyForces =
mbs.updRigidBodyForces(s, Stage::Dynamics);
// Accumulate the values from the cache into the global arrays.
const ContactSnapshot& contacts = m_tracker.getActiveContacts(s);
const Array_<ContactForce>& forces = getForceCache(s);
for (unsigned i=0; i < forces.size(); ++i) {
const ContactForce& force = forces[i];
const Contact& contact = contacts.getContactById(force.getContactId());
const MobilizedBody& mobod1 = m_tracker.getMobilizedBody
(contact.getSurface1());
const MobilizedBody& mobod2 = m_tracker.getMobilizedBody
(contact.getSurface2());
const Vec3 r1 = force.getContactPoint() - mobod1.getBodyOriginLocation(s);
const Vec3 r2 = force.getContactPoint() - mobod2.getBodyOriginLocation(s);
const SpatialVec& F2cpt = force.getForceOnSurface2(); // at contact pt
// Shift applied force to body origins.
const SpatialVec F2( F2cpt[0] + r2 % F2cpt[1], F2cpt[1]);
const SpatialVec F1(-F2cpt[0] + r1 % -F2cpt[1], -F2cpt[1]);
mobod1.applyBodyForce(s, F1, rigidBodyForces);
mobod2.applyBodyForce(s, F2, rigidBodyForces);
}
return 0;
}
// Potential energy is normally a side effect of force calculation done after
// Velocity stage. But if only positions are available, we
// have to calculate forces at zero velocity and then throw away everything
// but the PE.
Real calcPotentialEnergy(const State& state) const override {
ensurePotentialEnergyCacheValid(state);
return getPotentialEnergyCache(state);
}
int realizeSubsystemAccelerationImpl(const State& state) const override {
if (!m_trackDissipatedEnergy)
return 0; // nothing to do here in that case
ensureForceCacheValid(state);
Real powerLoss = 0;
const Array_<ContactForce>& forces = getForceCache(state);
for (unsigned i=0; i < forces.size(); ++i)
powerLoss += forces[i].getPowerDissipation();
updDissipatedEnergyDeriv(state) = powerLoss;
return 0;
}
int realizeSubsystemReportImpl(const State&) const override {
return 0;
}
const Real& getDissipatedEnergyVar(const State& s) const
{ return getZ(s)[m_dissipatedEnergyIx]; }
Real& updDissipatedEnergyVar(State& s) const
{ return updZ(s)[m_dissipatedEnergyIx]; }
//--------------------------------------------------------------------------
private:
Real& updDissipatedEnergyDeriv(const State& s) const
{ return updZDot(s)[m_dissipatedEnergyIx]; }
const Real& getPotentialEnergyCache(const State& s) const
{ return Value<Real>::downcast(getCacheEntry(s,m_potEnergyCacheIx)); }
const Array_<ContactForce>& getForceCache(const State& s) const
{ return Value<Array_<ContactForce> >::downcast
(getCacheEntry(s,m_forceCacheIx)); }
Real& updPotentialEnergyCache(const State& s) const
{ return Value<Real>::updDowncast(updCacheEntry(s,m_potEnergyCacheIx)); }
Array_<ContactForce>& updForceCache(const State& s) const
{ return Value<Array_<ContactForce> >::updDowncast
(updCacheEntry(s,m_forceCacheIx)); }
bool isPotentialEnergyCacheValid(const State& s) const
{ return isCacheValueRealized(s,m_potEnergyCacheIx); }
bool isForceCacheValid(const State& s) const
{ return isCacheValueRealized(s,m_forceCacheIx); }
void markPotentialEnergyCacheValid(const State& s) const
{ markCacheValueRealized(s,m_potEnergyCacheIx); }
void markForceCacheValid(const State& s) const
{ markCacheValueRealized(s,m_forceCacheIx); }
void ensurePotentialEnergyCacheValid(const State&) const;
void ensureForceCacheValid(const State&) const;
// TOPOLOGY "STATE"
// This is the ContactTracker that we will consult to obtain Contact objects
// to use as raw material for contact force generation.
const ContactTrackerSubsystem& m_tracker;
// This is the value that should be used by generators for the friction
// transition velocity if they are using a Hollars-like friction model.
// Also precalculate the inverse to avoid expensive runtime division.
Real m_transitionVelocity;
Real m_ooTransitionVelocity; // 1/vt
// This flag determines whether we allocate a Z variable to integrate
// dissipated power to track dissipated energy.
bool m_trackDissipatedEnergy;
// This map owns the generator objects; be sure to clean up on destruction or
// when a generator is replaced.
GeneratorMap m_generators;
// This is the generator to use for an unrecognized ContactTypeId. Typically
// this will either do nothing silently or throw an error.
ContactForceGenerator* m_defaultGenerator;
// TOPOLOGY "CACHE"
// These must be set during realizeTopology and treated as const thereafter.
// Note that we don't allocate the dissipated energy variable unless the
// flag above is set true (prior to realizeTopology()).
ZIndex m_dissipatedEnergyIx;
CacheEntryIndex m_potEnergyCacheIx;
CacheEntryIndex m_forceCacheIx;
};
void CompliantContactSubsystemImpl::
ensurePotentialEnergyCacheValid(const State& state) const {
if (isPotentialEnergyCacheValid(state)) return;
SimTK_STAGECHECK_GE_ALWAYS(getStage(state), Stage::Position,
"CompliantContactSubystemImpl::ensurePotentialEnergyCacheValid()");
Real& pe = updPotentialEnergyCache(state);
pe = 0;
// If the State has been realized to Velocity stage, we can just sum up
// the PEs from the ContactForce objects.
if (getStage(state) >= Stage::Velocity) {
ensureForceCacheValid(state);
const Array_<ContactForce>& forces = getForceCache(state);
for (unsigned i=0; i < forces.size(); ++i)
pe += forces[i].getPotentialEnergy();
markPotentialEnergyCacheValid(state);
return;
}
// The State has been realized to Position stage, so we're going to have
// to calculate forces at zero velocity and then throw away all the
// results except for the PE.
const ContactSnapshot& active = m_tracker.getActiveContacts(state);
const int nContacts = active.getNumContacts();
for (int i=0; i<nContacts; ++i) {
const Contact& contact = active.getContact(i);
const ContactForceGenerator& generator =
getForceGenerator(contact.getTypeId());
ContactForce force;
generator.calcContactForce(state,contact,SpatialVec(Vec3(0)), force);
pe += force.getPotentialEnergy();
}
markPotentialEnergyCacheValid(state);
}
void CompliantContactSubsystemImpl::
ensureForceCacheValid(const State& state) const {
if (isForceCacheValid(state)) return;
SimTK_STAGECHECK_GE_ALWAYS(getStage(state), Stage::Velocity,
"CompliantContactSubystemImpl::ensureForceCacheValid()");
Array_<ContactForce>& forces = updForceCache(state);
forces.clear();
const ContactSnapshot& active = m_tracker.getActiveContacts(state);
const int nContacts = active.getNumContacts();
for (int i=0; i<nContacts; ++i) {
const Contact& contact = active.getContact(i);
if (contact.getCondition() == Contact::Broken) {
// No need to generate forces; this will be gone next time.
continue;
}
const Transform& X_S1S2 = contact.getTransform();
const ContactSurfaceIndex surf1(contact.getSurface1());
const ContactSurfaceIndex surf2(contact.getSurface2());
const MobilizedBody& mobod1 = m_tracker.getMobilizedBody(surf1);
const MobilizedBody& mobod2 = m_tracker.getMobilizedBody(surf2);
// TODO: These two are expensive (63 flops each) and shouldn't have
// to be recalculated here since we must have used them in creating
// the Contact and X_S1S2.
const Transform X_GS1 = mobod1.findFrameTransformInGround
(state, m_tracker.getContactSurfaceTransform(surf1));
const Transform X_GS2 = mobod2.findFrameTransformInGround
(state, m_tracker.getContactSurfaceTransform(surf2));
const SpatialVec V_GS1 = mobod1.findFrameVelocityInGround
(state, m_tracker.getContactSurfaceTransform(surf1));
const SpatialVec V_GS2 = mobod2.findFrameVelocityInGround
(state, m_tracker.getContactSurfaceTransform(surf2));
// Calculate the relative velocity of S2 in S1, expressed in S1.
const SpatialVec V_S1S2 =
findRelativeVelocity(X_GS1, V_GS1, X_GS2, V_GS2); // 51 flops
const ContactForceGenerator& generator =
getForceGenerator(contact.getTypeId());
forces.push_back(); // allocate a new garbage ContactForce
// Calculate the contact force measured and expressed in S1.
generator.calcContactForce(state, contact, V_S1S2, forces.back());
// Re-express the contact force in Ground for later use.
if (forces.back().isValid())
forces.back().changeFrameInPlace(X_GS1); // switch to Ground
else
forces.pop_back(); // never mind ...
}
markForceCacheValid(state);
}
//==============================================================================
// COMPLIANT CONTACT SUBSYSTEM
//==============================================================================
/*static*/ bool
CompliantContactSubsystem::isInstanceOf(const ForceSubsystem& s)
{ return CompliantContactSubsystemImpl::isA(s.getRep()); }
/*static*/ const CompliantContactSubsystem&
CompliantContactSubsystem::downcast(const ForceSubsystem& s)
{ assert(isInstanceOf(s));
return static_cast<const CompliantContactSubsystem&>(s); }
/*static*/ CompliantContactSubsystem&
CompliantContactSubsystem::updDowncast(ForceSubsystem& s)
{ assert(isInstanceOf(s));
return static_cast<CompliantContactSubsystem&>(s); }
const CompliantContactSubsystemImpl&
CompliantContactSubsystem::getImpl() const
{ return SimTK_DYNAMIC_CAST_DEBUG<const CompliantContactSubsystemImpl&>
(ForceSubsystem::getRep()); }
CompliantContactSubsystemImpl&
CompliantContactSubsystem::updImpl()
{ return SimTK_DYNAMIC_CAST_DEBUG<CompliantContactSubsystemImpl&>
(ForceSubsystem::updRep()); }
CompliantContactSubsystem::CompliantContactSubsystem
(MultibodySystem& mbs, const ContactTrackerSubsystem& tracker)
: ForceSubsystem()
{ adoptSubsystemGuts(new CompliantContactSubsystemImpl(tracker));
mbs.addForceSubsystem(*this); // mbs steals ownership
// Register default contact force generators.
adoptForceGenerator(new ContactForceGenerator::HertzCircular());
adoptForceGenerator(new ContactForceGenerator::HertzElliptical());
adoptForceGenerator(new ContactForceGenerator::BrickHalfSpacePenalty());
adoptForceGenerator(new ContactForceGenerator::ElasticFoundation());
adoptDefaultForceGenerator(new ContactForceGenerator::DoNothing());
}
Real CompliantContactSubsystem::getTransitionVelocity() const
{ return getImpl().getTransitionVelocity(); }
Real CompliantContactSubsystem::getOOTransitionVelocity() const
{ return getImpl().getOOTransitionVelocity(); }
void CompliantContactSubsystem::setTransitionVelocity(Real vt) {
SimTK_ERRCHK1_ALWAYS(vt > 0,
"CompliantContactSubsystem::setTransitionVelocity()",
"Friction transition velocity %g is illegal.", vt);
updImpl().setTransitionVelocity(vt);
}
void CompliantContactSubsystem::setTrackDissipatedEnergy(bool shouldTrack)
{ updImpl().setTrackDissipatedEnergy(shouldTrack); }
bool CompliantContactSubsystem::getTrackDissipatedEnergy() const
{ return getImpl().getTrackDissipatedEnergy(); }
int CompliantContactSubsystem::getNumContactForces(const State& s) const
{ return getImpl().getNumContactForces(s); }
const ContactForce& CompliantContactSubsystem::
getContactForce(const State& s, int n) const
{ return getImpl().getContactForce(s,n); }
const ContactForce& CompliantContactSubsystem::
getContactForceById(const State& s, ContactId id) const
{ return getImpl().getContactForceById(s,id); }
bool CompliantContactSubsystem::
calcContactPatchDetailsById(const State& state,
ContactId id,
ContactPatch& patch_G) const
{ return getImpl().calcContactPatchDetailsById(state,id,patch_G); }
Real CompliantContactSubsystem::
getDissipatedEnergy(const State& s) const {
SimTK_ERRCHK_ALWAYS(getTrackDissipatedEnergy(),
"CompliantContactSubsystem::getDissipatedEnergy()",
"You can't call getDissipatedEnergy() unless you have previously "
"enabled tracking of dissipated energy with a call to "
"setTrackDissipatedEnergy().");
return getImpl().getDissipatedEnergyVar(s); }
void CompliantContactSubsystem::
setDissipatedEnergy(State& s, Real energy) const {
SimTK_ERRCHK_ALWAYS(getTrackDissipatedEnergy(),
"CompliantContactSubsystem::setDissipatedEnergy()",
"You can't call setDissipatedEnergy() unless you have previously "
"enabled tracking of dissipated energy with a call to "
"setTrackDissipatedEnergy().");
SimTK_ERRCHK1_ALWAYS(energy >= 0,
"CompliantContactSubsystem::setDissipatedEnergy()",
"The initial value for the dissipated energy must be nonnegative"
" but an attempt was made to set it to %g.", energy);
getImpl().updDissipatedEnergyVar(s) = energy;
}
void CompliantContactSubsystem::adoptForceGenerator
(ContactForceGenerator* generator)
{ return updImpl().adoptForceGenerator(this, generator); }
void CompliantContactSubsystem::adoptDefaultForceGenerator
(ContactForceGenerator* generator)
{ return updImpl().adoptDefaultForceGenerator(this, generator); }
bool CompliantContactSubsystem::hasForceGenerator(ContactTypeId type) const
{ return getImpl().hasForceGenerator(type); }
bool CompliantContactSubsystem::hasDefaultForceGenerator() const
{ return getImpl().hasDefaultForceGenerator(); }
const ContactForceGenerator& CompliantContactSubsystem::
getContactForceGenerator(ContactTypeId contactType) const
{ return getImpl().getForceGenerator(contactType); }
const ContactForceGenerator& CompliantContactSubsystem::
getDefaultForceGenerator() const
{ return getImpl().getDefaultForceGenerator(); }
const ContactTrackerSubsystem& CompliantContactSubsystem::
getContactTrackerSubsystem() const
{ return getImpl().getContactTrackerSubsystem(); }
const MultibodySystem& CompliantContactSubsystem::getMultibodySystem() const
{ return MultibodySystem::downcast(getSystem()); }
// Input x goes from 0 to 1; output goes 0 to 1 but smoothed with an S-shaped
// quintic with two zero derivatives at either end. Cost is 7 flops.
inline static Real step5(Real x) {
assert(0 <= x && x <= 1);
const Real x3=x*x*x;
return x3*(10+x*(6*x-15)); //10x^3-15x^4+6x^5
}
// Input x goes from 0 to 1; output goes from 0 to y. First derivative
// is 0 at the beginning and yd at the end. Second derivatives are zero
// at both ends:
//
// y - *
// * | slope=yd
// *------
// *
// 0 - * *
// x=0 1
//
// Cost is 16 flops.
inline static Real step5d(Real y, Real yd, Real x) {
assert(0 <= x && x <= 1);
const Real a=6*y-3*yd, b=-15*y+7*yd, c=10*y-4*yd, x3=x*x*x;
return x3*(c + x*(b + x*a));
}
// This is the sum of two curves:
// (1) a wet friction term mu_wet which is a linear function of velocity:
// mu_wet = uv*v
// (2) a dry friction term mu_dry which is a quintic spline with 4 segments:
// mu_dry =
// (a) v=0..1: smooth interpolation from 0 to us
// (b) v=1..3: smooth interp from us down to ud (Stribeck)
// (c) v=3..Inf ud
// CAUTION: uv and v must be dimensionless in multiples of transition velocity.
// The function mu = mu_wet + mu_dry is zero at v=0 with 1st deriv (slope) uv
// and 2nd deriv (curvature) 0. At large velocities v>>0 the value is
// ud+uv*v, again with slope uv and zero curvature. We want mu(v) to be c2
// continuous, so mu_wet(v) must have zero slope and curvature at v==0 and
// at v==3 where it takes on a constant value ud.
//
// Cost: stiction 12 flops
// stribeck 14 flops
// sliding 3 flops
// Curve looks like this:
//
// us+uv ***
// * * *
// * * *____| slope = uv at Inf
// * * *
// ud+3uv * * *
// *
// *
// *
// 0 *____| slope = uv at 0
//
// | | |
// v=0 1 3
//
// This calculates a composite coefficient of friction that you should use
// to scale the normal force to produce the friction force.
inline static Real stribeck(Real us, Real ud, Real uv, Real v) {
const Real mu_wet = uv*v;
Real mu_dry;
if (v >= 3) mu_dry = ud; // sliding
else if (v >= 1) mu_dry = us - (us-ud)*step5((v-1)/2); // Stribeck
else mu_dry = us*step5(v); // 0 <= v < 1 (stiction)
return mu_dry + mu_wet;
}
// CAUTION: uv and v must be dimensionless in multiples of transition velocity.
// Const 9 flops + 1 divide = approx 25 flops.
// This calculates a composite coefficient of friction that you should use
// to scale the normal force to produce the friction force.
// Curve is similar to Stribeck above but more violent with a discontinuous
// derivative at v==1.
inline static Real hollars(Real us, Real ud, Real uv, Real v) {
const Real mu = std::min(v, Real(1))*(ud + 2*(us-ud)/(1+v*v))
+ uv*v;
return mu;
}
// This function is shared between the Hertz circular and Hertz elliptical
// contacts. We only need to pass in the effective relative radius R and the
// elliptical correction factor e(=1 for circular); everything else is the
// same.
// This is around 250 flops.
static void calcHertzContactForce
(const CompliantContactSubsystem& subsys,
const ContactTrackerSubsystem& tracker,
const State& state,
const Contact& contact, // contains X_S1S2
const UnitVec3& normal_S1, // away from surf1, exp. in S1
const Vec3& origin_S1, // half way btw undeformed surfaces
Real depth,
const SpatialVec& V_S1S2, // relative surface velocity, S2 in S1
Real R, // effective relative radius
Real e, // elliptical correction factor
ContactForce& contactForce_S1,
Array_<ContactDetail>* details) // pass as null if you don't care
{
if (details) details->clear();
if (depth <= 0) {
contactForce_S1.clear(); // no contact; invalidate return result
return;
}
const ContactSurfaceIndex surf1x = contact.getSurface1();
const ContactSurfaceIndex surf2x = contact.getSurface2();
const Transform& X_S1S2 = contact.getTransform();
// Abbreviations.
const Rotation& R12 = X_S1S2.R(); // orientation of S2 in S1
const Vec3& p12 = X_S1S2.p(); // position of O2 in S1
const Vec3& w12 = V_S1S2[0]; // ang. vel. of S2 in S1
const Vec3& v12 = V_S1S2[1]; // vel. of O2 in S1
const ContactSurface& surf1 = tracker.getContactSurface(surf1x);
const ContactSurface& surf2 = tracker.getContactSurface(surf2x);
// Note that Hertz doesn't care about the "thickness" property of a
// ContactSurface; it is able to estimate %strain from the relationship
// between the deformation and local radii of curvature.
const ContactMaterial& mat1 = surf1.getMaterial();
const ContactMaterial& mat2 = surf2.getMaterial();
// Use 2/3 power of stiffness for combining here. (We'll raise the combined
// result k to the 3/2 power below.)
const Real k1=mat1.getStiffness23(), k2=mat2.getStiffness23();
const Real c1=mat1.getDissipation(), c2=mat2.getDissipation();
// Adjust the contact location based on the relative stiffness of the
// two materials. s1 is the fraction of the "squishing" (deformation) that
// is done by surface1 -- if surface2 is very stiff then surface1 does most.
const Real s1 = k2/(k1+k2); // 0..1
const Real s2 = 1-s1; // 1..0
const Real x = depth;
// Actual contact point moves closer to stiffer surface.
const Vec3 contactPt_S1 = origin_S1 + (x*(Real(0.5)-s1))*normal_S1;
// Calculate the Hertz force fH, which is conservative.
const Real k = k1*s1; // (==k2*s2) == E^(2/3)
const Real c = c1*s1 + c2*s2;
// fH = 4/3 e R^1/2 k^3/2 x^3/2
const Real fH = e*Real(4./3.)*k*x*std::sqrt(R*k*x); // always >= 0
// Calculate the relative velocity of the two bodies at the contact point.
// We're considering S1 fixed, so we just need the velocity in S1 of
// the station of S2 that is coincident with the contact point.
const Vec3 contactPt2_S1 = contactPt_S1 - p12; // S2 station, exp. in S1
// All vectors are in S1; dropping the "_S1" notation now.
// Velocity of surf2 at contact point is opposite direction of normal
// when penetration is increasing.
const Vec3 vel = v12 + w12 % contactPt2_S1;
// Want xdot > 0 when x is increasing; normal points the other way
const Real xdot = -dot(vel, normal_S1); // penetration rate (signed)
const Vec3 velNormal = -xdot*normal_S1;
const Vec3 velTangent = vel-velNormal;
// Calculate the Hunt-Crossley force, which is dissipative, and the
// total normal force including elasticity and dissipation.
const Real fHC = fH*Real(1.5)*c*xdot; // same sign as xdot
const Real fNormal = fH + fHC; // < 0 means "sticking"; see below
// Start filling out the contact force.
contactForce_S1.setContactId(contact.getContactId());
contactForce_S1.setContactPoint(contactPt_S1);
// Total force can be negative under unusual circumstances ("yanking");
// that means no force is generated and no stored PE will be recovered.
// This will most often occur in to-be-rejected trial steps but can
// occasionally be real.
if (fNormal <= 0) {
//std::cout << "YANKING!!!\n";
contactForce_S1.setForceOnSurface2(SpatialVec(Vec3(0)));
contactForce_S1.setPotentialEnergy(0);
contactForce_S1.setPowerDissipation(0);
return; // there is contact, but no force
}
const Vec3 forceH = fH *normal_S1; // as applied to surf2
const Vec3 forceHC = fHC*normal_S1;
const Real potentialEnergy = Real(2./5.)*fH*x;
const Real powerHC = fHC*xdot; // rate of energy loss, >= 0
// Calculate the friction force.
Vec3 forceFriction(0);
Real powerFriction = 0;
const Real vslipSq = velTangent.normSqr();
if (vslipSq > square(SignificantReal)) {
const Real vslip = std::sqrt(vslipSq); // expensive
const Real us1=mat1.getStaticFriction(), us2=mat2.getStaticFriction();
const Real ud1=mat1.getDynamicFriction(), ud2=mat2.getDynamicFriction();
const Real uv1=mat1.getViscousFriction(), uv2=mat2.getViscousFriction();
const Real vtrans = subsys.getTransitionVelocity();
const Real ooVtrans = subsys.getOOTransitionVelocity(); // 1/vtrans
// Calculate effective coefficients of friction, being careful not
// to divide 0/0 if both are frictionless.
Real us = 2*us1*us2; if (us!=0) us /= (us1+us2);
Real ud = 2*ud1*ud2; if (ud!=0) ud /= (ud1+ud2);
Real uv = 2*uv1*uv2; if (uv!=0) uv /= (uv1+uv2);
assert(us >= ud);
// Express slip velocity as unitless multiple of transition velocity.
const Real v = vslip * ooVtrans;
// Must scale viscous coefficient to match unitless velocity.
const Real mu=stribeck(us,ud,uv*vtrans,v);
//const Real mu=hollars(us,ud,uv*vtrans,v);
const Real fFriction = fNormal * mu;
// Force direction on S2 opposes S2's velocity.
forceFriction = (-fFriction/vslip)*velTangent; // in S1
powerFriction = fFriction * vslip; // >= 0
}
const Vec3 forceLoss = forceHC + forceFriction;
const Vec3 forceTotal = forceH + forceLoss;
// Report the force (as applied at contactPt).
contactForce_S1.setForceOnSurface2(SpatialVec(Vec3(0),forceTotal));
contactForce_S1.setPotentialEnergy(potentialEnergy);
// Don't include dot(forceH,velNormal) power due to conservative force
// here. This way we don't double-count the energy on the way in as
// integrated power and potential energy. Although the books would balance
// again when the contact is broken, it makes continuous contact look as
// though some energy has been lost. In the "yanking" case above, without
// including the conservative power term we will actually lose energy
// because the deformed material isn't allowed to push back on us so the
// energy is lost to surface vibrations or some other unmodeled effect.
const Real powerLoss = powerHC + powerFriction;
contactForce_S1.setPowerDissipation(powerLoss);
// Fill in contact details if requested (in S1 frame).
if (details) {
details->push_back(); // default constructed
ContactDetail& detail = details->back();
detail.m_contactPt = contactPt_S1;
detail.m_patchNormal = normal_S1;
detail.m_slipVelocity = velTangent;
detail.m_forceOnSurface2 = forceTotal;
detail.m_deformation = x;
detail.m_deformationRate = xdot;
detail.m_patchArea = NaN;
detail.m_peakPressure = NaN;
detail.m_potentialEnergy = potentialEnergy;
detail.m_powerLoss = powerLoss;
}
}
//==============================================================================
// HERTZ CIRCULAR GENERATOR
//==============================================================================
void ContactForceGenerator::HertzCircular::calcContactForce
(const State& state,
const Contact& overlap, // contains X_S1S2
const SpatialVec& V_S1S2, // relative surface velocity, S2 in S1
ContactForce& contactForce_S1) const
{
SimTK_ASSERT(CircularPointContact::isInstance(overlap),
"ContactForceGenerator::HertzCircular::calcContactForce(): expected"
" CircularPointContact.");
const CircularPointContact& contact = CircularPointContact::getAs(overlap);
const Real depth = contact.getDepth();
const CompliantContactSubsystem& subsys = getCompliantContactSubsystem();
const ContactTrackerSubsystem& tracker = subsys.getContactTrackerSubsystem();
// normal points away from surf1, expressed in surf1's frame
const UnitVec3& normal_S1 = contact.getNormal();
// origin is half way between the two surfaces as though they had
// equal stiffness
const Vec3& origin_S1 = contact.getOrigin();
const Real R = contact.getEffectiveRadius();
calcHertzContactForce(subsys, tracker, state, overlap,
normal_S1, origin_S1, depth,
V_S1S2, R, 1, contactForce_S1, 0);
}
void ContactForceGenerator::HertzCircular::calcContactPatch
(const State& state,
const Contact& overlap,
const SpatialVec& V_S1S2,
ContactPatch& patch_S1) const
{
SimTK_ASSERT(CircularPointContact::isInstance(overlap),
"ContactForceGenerator::HertzCircular::calcContactPatch(): expected"
" CircularPointContact.");
const CircularPointContact& contact = CircularPointContact::getAs(overlap);
const Real depth = contact.getDepth();
const CompliantContactSubsystem& subsys = getCompliantContactSubsystem();
const ContactTrackerSubsystem& tracker = subsys.getContactTrackerSubsystem();
// normal points away from surf1, expressed in surf1's frame
const UnitVec3& normal_S1 = contact.getNormal();
// origin is half way between the two surfaces as though they had
// equal stiffness
const Vec3& origin_S1 = contact.getOrigin();
const Real R = contact.getEffectiveRadius();
calcHertzContactForce(subsys, tracker, state, overlap,
normal_S1, origin_S1, depth,
V_S1S2, R, 1, patch_S1.m_resultant,
&patch_S1.m_elements);
}
//==============================================================================
// HERTZ ELLIPTICAL GENERATOR
//==============================================================================
// Given the relative principal curvatures characterizing the undeformed
// contact geometry, calculate the ratio k=a/b >= 1 of the semi axes of the
// deformed contact ellipse (the actual size depends on the penetration but
// the ratio depends only on the relative curvatures).
//
// Hertz theory relates them in this implicit equation for k:
// B kmax k^2 E(m)-K(m)
// - = ---- = -------------, m = 1 - (1/k)^2, B >= A.
// A kmin K(m)-E(m)
//
// (B=kmax/2 and A=kmin/2 are semi-curvatures but their ratio
// is the same as the ratio of curvatures.)
//
// This equation can be solved numerically for k (see the numerical
// version of this routine below). Here we instead use an approximation
// k = (B/A)^p where exponent p=p(B/A) as follows:
// 1 + u0 q + u1 q^2 + u2 q^3 + u3 q^4
// p = 2/3 -----------------------------------, q = log10^2(B/A)
// 1 + v0 q + v1 q^2 + v2 q^3 + v3 q^4
// This gives 5 digits or better of accuracy across the full range
// of possible ratios kmax:kmin at a cost of about 160 flops.
//
// Antoine, Visa, Sauvey, Abba. "Approximate analytical model for
// Hertzian Elliptical Contact Problems", ASME J. Tribology 128:660, 2006.
static Real approxContactEllipseRatio(Real kmax, Real kmin) {
static const Real u[] =
{ (Real).40227436, (Real)3.7491752e-2, (Real)7.4855761e-4,
(Real)2.1667028e-6 };
static const Real v[] =
{ (Real).42678878, (Real)4.2605401e-2, (Real)9.0786922e-4,
(Real)2.7868927e-6 };
Real BoA = kmax/kmin; // ~20 flops
Real q = square(std::log10(BoA)), q2=q*q, q3=q2*q, q4=q3*q; // ~50 flops?
Real n = 1 + u[0]*q + u[1]*q2 + u[2]*q3 + u[3]*q4; // 8 flops
Real d = 1 + v[0]*q + v[1]*q2 + v[2]*q3 + v[3]*q4; // 8 flops
Real p = (2*n)/(3*d); // ~20 flops
Real k = std::pow(BoA, p); // ellipse ratio k=a/b, >50 flops?
return k;
}
// Given the relative principal curvatures characterizing the undeformed
// contact geometry, calculate the ratio k=a/b >= 1 of the semiaxes of the
// deformed contact ellipse (the actual size depends on the penetration but
// the ratio depends only on the relative curvatures).
//
// Hertz theory relates them in this implicit equation for k:
// B kmax k^2 E(m)-K(m)
// - = ---- = -------------, m = 1 - (1/k)^2, B >= A.
// A kmin K(m)-E(m)
//
// (B=kmax/2 and A=kmin/2 are semi-curvatures but their ratio
// is the same as the ratio of curvatures.)
//
// Here we numerically solve for k using a Newton iteration, and
// obtain K(m) and E(m) as a side effect useful later.
// The cost is roughly ~100 + (300+70)*n, typically about 1600 flops
// at n=4.
//
// This method is adapted from
// Dyson, Evans, Snidle. "A simple accurate method for calculation of
// stresses and deformations in elliptical Hertzian contacts",
// J. Mech. Eng. Sci. Proc. IMechE part C 206:139-141, 1992.
static Real numContactEllipseRatio
(Real kmax, Real kmin, std::pair<Real,Real>& KE)
{
// See Dyson.
Real lambda = kmin/kmax; // A/B
Real kp = std::pow(lambda, Real(2./3.)); // note inverted k'=b/a
Real k2 = kp*kp;
Real lambda1;
for(;;) {
if (k2 > 1) k2 = 1;
Real m = 1-k2;
KE = completeEllipticIntegralsKE(m); // K,E
if (k2==1) return 1;
lambda1 = (KE.first - KE.second) / (KE.second/k2 - KE.first);
if (std::abs(lambda-lambda1) < 10*lambda*SignificantReal)
break;
Real den = lambda1*lambda1+2*m*lambda1-k2;
k2 += (2*m*k2*(lambda-lambda1))/den; // might make k2 slightly >1
};
kp = std::sqrt(k2);
return 1/kp; // return k
}
// Given the undeformed relative geometry semi-curvatures A and B (A<=B),
// the deformed contact ellipse ratio k=a/b >= 1 and associated complete
// elliptic integrals K(m) and E(m) where m = 1 - (1/k)^2, and the
// penetration depth d, return the ellipse semimajor and semiminor
// axes a, b resp. (a>=b), the contact force P, and the peak contact
// pressure p0.
// d Em
// b = sqrt( -------- ), a = b*k
// (A+B) Km
//
// 4 (Pi E*)^2 Em k^2 2 b^3 E* k Pi (A+B)
// P = sqrt( d^3 ------------------ ) = -------------------
// 9 (A+B) Km^3 3 Em
//
// p0 = 3/2 avg. pressure = 3/2 P/(Pi*a*b)
//
// Cost is about 100 flops.
static void calcContactInfo
(Real A, Real B, Real k, const std::pair<Real,Real>& KE, Real d,
Real Estar, Vec2& ab, Real& P, Real& p0)
{
Real Km = KE.first, Em = KE.second;
Real b = std::sqrt((d*Em)/((A+B)*Km)); // ~ 50 flops
Real a = b*k;
ab = Vec2(a,b);
// The rest is about 50 more flops
P = 2*cube(b)*Estar*k*Pi*(A+B)/(3*Em);
p0 = (3*P)/(2*Pi*a*b);
}
// Given just the undeformed relative geometry curvatures kmin (=2*A)
// and kmax (=2*B) (kmax>=kmin>0), calculate the unitless eccentricity
// correction factor e due to the fact that kmax != kmin. The correction
// factor is 1 for a circular contact (kmax==kmin).
//
// The force due to a displacement d is given by
//
// P = e*[4/3 E* sqrt(R)] d^(3/2), R=1/((kmax+kmin)/2)=1/(A+B)
//
// Pi E(m)^(1/2) k
// e = ---------------, k=a/b, m = 1 - (b/a)^2
// 2 K(m)^(3/2)
//
// Derivation:
// For a circular contact
// P = 4/3 E* sqrt(R) d^(3/2)
// For an elliptical contact
// 2 Pi E* E(m)^(1/2) k
// P = ----------------------- d^(3/2)
// 3 (A+B)^(1/2) K(m)^(3/2)
//
// Pi E(m)^(1/2) k
// = 2/3 E* sqrt(R) --------------- d^(3/2)
// K(m)^(3/2)
// For b/a=1 (circular) we have k=1, m=0, K(0)=E(0)=Pi/2. Substituting in
// the equation for e gives e = Pi (Pi/2)^(1/2) / (2 (Pi/2)^(3/2)) = 1 as
// expected.
//
// We calculate k and then K(m),E(m) using a fast approximate method that
// gives us P as a smooth function that is accurate to about 7 digits.
// More accurate methods are available but seem unnecessary and this is
// expensive enough: about 320 flops unless kmax==kmin in which case it's free.
static Real calcHertzForceEccentricityCorrection(Real kmax, Real kmin) {
SimTK_ASSERT(kmax >= kmin && kmin > 0,
"calcHertzForceEccentricityCorrection: kmax,kmin illegal.");
if (kmax==kmin) return 1;
Real k = approxContactEllipseRatio(kmax,kmin); // ~160 flops
Real m = 1 - square(1/k); // ~20 flops
std::pair<Real,Real> KE = approxCompleteEllipticIntegralsKE(m); // ~90 flops
Real Km = KE.first, Em = KE.second;
// Slightly twisted computation here to save one square root.
Real e = Pi * k * std::sqrt(Em*Km) / (2 * Km*Km); // ~50 flops
return e;
}
// This is about 340 flops plus the usual 250 for the Hertz contact force
// calculation.
void ContactForceGenerator::HertzElliptical::calcContactForce
(const State& state,
const Contact& overlap, // contains X_S1S2
const SpatialVec& V_S1S2, // relative surface velocity, S2 in S1
ContactForce& contactForce_S1) const
{
SimTK_ASSERT(EllipticalPointContact::isInstance(overlap),
"ContactForceGenerator::HertzElliptical::calcContactForce(): expected"
" EllipticalPointContact.");
const EllipticalPointContact& contact =
EllipticalPointContact::getAs(overlap);
const Real depth = contact.getDepth();
const CompliantContactSubsystem& subsys = getCompliantContactSubsystem();
const ContactTrackerSubsystem& tracker = subsys.getContactTrackerSubsystem();
const Transform& X_S1C = contact.getContactFrame();
const Vec2& k = contact.getCurvatures(); // kmax,kmin
const Real e = calcHertzForceEccentricityCorrection(k[0],k[1]);
// normal points away from surf1, expressed in surf1's frame
const UnitVec3& normal_S1 = X_S1C.z();
// origin is half way between the two surfaces as though they had
// equal stiffness
const Vec3& origin_S1 = X_S1C.p();
const Real R = 2/(k[0]+k[1]); // 1/avg curvature (~20 flops)
calcHertzContactForce(subsys, tracker, state, overlap,
normal_S1, origin_S1, depth,
V_S1S2, R, e, contactForce_S1, 0);
}
void ContactForceGenerator::HertzElliptical::calcContactPatch
(const State& state,
const Contact& overlap,
const SpatialVec& V_S1S2,
ContactPatch& patch_S1) const
{
SimTK_ASSERT(EllipticalPointContact::isInstance(overlap),
"ContactForceGenerator::HertzElliptical::calcContactPatch(): expected"
" EllipticalPointContact.");
const EllipticalPointContact& contact =
EllipticalPointContact::getAs(overlap);
const Real depth = contact.getDepth();
const CompliantContactSubsystem& subsys = getCompliantContactSubsystem();
const ContactTrackerSubsystem& tracker = subsys.getContactTrackerSubsystem();
const Transform& X_S1C = contact.getContactFrame();
const Vec2& k = contact.getCurvatures(); // kmax,kmin
const Real e = calcHertzForceEccentricityCorrection(k[0],k[1]);
// normal points away from surf1, expressed in surf1's frame
const UnitVec3& normal_S1 = X_S1C.z();
// origin is half way between the two surfaces as though they had
// equal stiffness
const Vec3& origin_S1 = X_S1C.p();
const Real R = 2/(k[0]+k[1]); // 1/avg curvature (~20 flops)
calcHertzContactForce(subsys, tracker, state, overlap,
normal_S1, origin_S1, depth,
V_S1S2, R, e, patch_S1.m_resultant,
&patch_S1.m_elements);
}
// Given a set of vertices of surface B penetrating a halfspace H with given
// surface normal n, generate at each vertex a normal force resisting
// its penetration and penetration rate, and a tangential force resisting slip.
// The model applied at each vertex is just a kx force; that really only makes
// sense for face-face contact where the contact area doesn't change with
// the penetration depth. A single-vertex contact displaces a volume
// proportional to x^3, a single-edge contact displaces x^2 but we're
// igoring that here.
static void calcPointHalfSpacePenaltyForce
(const CompliantContactSubsystem& subsys,
const ContactTrackerSubsystem& tracker,
const State& state,
const BrickHalfSpaceContact& contact,
const SpatialVec& V_HB, // relative surface velocity, B in H
ContactForce& contactForce_H,
Array_<ContactDetail>* details) // pass as null if you don't care
{
contactForce_H.clear(); // no contact; invalidate return result
if (details) details->clear();
const int lowestVertex = contact.getLowestVertex();
const Real lowestDepth = contact.getDepth();
if (lowestDepth <= 0) {
return; // not contacting
}
const ContactSurfaceIndex surfHx = contact.getSurface1();
const ContactSurfaceIndex surfBx = contact.getSurface2();
const Transform& X_HB = contact.getTransform();
// Abbreviations.
const Rotation& R_HB = X_HB.R(); // orientation of B in H
const Vec3& p_HB = X_HB.p(); // position of Bo in H
const Vec3& w_HB = V_HB[0]; // ang. vel. of B in H
const Vec3& v_HB = V_HB[1]; // vel. of Bo in H
const ContactSurface& surfH = tracker.getContactSurface(surfHx);
const ContactSurface& surfB = tracker.getContactSurface(surfBx);
const ContactMaterial& matH = surfH.getMaterial();
const ContactMaterial& matB = surfB.getMaterial();
const ContactGeometry::HalfSpace& halfSpace =
ContactGeometry::HalfSpace::getAs(surfH.getShape());
const ContactGeometry::Brick& brick =
ContactGeometry::Brick::getAs(surfB.getShape());
const UnitVec3 normal_H = halfSpace.getNormal();
// The Box represents the Brick surface as a convex mesh with known
// connectivity. We know the vertex that is most penetrated. There are
// three faces connected to that vertex; we want the one whose normal
// is closest to antiparallel to the half-space normal.
const Geo::Box& box = brick.getGeoBox();
int faces[3], which[3];
box.getVertexFaces(lowestVertex, faces, which);
// We want the most negative cosine we can get.
int bestFace = -1, bestWhich = -1; Real bestCos = Infinity;
for (int f=0; f < 3; ++f) {
const int face = faces[f];
const Real cos =
dot(normal_H, R_HB.getAxisUnitVec(box.getFaceCoordinateDirection(face)));
if (cos < bestCos)
bestFace=face, bestWhich=which[f], bestCos=cos;
}
SimTK_ASSERT_ALWAYS(bestCos < 0,
"calcPointHalfSpacePenaltyForce(): lowest vertex should have had a face "
"roughly antiparallel to the half-space. Is something wrong with the box "
"mesh connectivity?");
// Calculate composite material properties.
// TODO: this pairwise material calculation (~60 flops) could be cached.
const Real kH=matH.getStiffness(), kB=matB.getStiffness();
const Real cH=matH.getDissipation(), cB=matB.getDissipation();
// Adjust the contact location based on the relative stiffness of the
// two materials. sH is the fraction of the "squishing" (deformation) that
// is done by surface1 -- if surface2 is very stiff then surface1 does most.
const Real sH = kB/(kH+kB); // 0..1
const Real sB = 1-sH; // 1..0
const Real k = kH*sH; // (==kB*sB) composite stiffness
const Real c = cH*sH + cB*sB; // composite dissipation
const Real usH=matH.getStaticFriction(), usB=matB.getStaticFriction();
const Real udH=matH.getDynamicFriction(), udB=matB.getDynamicFriction();
const Real uvH=matH.getViscousFriction(), uvB=matB.getViscousFriction();
const Real vtrans = subsys.getTransitionVelocity();
const Real ooVtrans = subsys.getOOTransitionVelocity(); // 1/vtrans
// Calculate effective coefficients of friction, being careful not
// to divide 0/0 if both are frictionless.
Real us = 2*usH*usB; if (us!=0) us /= (usH+usB);
Real ud = 2*udH*udB; if (ud!=0) ud /= (udH+udB);
Real uv = 2*uvH*uvB; if (uv!=0) uv /= (uvH+uvB);
assert(us >= ud);
// Accumulate force applied by the half-space to the brick, as though it
// were applied at the half-space origin. We'll move it to the center of
// pressure later (the moment will change in that case). This is expressed
// in H.
SpatialVec FB_H(Vec3(0),Vec3(0));
Real totalPE = 0; // accumulate potential energy
Real totalPower = 0; // accumulate dissipated power
// Accumulate weighted contact points for calculating the
// center of pressure; we'll divide by total moment at the end.
// sum_i (r_i * |r_i X Fn_i|)
// r_c = --------------------------
// sum_i |r_i X Fn_i|
Vec3 centerOfPressure_H(0);
Real totalNormalMoment = 0;
int vertices[4];
box.getFaceVertices(bestFace, vertices);
int nActiveVertices = 0;
for (int i=0; i < 4; ++i) {
const int vx = vertices[i];
const Vec3 v_B = box.getVertexPos(vx);
const Vec3 v_H = X_HB * v_B; // 18 flops
const Real x = -dot(v_H, normal_H); // undeformed pen. depth; 6 flops
if (x <= 0) continue; // not penetrated (1 flop)
// Actual contact point moves closer to stiffer surface. Would be at
// v_H if brick were very stiff and half-space very soft.
const Vec3 contactPt_H = v_H + (x*sB)*normal_H;
const Real fK = k*x; // normal force due to stiffness (>= 0)
const Real pe = k*x*x/2;
// Calculate the relative velocity of the two bodies at the contact
// point. We're considering H fixed, so we just need the velocity in H
// of the station of B that is coincident with the contact point.
const Vec3 contactPtB_H = contactPt_H - p_HB; // B station, exp. in H
// All vectors are in H; dropping the "_H" notation now.
// Velocity of B at contact point is opposite direction of normal
// when penetration is increasing.
const Vec3 vel = v_HB + w_HB % contactPtB_H;
// Want xdot > 0 when x is increasing; normal points the other way
const Real xdot = -dot(vel, normal_H); // penetration rate (signed)
const Vec3 velNormal = -xdot*normal_H;
const Vec3 velTangent = vel-velNormal;
// Calculate the Hunt-Crossley force, which is dissipative, and the
// total normal force including elasticity and dissipation.
const Real fHC = fK*c*xdot; // same sign as xdot
const Real powerHC = fHC*xdot; // dissipation rate due to H&C, >= 0
const Real fNormal = fK + fHC; // < 0 means "sticking"; see below
++nActiveVertices;
// Normal force can be negative under unusual circumstances ("yanking");
// that means no force is generated and no stored PE will be recovered.
// This will most often occur in to-be-rejected trial steps but can
// occasionally be real. Thanks to Matt Millard for the fix here to
// properly track lost power here so that KE+PE-DE=constant.
// (DE=dissipated energy).
Real powerLoss=0;
Vec3 force(0);
if (fNormal <= 0) {
powerLoss = -fK*xdot; // xdot<0 here
} else {
const Vec3 forceN = fNormal * normal_H; // 3 flops
const Vec3 momentN = contactPt_H % forceN; // about H origin (9 flops)
const Real weight = momentN.norm(); // ~25 flops
totalNormalMoment += weight; // 1 flop
centerOfPressure_H += weight*contactPt_H; // 6 flops
// Calculate the friction force.
Vec3 forceFriction(0);
Real powerFriction = 0;
const Real vslipSq = velTangent.normSqr(); // 5 flops
if (vslipSq > square(SignificantReal)) { // 2
const Real vslip = std::sqrt(vslipSq); // ~20
// Express slip velocity as unitless multiple of transition velocity.
const Real v = vslip * ooVtrans;
// Must scale viscous coefficient to match unitless velocity.
const Real mu=stribeck(us,ud,uv*vtrans,v);
const Real fFriction = fNormal * mu;
// Force direction on B opposes B's velocity.
forceFriction = (-fFriction/vslip)*velTangent; // in H ~14 flops
powerFriction = fFriction * vslip; // >= 0 (1 flop)
}
force = forceN + forceFriction;
// Accumulate moments about H origin; we'll shift to COP later.
FB_H += SpatialVec(contactPt_H % force, force);
// Don't include dot(fK,velNormal) power due to conservative force here.
// This way we don't double-count the energy on the way in as integrated
// power and potential energy. Although the books would balance again
// when the contact is broken, it makes continuous contact look as
// though some energy has been lost.
powerLoss = powerHC + powerFriction;
}
totalPE += pe;
totalPower += powerLoss; // negative
// Fill in contact details if requested (in H frame).
if (details) {
details->push_back(); // default constructed
ContactDetail& detail = details->back();
detail.m_contactPt = contactPt_H;
detail.m_patchNormal = normal_H;
detail.m_slipVelocity = velTangent;
detail.m_forceOnSurface2 = force;
detail.m_deformation = x;
detail.m_deformationRate = xdot;
detail.m_patchArea = NaN;
detail.m_peakPressure = NaN;
detail.m_potentialEnergy = pe;
detail.m_powerLoss = powerLoss;
}
}
assert(nActiveVertices); // at least the deepest vertex should be active
if (totalNormalMoment > 0)
centerOfPressure_H /= totalNormalMoment;
// Shift moment from H origin to COP.
FB_H[0] -= centerOfPressure_H % FB_H[1];
// Fill in the contact force.
// Report the force & moment (as though applied at center of pressure).
contactForce_H.setContactId(contact.getContactId());
contactForce_H.setContactPoint(centerOfPressure_H);
contactForce_H.setForceOnSurface2(FB_H);
contactForce_H.setPotentialEnergy(totalPE);
contactForce_H.setPowerDissipation(totalPower);
}
//==============================================================================
// BRICK HALFSPACE PENALTY GENERATOR
//==============================================================================
// The given Contact object identifies
// - the "contacting face" of the brick
// - which vertex of that face is the most deeply penetrated.
// We will generate a response force at that vertex, and at up to three more
// vertices of the contacting face.
// There are three faces containing the vertex; the contacting face is the one
// that is most parallel to the halfspace surface.
void ContactForceGenerator::BrickHalfSpacePenalty::calcContactForce
(const State& state,
const Contact& overlap, // contains X_S1S2
const SpatialVec& V_S1S2, // relative surface velocity, S2 in S1
ContactForce& contactForce_S1) const
{
SimTK_ASSERT(BrickHalfSpaceContact::isInstance(overlap),
"ContactForceGenerator::BrickHalfSpace::calcContactForce(): expected"
" BrickHalfSpaceContact.");
const BrickHalfSpaceContact& contact =
BrickHalfSpaceContact::getAs(overlap);
const CompliantContactSubsystem& subsys = getCompliantContactSubsystem();
const ContactTrackerSubsystem& tracker =
subsys.getContactTrackerSubsystem();
calcPointHalfSpacePenaltyForce(subsys, tracker, state, contact,
V_S1S2, contactForce_S1, 0);
}
void ContactForceGenerator::BrickHalfSpacePenalty::calcContactPatch
(const State& state,
const Contact& overlap,
const SpatialVec& V_HB,
ContactPatch& patch_H) const
{
SimTK_ASSERT(BrickHalfSpaceContact::isInstance(overlap),
"ContactForceGenerator::BrickHalfSpace::calcContactPatch(): expected"
" BrickHalfSpaceContact.");
const BrickHalfSpaceContact& contact =
BrickHalfSpaceContact::getAs(overlap);
const CompliantContactSubsystem& subsys = getCompliantContactSubsystem();
const ContactTrackerSubsystem& tracker =
subsys.getContactTrackerSubsystem();
calcPointHalfSpacePenaltyForce(subsys, tracker, state, contact,
V_HB, patch_H.m_resultant,
&patch_H.m_elements);
}
//==============================================================================
// ELASTIC FOUNDATION GENERATOR
//==============================================================================
void ContactForceGenerator::ElasticFoundation::calcContactForce
(const State& state,
const Contact& overlap, // contains X_S1S2
const SpatialVec& V_S1S2, // relative surface velocity
ContactForce& contactForce_S1) const
{
calcContactForceAndDetails(state,overlap,V_S1S2,contactForce_S1,0);
}
void ContactForceGenerator::ElasticFoundation::calcContactPatch
(const State& state,
const Contact& overlap,
const SpatialVec& V_S1S2,
ContactPatch& patch_S1) const
{
calcContactForceAndDetails(state,overlap,V_S1S2,
patch_S1.m_resultant, &patch_S1.m_elements);
}
// How to think about mesh-mesh contact:
// There is only a single contact patch. We would like to mesh the patch
// but we don't have that. Instead, we have two approximations of a meshed
// patch, one on each surface after deformation, but at different resolutions.
// Either one would be sufficient alone, since both cover the whole patch and
// apply equal and opposite forces to the two bodies. So when we evaluate
// forces on each mesh, we are making two approximations of the same force.
// DON'T APPLY BOTH! That would be double-counting. Instead, we use the
// two independent calculations to refine our result. So we scale the
// areas of the two patch approximations so that each contributes 50% to
// the overall patch area, forces, and center of pressure.
void ContactForceGenerator::ElasticFoundation::calcContactForceAndDetails
(const State& state,
const Contact& overlap, // contains X_S1S2
const SpatialVec& V_S1S2, // relative surface velocity
ContactForce& contactForce_S1,
Array_<ContactDetail>* contactDetails_S1) const
{
SimTK_ASSERT(TriangleMeshContact::isInstance(overlap),
"ContactForceGenerator::ElasticFoundation::calcContactForce(): expected"
" TriangleMeshContact.");
const bool wantDetails = (contactDetails_S1 != 0);
if (wantDetails)
contactDetails_S1->clear();
const TriangleMeshContact& contact = TriangleMeshContact::getAs(overlap);
const CompliantContactSubsystem& subsys = getCompliantContactSubsystem();
const ContactTrackerSubsystem& tracker = subsys.getContactTrackerSubsystem();
const ContactSurfaceIndex surf1x = contact.getSurface1();
const ContactSurfaceIndex surf2x = contact.getSurface2();
const Transform& X_S1S2 = contact.getTransform();
const ContactSurface& surf1 = tracker.getContactSurface(surf1x);
const ContactSurface& surf2 = tracker.getContactSurface(surf2x);
const ContactGeometry& shape1 = surf1.getShape();
const ContactGeometry& shape2 = surf2.getShape();
// One or both of these contact shapes must be a mesh.
const bool isMesh1 =
(shape1.getTypeId() == ContactGeometry::TriangleMesh::classTypeId());
const bool isMesh2 =
(shape2.getTypeId() == ContactGeometry::TriangleMesh::classTypeId());
// This is an assert because we should never have gotten here otherwise.
SimTK_ASSERT_ALWAYS(isMesh1 || isMesh2,
"ContactForceGenerator::ElasticFoundation::calcContactForceAndDetails():"
" At least one of the two surfaces should have been a mesh.");
// We require that any elastic foundation mesh have a non-zero thickness
// specified for the ContactSurface. This is an error rather than an
// assert because we might not find out until first contact that we need
// to know the thickness.
// For a non-mesh surface we'll *allow* a thickness but if there isn't
// one we'll assume it has the same thickness as the mesh.
// TODO: can't we do better than that?
Real h1=surf1.getThickness(), h2=surf2.getThickness();
SimTK_ERRCHK_ALWAYS(!isMesh1 || h1 > 0,
"ContactForceGenerator::ElasticFoundation::calcContactForceAndDetails()",
" Surface 1 was a mesh but no thickness was provided for the"
" ContactSurface.");
SimTK_ERRCHK_ALWAYS(!isMesh2 || h2 > 0,
"ContactForceGenerator::ElasticFoundation::calcContactForceAndDetails()",
" Surface 2 was a mesh but no thickness was provided for the"
" ContactSurface.");
assert(h1>0 || h2>0);
//TODO: for now assign the same thickness to the non-mesh as to the mesh.
//Should be able to do better than this.
if (h1==0) h1=h2;
if (h2==0) h2=h1;
// Compute combined material properties just once -- they are the same
// for all triangles.
const ContactMaterial& mat1 = surf1.getMaterial();
const ContactMaterial& mat2 = surf2.getMaterial();
// Stiffnesses combine linearly here, not as 2/3 power as for Hertz.
const Real k1=mat1.getStiffness(), k2=mat2.getStiffness();
const Real c1=mat1.getDissipation(), c2=mat2.getDissipation();
// Above stiffnesses are in pressure/unit strain; we need to work here
// with pressure/unit deformation using strain=x/h where x is deformation
// and h is thickness (that is, x==h => 100% strain).
const Real kh1 = k1/h1, kh2 = k2/h2;
// Adjust the contact location based on the relative stiffness of the
// two materials. s1 is the fraction of the "squishing" (deformation) that
// is done by surface1 -- if surface2 is very stiff then surface1 does most.
const Real s1 = kh2/(kh1+kh2); // 0..1
const Real s2 = 1-s1; // 1..0
// kh is the effective stiffness, c the effective dissipation
const Real kh = kh1*s1; // (==kh2*s2) == E/x
const Real c = c1*s1 + c2*s2;
// Calculate effective coefficients of friction, being careful not
// to divide 0/0 if both are frictionless.
const Real us1=mat1.getStaticFriction(), us2=mat2.getStaticFriction();
const Real ud1=mat1.getDynamicFriction(), ud2=mat2.getDynamicFriction();
const Real uv1=mat1.getViscousFriction(), uv2=mat2.getViscousFriction();
Real us = 2*us1*us2; if (us!=0) us /= (us1+us2);
Real ud = 2*ud1*ud2; if (ud!=0) ud /= (ud1+ud2);
Real uv = 2*uv1*uv2; if (uv!=0) uv /= (uv1+uv2);
// Now generate forces using the meshed surfaces only (one or two).
// We want both patches to accumulate forces at the same point in
// space. For numerical reasons this should be near the center of the
// patch.
Vec3 weightedPatchCentroid1_S1(0), weightedPatchCentroid2_S1(0);
Real patchArea1 = 0, patchArea2 = 0;
if (shape1.getTypeId() == ContactGeometry::TriangleMesh::classTypeId()) {
const ContactGeometry::TriangleMesh& mesh1 =
ContactGeometry::TriangleMesh::getAs(shape1);
calcWeightedPatchCentroid(mesh1, contact.getSurface1Faces(),
weightedPatchCentroid1_S1, patchArea1);
}
if (shape2.getTypeId() == ContactGeometry::TriangleMesh::classTypeId()) {
const ContactGeometry::TriangleMesh& mesh2 =
ContactGeometry::TriangleMesh::getAs(shape2);
Vec3 weightedPatchCentroid2_S2;
calcWeightedPatchCentroid(mesh2, contact.getSurface2Faces(),
weightedPatchCentroid2_S2, patchArea2);
// Remeasure patch2's weighted centroid from surface1's frame;
// be sure to weight the new offset also.
weightedPatchCentroid2_S1 = X_S1S2.R()*weightedPatchCentroid2_S2
+ patchArea2*X_S1S2.p();
}
// At this point one or two area-weighted patch centroids and corresponding
// patch area estimates are known; if one is unused it's (0,0,0) with 0
// area weight. Combine them into a single composite centroid for the patch,
// with each contributing equally, and an averaged patch area estimate.
Real patchArea=0, areaScale1=0, areaScale2=0;
Vec3 patchCentroid_S1(0);
if (patchArea1 != 0) {
if (patchArea2 != 0) {
patchArea = (patchArea1 + patchArea2)/2;
areaScale1 = (patchArea/2) / patchArea1;
areaScale2 = (patchArea/2) / patchArea2;
patchCentroid_S1 =
areaScale1 * weightedPatchCentroid1_S1 / patchArea1
+ areaScale2 * weightedPatchCentroid2_S1 / patchArea2;
} else { // only patchArea1
patchArea=patchArea1;
areaScale1 = 1;
areaScale2 = 0;
patchCentroid_S1 = weightedPatchCentroid1_S1 / patchArea1;
}
} else if (patchArea2 != 0) { // only patchArea2
patchArea = patchArea2;
areaScale2 = 1;
areaScale1 = 0;
patchCentroid_S1 = weightedPatchCentroid2_S1 / patchArea2;
}
// The patch centroid as calculated from one or two meshes is now
// in patchCentroid_S1, measured from and expressed in S1. Now we'll
// calculate all the patch forces and accumulate them at the patch
// centroid.
// Forces must be as applied to surface 2 at the patch centroid, but
// expressed in surface 1's frame.
SpatialVec force1_S1(Vec3(0)), force2_S1(Vec3(0));
Real potEnergy1=0, potEnergy2=0;
Real powerLoss1=0, powerLoss2=0;
// Center of pressure r_c is calculated like this:
// sum_i (r_i * |r_i X Fn_i|)
// r_c = --------------------------
// sum_i |r_i X Fn_i|
// where Fn is the normal force applied by element i at location r_i,
// with all locations measured from the patch centroid calculated above.
//
// We're going to calculate the weighted-points numerator for each
// mesh separately in weightedCOP1 and weightedCOP2, and the corresponding
// denominators (sum of all pressure-moment magnitudes) in weightCOP1 and
// weightCOP2. At the end we'll combine and divide to calculate the actual
// center of pressure where we'll ultimately apply the contact force.
Vec3 weightedCOP1_PC_S1(0), weightedCOP2_PC_S1(0); // from patch centroid
Real weightCOP1=0, weightCOP2=0;
if (shape1.getTypeId() == ContactGeometry::TriangleMesh::classTypeId()) {
const ContactGeometry::TriangleMesh& mesh =
ContactGeometry::TriangleMesh::getAs(shape1);
processOneMesh(state,
mesh, contact.getSurface1Faces(),
X_S1S2, V_S1S2, shape2,
s1, areaScale1,
kh, c, us, ud, uv,
patchCentroid_S1,
force1_S1, potEnergy1, powerLoss1,
weightedCOP1_PC_S1, weightCOP1,
contactDetails_S1); // details returned if this is non-null
}
if (shape2.getTypeId() == ContactGeometry::TriangleMesh::classTypeId()) {
const ContactGeometry::TriangleMesh& mesh =
ContactGeometry::TriangleMesh::getAs(shape2);
// Costs 120 flops to flip everything into S2 for processing and
// then put the results back in S1.
const Transform X_S2S1 = ~X_S1S2; // 3 flops
const SpatialVec V_S2S1 =
reverseRelativeVelocity(X_S1S2,V_S1S2); // 51 flops
const Vec3 patchCentroid_S2 = X_S2S1*patchCentroid_S1; // 18 flops
SpatialVec force2_S2;
Vec3 weightedCOP2_PC_S2;
const unsigned nDetailsBefore =
wantDetails ? contactDetails_S1->size() : 0;
processOneMesh(state,
mesh, contact.getSurface2Faces(),
X_S2S1, V_S2S1, shape1,
s2, areaScale2,
kh, c, us, ud, uv,
patchCentroid_S2,
force2_S2, potEnergy2, powerLoss2,
weightedCOP2_PC_S2, weightCOP2,
contactDetails_S1); // details returned *in S2* if this is non-null
// Switch contact details from S1 in S2 to S2 in S1.
if (wantDetails) {
for (unsigned i=nDetailsBefore; i < contactDetails_S1->size(); ++i)
(*contactDetails_S1)[i].changeFrameAndSwitchSurfacesInPlace(X_S1S2);
}
// Returned force is as applied to surface 1 (at the patch centroid);
// negate to make it the force applied to surface 2. Also re-express
// the moment and force vectors in S1.
force2_S1 = -(X_S1S2.R()*force2_S2); // 36 flops
// Returned weighted COP is measured from patch centroid but
// expressed in S2; reexpress in S1.
weightedCOP2_PC_S1 = X_S1S2.R()*weightedCOP2_PC_S2; // 15 flops
}
const Real weightCOP = weightCOP1+weightCOP2;
Vec3 centerOfPressure_PC_S1 = // offset from patch centroid
weightCOP > 0 ? (weightedCOP1_PC_S1+weightedCOP2_PC_S1) / weightCOP
: Vec3(0);
// Calculate total force applied to surface 2 at the patch centroid,
// expressed in S1.
const SpatialVec force_PC_S1 = force1_S1 + force2_S1;
// Shift to center of pressure.
const SpatialVec forceCOP_S1 =
shiftForceBy(force_PC_S1, centerOfPressure_PC_S1);
// Contact point is the center of pressure measured from the S1 origin.
const Vec3 contactPt_S1 = patchCentroid_S1 + centerOfPressure_PC_S1;
// Fill in contact force object.
contactForce_S1.setTo(contact.getContactId(),
contactPt_S1, // contact point in S1
forceCOP_S1, // force on surf2 at contact pt exp. in S1
potEnergy1 + potEnergy2,
powerLoss1 + powerLoss2);
}
// Compute the approximate geometric center of the patch represented by the
// set of "inside faces" of this mesh, weighted by the total patch area.
// We'll use the inside faces' centroids, weighted by face area, to calculate
// a point that will be somewhere near the center of the patch, times the total
// area. Dividing by the area yields the actual patch centroid point which can
// be used as a numerically good nearby point for accumulating all the forces,
// since the moments will all be small and thus
// not suffer huge roundoff errors when combined. Afterwards, the numerically
// good resultant can be shifted to whatever point is convenient, such as the
// body frame. We return the total area represented by this patch so that
// it can be combined with another mesh's patch if needed.
// The weighted centroid is returned in the mesh surface's own frame.
void ContactForceGenerator::ElasticFoundation::
calcWeightedPatchCentroid
(const ContactGeometry::TriangleMesh& mesh,
const std::set<int>& insideFaces,
Vec3& weightedPatchCentroid,
Real& patchArea) const
{
weightedPatchCentroid = Vec3(0); patchArea = 0;
for (std::set<int>::const_iterator iter = insideFaces.begin();
iter != insideFaces.end(); ++iter)
{ const int face = *iter;
const Real area = mesh.getFaceArea(face);
weightedPatchCentroid += area*mesh.findCentroid(face);
patchArea += area;
}
}
// Private method that calculates the net contact force produced by a single
// triangle mesh in contact with some other object (which might be another
// mesh; we don't care). We are given the relative spatial pose and velocity of
// the two surface frames, and for the mesh we are given a specific list of
// the faces that are suspected of being at least partially inside the
// other surface (in the undeformed geometry overlap). Normally this just
// computes the resultant force but it can optionally append contact patch
// details (one entry per element) as well, if the contactDetails argument is
// non-null.
// An area-scaling factor is used to scale the area represented by each face.
// If there is only one mesh involved this should be 1. However, if this
// is part of a pair of contact meshes each half of the pair should be scaled
// so that both surfaces see the same overall patch area (so nominally the
// area-scaling factor would be 0.5).
void ContactForceGenerator::ElasticFoundation::
processOneMesh
(const State& state,
const ContactGeometry::TriangleMesh& mesh,
const std::set<int>& insideFaces,
const Transform& X_MO,
const SpatialVec& V_MO,
const ContactGeometry& other,
Real meshDeformationFraction, // 0..1
Real areaScaleFactor,
Real kh, Real c, Real us, Real ud, Real uv, // composite material props
const Vec3& resultantPt_M, // where to apply forces
SpatialVec& resultantForceOnOther_M, // at resultant pt
Real& potentialEnergy,
Real& powerLoss,
Vec3& weightedCenterOfPressure_M,
Real& sumOfAllPressureMoments, // COP weight
Array_<ContactDetail>* contactDetails_M) const // in/out if present
{
assert(!insideFaces.empty());
const bool wantDetails = (contactDetails_M != 0);
// Initialize all results to zero.
resultantForceOnOther_M = SpatialVec(Vec3(0),Vec3(0));
potentialEnergy = powerLoss = 0;
weightedCenterOfPressure_M = Vec3(0);
sumOfAllPressureMoments = 0;
// Don't initialize contact details; we're going to append them.
// Abbreviations.
const Rotation& RMO = X_MO.R(); // orientation of O in M
const Vec3& pMO = X_MO.p(); // position of OO (origin of O) in M
const Vec3& wMO = V_MO[0]; // ang. vel. of O in M
const Vec3& vMO = V_MO[1]; // vel. of OO in M
// Get friction model transition velocity vt and 1/vt.
const CompliantContactSubsystem& subsys = getCompliantContactSubsystem();
const Real vtrans = subsys.getTransitionVelocity();
const Real ooVtrans = subsys.getOOTransitionVelocity(); // 1/vtrans
// Now loop over all the faces again, evaluate the force from each
// spring, and apply it at the patch centroid.
// This costs roughly 300 flops per contacting face.
for (std::set<int>::const_iterator iter = insideFaces.begin();
iter != insideFaces.end(); ++iter)
{ const int face = *iter;
const Vec3 springPos_M = mesh.findCentroid(face);
const Real faceArea = areaScaleFactor*mesh.getFaceArea(face);
bool inside;
UnitVec3 normal_O; // not used
const Vec3 nearestPoint_O = // 18 flops + cost of findNearestPoint
other.findNearestPoint(~X_MO*springPos_M, inside, normal_O);
if (!inside)
continue;
// Although the "spring" is associated with just one surface (the mesh M)
// it is considered here to include the compression of both surfaces
// together, using composite material properties for stiffness and
// dissipation properties of the spring. The total displacement vector
// for both surfaces points from the nearest point on the undeformed other
// surface to the undeformed spring position (face centroid) on the
// mesh. Since these overlap (we checked above) the nearest point is
// *inside* the mesh thus the vector points towards the mesh exterior;
// i.e., in the direction that the force will be applied to the
// "other" body. This is the same convention we use for the patch
// normal for Hertz contact.
const Vec3 nearestPoint_M = X_MO*nearestPoint_O; // 18 flops
const Vec3 overlap_M = springPos_M - nearestPoint_M; // 3 flops
const Real overlap = overlap_M.norm(); // ~40 flops
// If there is no overlap we can't generate forces.
if (overlap == 0)
continue;
// The surfaces are compressed by total amount "overlap".
const UnitVec3 normal_M(overlap_M/overlap, true); // ~15 flops
// Calculate the contact point location based on the relative
// squishiness of the two surfaces. The mesh deformation fraction (0-1)
// gives the fraction of the material squishing that is done by the
// mesh; the rest is done by the other surface. At 0 (rigid mesh) the
// contact point will be at the undeformed mesh face centroid; at 1
// (other body rigid) it will be at the (undeformed) nearest point on
// the other body.
const Real meshSquish = meshDeformationFraction*overlap; // mesh displacement
// Remember that the normal points towards the exterior of this mesh.
const Vec3 contactPt_M = springPos_M - meshSquish*normal_M; // 6 flops
// Calculate the relative velocity of the two bodies at the contact
// point. We're considering the mesh M fixed, so we just need the
// velocity in M of the station of O that is coincident with the
// contact point.
// O station, exp. in M
const Vec3 contactPtO_M = contactPt_M - pMO; // 3 flops
// All vectors are in M; dropping the "_M" notation now.
// Velocity of other at contact point is opposite direction of normal
// when penetration is increasing.
const Vec3 vel = vMO + wMO % contactPtO_M; // 12 flops
// Want odot > 0 when overlap is increasing; normal points the
// other way. odot is signed penetration (overlap) rate.
const Real odot = -dot(vel, normal_M); // 6 flops
const Vec3 velNormal = -odot*normal_M; // 4 flops
const Vec3 velTangent = vel-velNormal; // 3 flops
// Calculate scalar normal force (5 flops)
// Here kh has units of pressure/area/displacement
const Real fK = kh*faceArea*overlap; // normal elastic force (conservative)
const Real fC = fK*c*odot; // normal dissipation force (loss)
const Real fNormal = fK + fC; // normal force
// Total force can be negative under unusual circumstances ("yanking");
// that means no force is generated and no stored PE will be recovered.
// This will most often occur in to-be-rejected trial steps but can
// occasionally be real.
if (fNormal <= 0) {
//SimTK_DEBUG1("YANKING!!! (face %d)\n", face);
continue;
}
// 12 flops in this series.
const Vec3 forceK = fK*normal_M; // as applied to other surf
const Vec3 forceC = fC*normal_M;
const Real PE = fK*overlap/2; // 1/2 kAx^2
const Real powerC = fC*odot; // rate of energy loss, >= 0
const Vec3 forceNormal = forceK + forceC;
// This is the moment r X f about the resultant point produced by
// applying this pure force at the contact point. Cost ~60 flops.
const Vec3 r = contactPt_M - resultantPt_M;
const Real pressureMoment = (r % forceNormal).norm();
weightedCenterOfPressure_M += pressureMoment*r;
sumOfAllPressureMoments += pressureMoment;
// Calculate the friction force. Cost is about 60 flops.
Vec3 forceFriction(0);
Real powerFriction = 0;
const Real vslipSq = velTangent.normSqr(); // 5 flops
if (vslipSq > square(SignificantReal)) {
const Real vslip = std::sqrt(vslipSq); // expensive: ~25 flops
// Express slip velocity as unitless multiple of transition velocity.
const Real v = vslip * ooVtrans;
// Must scale viscous coefficient to match unitless velocity.
const Real mu=stribeck(us,ud,uv*vtrans,v); // ~10 flops
//const Real mu=hollars(us,ud,uv*vtrans,v);
const Real fFriction = fNormal * mu;
// Force direction on O opposes O's velocity.
forceFriction = (-fFriction/vslip)*velTangent; // ~20 flops
powerFriction = fFriction * vslip; // always >= 0
}
const Vec3 forceLoss = forceC + forceFriction; // 3 flops
const Vec3 forceTotal = forceK + forceLoss; // 3 flops
// Accumulate the moment and force on the *other* surface as though
// applied at the point of O that is coincident with the resultant
// point; we'll move it later. (15 flops)
resultantForceOnOther_M += SpatialVec(r % forceTotal, forceTotal);
// Accumulate potential energy stored in elastic displacement.
potentialEnergy += PE; // 1 flop
// Don't include dot(forceK,velNormal) power due to conservative force
// here. This way we don't double-count the energy on the way in as
// integrated power and potential energy. Although the books would
// balance again when the contact is broken, it makes continuous
// contact look as though some energy has been lost. In the "yanking"
// case above, without including the conservative power term we will
// actually lose energy because the deformed material isn't allowed to
// push back on us so the energy is lost to surface vibrations or some
// other unmodeled effect.
const Real powerLossThisElement = powerC + powerFriction; // 1 flop
powerLoss += powerLossThisElement; // 1 flop
if (wantDetails) {
contactDetails_M->push_back();
ContactDetail& detail = contactDetails_M->back();
detail.m_contactPt = contactPt_M;
detail.m_patchNormal = normal_M;
detail.m_slipVelocity = velTangent;
detail.m_forceOnSurface2 = forceTotal;
detail.m_deformation = overlap;
detail.m_deformationRate = odot;
detail.m_patchArea = faceArea;
detail.m_peakPressure = (faceArea != 0 ? fNormal/faceArea
: Real(0));
detail.m_potentialEnergy = PE;
detail.m_powerLoss = powerLossThisElement;
}
}
}
} // namespace SimTK
|