1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
|
/* -------------------------------------------------------------------------- *
* Simbody(tm) *
* -------------------------------------------------------------------------- *
* This is part of the SimTK biosimulation toolkit originating from *
* Simbios, the NIH National Center for Physics-Based Simulation of *
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody. *
* *
* Portions copyright (c) 2014 Stanford University and the Authors. *
* Authors: Thomas Uchida, Michael Sherman *
* Contributors: *
* *
* Licensed under the Apache License, Version 2.0 (the "License"); you may *
* not use this file except in compliance with the License. You may obtain a *
* copy of the License at http://www.apache.org/licenses/LICENSE-2.0. *
* *
* Unless required by applicable law or agreed to in writing, software *
* distributed under the License is distributed on an "AS IS" BASIS, *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
* See the License for the specific language governing permissions and *
* limitations under the License. *
* -------------------------------------------------------------------------- */
#include "simbody/internal/common.h"
#include "simbody/internal/ImpulseSolver.h"
#include "simbody/internal/PLUSImpulseSolver.h"
#include <algorithm>
#include <cassert>
#include <iostream>
using std::cout; using std::endl;
using namespace SimTK;
// Local utilities.
namespace {
// Multiply the active entries of a row of the full matrix A by a packed
// column containing only active entries. Useful for A[r]*piActive.
static Real multRowTimesActiveCol(const Matrix& A, MultiplierIndex row,
const Array_<MultiplierIndex,PLUSImpulseSolver::ActiveIndex>& active,
const Vector& colActive)
{
const RowVectorView Ar = A[row];
Real result = 0;
for (PLUSImpulseSolver::ActiveIndex ax(0); ax < active.size(); ++ax)
result += Ar[active[ax]] * colActive[ax];
return result;
}
// Multiply the active entries of a row of the full matrix A (mXm) by a sparse,
// full-length (m) column containing only the indicated non-zero entries.
// Useful for A[r]*piExpand.
static Real multRowTimesSparseCol(const Matrix& A, MultiplierIndex row,
const Array_<MultiplierIndex>& nonZero,
const Vector& sparseCol)
{
const RowVectorView Ar = A[row];
Real result = 0;
for (unsigned nz(0); nz < nonZero.size(); ++nz) {
const MultiplierIndex mx = nonZero[nz];
result += Ar[mx] * sparseCol[mx];
}
return result;
}
// Unpack an active column vector and add its values into a full column.
static void addInActiveCol
(const Array_<MultiplierIndex,PLUSImpulseSolver::ActiveIndex>& active,
const Vector& colActive,
Vector& colFull)
{
for (PLUSImpulseSolver::ActiveIndex ax(0); ax < active.size(); ++ax)
colFull[active[ax]] += colActive[ax];
}
// On return a<=b.
inline void sort2(int& a, int& b) {
if (a>b) std::swap(a,b);
}
// On return a<=b<=c.
inline void sort3(int& a, int& b, int& c) {
sort2(a,b); // a<=b
sort2(b,c); // a<=c, b<=c
sort2(a,b); // a<=b<=c
}
// Smooth, convex approximation to max(z,0); small eps is smoother.
inline Real softmax0(Real z, Real eps) {
assert(eps>0);
return (z+std::sqrt(z*z+eps))/2;
}
// Partial derivative of softmax0 with respect to z.
inline Real dsoftmax0(Real z, Real eps) {
assert(eps>0);
return (1+z/std::sqrt(z*z+eps))/2;
}
// Smooth, concave approximation to min(z,0); small eps is smoother.
inline Real softmin0(Real z, Real eps) {
assert(eps>0);
return (z-std::sqrt(z*z+eps))/2;
}
// Partial derivative of softmin0 with respect to z.
inline Real dsoftmin0(Real z, Real eps) {
assert(eps>0);
return (1-z/std::sqrt(z*z+eps))/2;
}
// Smooth, convex approximation to abs(z); small eps is smoother.
inline Real softabs(Real z, Real eps) {
assert(eps>0);
return std::sqrt(z*z+eps);
}
// Partial derivative of softabs with respect to z.
inline Real dsoftabs(Real z, Real eps) {
assert(eps>0);
return z/std::sqrt(z*z+eps);
}
}
namespace SimTK {
//==============================================================================
// PLUS SUCCESSIVE PRUNING IMPULSE SOLVER
//==============================================================================
//------------------------------------------------------------------------------
// SOLVE
//------------------------------------------------------------------------------
bool PLUSImpulseSolver::
solve(int phase,
const Array_<MultiplierIndex>& participating,
const Matrix& A,
const Vector& D,
const Array_<MultiplierIndex>& expanding,
Vector& piExpand, // in/out
Vector& verrStart, // in/out
Vector& verrApplied,
Vector& pi,
Array_<UncondRT>& unconditional,
Array_<UniContactRT>& uniContact,
Array_<UniSpeedRT>& uniSpeed,
Array_<BoundedRT>& bounded,
Array_<ConstraintLtdFrictionRT>& consLtdFriction,
Array_<StateLtdFrictionRT>& stateLtdFriction
) const
{
// If we get this close to taking a whole sliding interval, we'll just
// take the whole thing to avoid a final sliver of a step.
const Real MaxPartialSlidingStepLength = (1-SqrtEps);
SimTK_DEBUG("\n--------------------------------\n");
SimTK_DEBUG( "START SUCCESSIVE PRUNING SOLVER:\n");
++m_nSolves[phase];
const int m=A.nrow(); assert(A.ncol()==m);
assert(D.size()==m);
assert(verrStart.size()==m);
assert(verrApplied.size()==0 || verrApplied.size()==m);
assert(piExpand.size()==m);
// These are not mutually exclusive; a contact can be in both lists.
const int p = (int)participating.size();
const int nx = (int)expanding.size();
assert(p<=m); assert(nx<=m);
pi.resize(m);
pi.setToZero(); // Use this for piUnknown
const bool hasAppliedImpulse = (verrApplied.size() > 0);
// Partitions of selected subset.
const int mUncond = (int)unconditional.size();
const int mUniSpeed = (int)uniSpeed.size();
const int mBounded = (int)bounded.size();
// State limited friction has no dependence on unknown multipliers.
const int mStateLtd = (int)stateLtdFriction.size();
// Must do unilateral friction and constraint-limited friction last because
// they depend on normal multipliers.
const int mUniCont = (int)uniContact.size();
const int mConsLtd = (int)consLtdFriction.size();
// If debugging, check for consistent constraint equation count.
#ifndef NDEBUG
{int mCount = mUniSpeed + mBounded; // 1 each
for (int k=0; k<mUncond; ++k)
mCount += unconditional[k].m_mults.size();
for (int k=0; k<mUniCont; ++k) {
if (uniContact[k].m_type==Observing)
continue; // neither normal nor friction participate
if (uniContact[k].m_type==Participating)
++mCount; // normal participates
if (uniContact[k].hasFriction())
mCount += 2; // friction participates even if normal is Known
}
for (int k=0; k<mStateLtd; ++k)
mCount += stateLtdFriction[k].m_Fk.size();
for (int k=0; k<mConsLtd; ++k)
mCount += consLtdFriction[k].m_Fk.size();
assert(mCount == p);}
#endif
// This is reduced with each completed sliding interval. We will eventually
// eliminate all of it except for entries corresponding to friction that
// remains Sliding throughout the impulse solution. m_verrLeft represents
// the actual start-of-sliding-interval constraint-space velocity so is used
// to classify frictional contents.
m_verrLeft = verrStart; // what's left to solve TODO: get rid of this
Vector piELeft = piExpand; // TODO: and this
m_verrExpand.resize(m); m_verrExpand.setToZero();
Vector piTotal(m, Real(0)), piGuess(m);
Vector piSave, dpi; // temps
// Track total error for all included equations, and the error for just
// those equations that are being enforced.
bool converged = false;
Real normRMSall = Infinity, normRMSenf = Infinity;
Real prevNormRMSenf = NaN;
// Each sliding interval requires a complete restart, except that we
// continue to accumulate piTotal. We're done when we take a step interval
// of length s==1.
int interval = 0;
Real s = 0;
while (s < 1) {
++interval;
m_active = participating; m_mult2active.resize(m);
fillMult2Active(m_active, m_mult2active);
// Calculate remaining expansion impulse part of RHS verrE=A*piE.
// This is how much we'll change verr if we get to apply the full
// expansion impulse in this sliding interval.
if (nx)
for (MultiplierIndex mx(0); mx < m; ++mx) {
m_verrExpand[mx] =
-( multRowTimesSparseCol(A,mx,expanding,piELeft)
+ D[mx]*piELeft[mx]);
}
if (p == 0) {
SimTK_DEBUG1("PLUS %d: nothing to do; converged in 0 iters.\n", phase);
// Returning pi=0; can still have applied impulse or piExpand!=0 so
// verr is updated.
if (hasAppliedImpulse) verrStart += verrApplied;
if (nx) verrStart += m_verrExpand;
return true;
}
#ifndef NDEBUG
printf("\n***** Sliding interval %d start\n", interval);
cout << " active=" << m_active << endl;
cout << " mult2active=" << m_mult2active << endl;
cout << " piTotal=" << piTotal << endl;
cout << " verrLeft=" << m_verrLeft << endl;
cout << " verrApplied=" << verrApplied << endl;
cout << " expanding=" << expanding << endl;
cout << " piELeft=" << piELeft << endl;
cout << " verrExpand=" << m_verrExpand << endl;
#endif
piGuess = 0; // Hold the best-guess impulse for this interval.
// Determine step begin Rolling vs. Sliding and get slip directions.
// Sets all non-Observer uni contacts to active or known.
classifyFrictionals(uniContact); // no Impendings at interval start
int its = 1;
for (; ; ++its) {
#ifndef NDEBUG
printf("\n....... Active set iter %d start\n", its);
cout << ": active=" << m_active << endl;
for (unsigned uc=0; uc<uniContact.size(); ++uc) {
const UniContactRT& rt = uniContact[uc];
printf("%s UniCont %d (ix=%d): cond=%s/%s, vel=%g,%g, mag=%g\n",
getContactTypeName(rt.m_type),(int)uc,(int)rt.m_ucx,
getUniCondName(rt.m_contactCond),
getFricCondName(rt.m_frictionCond),
rt.m_slipVel[0],rt.m_slipVel[1],rt.m_slipMag);
}
#endif
// piGuess has the best guess impulse from the previous active set,
// unpacked into the associated multiplier slots. This will be
// the actual piActive values projected to be in-bounds.
m_mult2active.resize(m);
fillMult2Active(m_active, m_mult2active);
initializeNewton(A, piGuess, verrApplied, uniContact);
updateDirectionsAndCalcCurrentError(A, uniContact,
piELeft, verrApplied,
m_piActive,m_errActive);
if (m_active.empty())
break;
updateJacobianForSliding(A, uniContact, piELeft, verrApplied);
Real prevNorm = NaN;
Real errNorm = m_errActive.norm();
int newtIter = 0;
SimTK_DEBUG1(">>>> Start NEWTON solve with errNorm=%g...\n", errNorm);
while (errNorm > m_convergenceTol) {
++newtIter;
// Solve for deltaPi.
FactorQTZ fac(m_JacActive);
fac.solve(m_errActive, dpi);
const Real deltaNorm = dpi.norm();
#ifndef NDEBUG
printf("> NEWTON iter %d: errNorm=%g(v) -> deltaNorm=%g(pi)\n",
newtIter, errNorm, dpi.norm());
//cout << "> JacActive=" << m_JacActive;
cout << "> piActive=" << m_piActive << endl;
cout << "> errActive=" << m_errActive << endl;
cout << "> deltaPi=" << dpi << endl;
#endif
// Backtracking line search.
const Real MinBack = 0.01; //don't shrink step below this factor
const Real SearchReduceFac = 0.5;
Real back = 1;
int nsearch = 0;
piSave = m_piActive;
prevNorm = errNorm;
while (true) {
++nsearch;
SimTK_DEBUG3("Line search iter %d: back=%g, prevNorm=%g.\n",
nsearch, back, prevNorm);
m_piActive = piSave - back*dpi;
updateDirectionsAndCalcCurrentError(A,uniContact,
piELeft,verrApplied,
m_piActive,m_errActive);
errNorm = m_errActive.norm();
#ifndef NDEBUG
cout << "> piNow=" << m_piActive << endl;
cout << "> errNow=" << m_errActive
<< " normNow=" << errNorm << endl;
#endif
if (errNorm < prevNorm)
break;
if (back <= MinBack) {
SimTK_DEBUG3("LINE SEARCH STUCK at iter %d: accepting "
"small norm increase %g at back=%g\n", nsearch,
errNorm - prevNorm, back);
break;
}
back *= SearchReduceFac;
SimTK_DEBUG2("GOT WORSE @iter %d: backtrack to back=%g\n",
nsearch, back);
}
SimTK_DEBUG2("Improvement rate now/prev at iter %d is %g\n",
newtIter, errNorm / prevNorm);
if (errNorm < m_convergenceTol)
break; // we have a winner
// If we're not making sufficient progress after 3 steps,
// we have likely converged to a local minimum and the problem
// is infeasible. Here we're arbitrarily saying that if we
// can't even improve 5%, we'll just give up.
// TODO: this is probably too crude and might drop out too early
// at times; also need to deal with this failure -- it
// may be a Painleve situation.
if (newtIter >= 3 && errNorm > 0.95*prevNorm) {
SimTK_DEBUG2("PLUSImpulseSolver Newton: poor progress "
"after %d iters; errNorm=%g (infeasible?).\n",
newtIter, errNorm);
break; // converged, but not to zero
}
if (newtIter >= m_maxIters) {
SimTK_DEBUG2("PLUSImpulseSolver Newton failed to converge "
"after %d iters; errNorm=%g.\n", m_maxIters, errNorm);
break; // we have a loser
}
updateJacobianForSliding(A, uniContact, piELeft, verrApplied);
prevNorm = errNorm;
}
SimTK_DEBUG2("<<<< NEWTON done in %d iters; norm=%g.\n",
newtIter,errNorm);
// UNCONDITIONAL: these are always on.
for (int fx=0; fx < mUncond; ++fx) {
const UncondRT& rt = unconditional[fx];
for (unsigned i=0; i<rt.m_mults.size(); ++i) {
const MultiplierIndex mx = rt.m_mults[i];
piGuess[mx] = m_piActive[m_mult2active[mx]]; // unpack
}
}
// BOUNDED: conditional scalar constraints with constant bounds
// on resulting pi.
int worstBounded=0; Real worstBoundedValue=0;
for (int k=0; k < mBounded; ++k) {
const BoundedRT& rt = bounded[k];
const MultiplierIndex mx = rt.m_ix;
const ActiveIndex ax = m_mult2active[mx];
if (!ax.isValid())
continue; // not active
// Only the in-bounds value gets saved in piGuess in case we
// need to use it for an initial guess on the next iteration.
piGuess[mx] = clamp(rt.m_lb, m_piActive[ax], rt.m_ub);
const Real err=std::abs(m_piActive[ax] - piGuess[mx]);
if (err>worstBoundedValue)
worstBounded=k, worstBoundedValue=err;
}
// UNI CONTACT NORMAL: conditional scalar constraints with
// with restriction pi <= 0.
int worstUniNormal=0; Real worstUniNormalValue=0;
for (int k=0; k < mUniCont; ++k) {
const UniContactRT& rt = uniContact[k];
const MultiplierIndex mx = rt.m_Nk;
if (rt.m_contactCond==UniOff || rt.m_contactCond==UniKnown) {
piGuess[mx] = 0;
continue;
}
// Participating and active.
assert(rt.m_contactCond == UniActive);
const ActiveIndex ax = m_mult2active[mx];
assert(ax.isValid());
// Only the in-bounds value gets saved in piGuess in case we
// need to use it for an initial guess on the next iteration.
const Real piAdj = rt.m_sign*m_piActive[ax] < 0 ? m_piActive[ax]
: Real(0);
piGuess[mx] = piAdj;
const Real err=std::abs(m_piActive[ax] - piAdj);
if (err>worstUniNormalValue)
worstUniNormal=k, worstUniNormalValue=err;
}
// UNI CONTACT FRICTION: a set of constraint equations forming a
// vector whose maximum length is limited by the associated
// unilateral contact normal force.
int worstFric=0; Real worstFricValue=0;
for (int k=0; k < mUniCont; ++k) {
const UniContactRT& rt = uniContact[k];
if (rt.m_contactCond==UniOff || !rt.hasFriction())
continue;
// Known, or Participating and active, and has friction.
const Array_<MultiplierIndex>& Fk = rt.m_Fk; // friction components
const MultiplierIndex Nk = rt.m_Nk; // normal component
assert(m_mult2active[Fk[0]].isValid());
const Real mu = rt.m_effMu;
Real scale = 1; // might change if we're rolling
// Only if rolling is there an inequality constraint that
// must be satisfied; calculate its violation here.
if (rt.m_frictionCond == Rolling) {
Real tmag=0, nmag=0;
for (unsigned i=0; i<Fk.size(); ++i) {
const MultiplierIndex mx = Fk[i];
const ActiveIndex ax = m_mult2active[mx];
tmag += square(m_piActive[ax]);
}
tmag = std::sqrt(tmag);
// "Sucking" normal forces are zero already in piGuess,
// and known normal force has been inserted if needed.
nmag = std::abs(piGuess[Nk] + piELeft[Nk]);
if (tmag > mu*nmag) {
scale = mu*nmag/tmag;
const Real err = tmag - mu*nmag;
if (err > worstFricValue)
worstFric=k, worstFricValue=err;
}
}
// Copy the possibly-reduced value into piGuess.
for (unsigned i=0; i<Fk.size(); ++i) {
const MultiplierIndex mx = Fk[i];
const ActiveIndex ax = m_mult2active[mx];
piGuess[mx] = scale*m_piActive[ax];
}
}
// TODO: uni speed, constraint- and state-limited friction.
if ( worstBoundedValue<=SignificantReal
&& worstUniNormalValue<=SignificantReal
&& worstFricValue<=SignificantReal)
{
SimTK_DEBUG3("Bounded/Contact/Rolling OK: worst=%g/%g/%g. "
"Check sliding next.\n",
worstBoundedValue, worstUniNormalValue, worstFricValue);
break;
}
//TODO: bounded
bool mustReleaseFriction = true; // if we don't release a normal.
if (worstUniNormalValue > worstFricValue) {
SimTK_DEBUG2("Worst offender is normal contact %d err=%g ...\n",
worstUniNormal, worstUniNormalValue);
// A contact normal is the worst offender. However, if it has a
// rolling friction constraint active we should release that
// first because doing so might fix the contact normal.
UniContactRT& rt = uniContact[worstUniNormal];
if (!rt.hasFriction() || rt.m_frictionCond != Rolling) {
const MultiplierIndex rx = rt.m_Nk;
rt.m_contactCond = UniOff;
// Update active set; must work from highest numbered to
// lowest to avoid having to move a lot of entries.
if (!rt.hasFriction()) {
m_active.eraseFast(m_active.begin()+m_mult2active[rx]);
} else {
const Array_<MultiplierIndex>& Fk = rt.m_Fk;
int a=m_mult2active[rx],b=m_mult2active[Fk[0]],
c=m_mult2active[Fk[1]];
sort3(a,b,c);
m_active.eraseFast(m_active.begin()+c);
m_active.eraseFast(m_active.begin()+b);
m_active.eraseFast(m_active.begin()+a);
}
// mult2active is invalid now.
mustReleaseFriction = false;
SimTK_DEBUG1("... normal contact %d released.\n",
worstUniNormal);
} else {
SimTK_DEBUG("... but it's Rolling, so that must go first.\n");
worstFric = worstUniNormal;
worstFricValue = NaN;
mustReleaseFriction = true;
}
}
if (mustReleaseFriction) {
UniContactRT& rt = uniContact[worstFric];
const Array_<MultiplierIndex>& Fk = rt.m_Fk;
const MultiplierIndex Nk = rt.m_Nk;
const ActiveIndex ax=m_mult2active[Fk[0]], ay=m_mult2active[Fk[1]],
az=m_mult2active[Nk];
SimTK_DEBUG2("switch worst fric %d from roll->impend err=%g\n",
worstFric, worstFricValue);
rt.m_frictionCond = Impending;
#ifndef NDEBUG
// Oppose the last rolling force as a guess at the slip velocity.
// Sign convention for multiplier is opposite velocity, so no
// explicit negation here.
const Vec2 ft(piGuess[Fk[0]], piGuess[Fk[1]]);
cout << " rolling impulse was " << ft << endl;
#endif
}
}
// Need to check what fraction s of this interval we can accept. We are
// only limited by frictional contacts that are currently Sliding;
// Rolling and Impending-slip contacts don't restrict the interval.
s = 1;
for (int k=0; k < mUniCont; ++k) {
const UniContactRT& rt = uniContact[k];
if (rt.m_contactCond==UniOff || rt.m_frictionCond != Sliding)
continue;
const Array_<MultiplierIndex>& Fk = rt.m_Fk;
const MultiplierIndex Nk = rt.m_Nk;
assert(Fk.size()==2); //TODO: generalize
// Velocity change db=[Ax Ay]*(pi+piE). TODO: D?
Vec2 db( multRowTimesActiveCol(A,Fk[0],m_active,m_piActive)
- m_verrExpand[Fk[0]],
multRowTimesActiveCol(A,Fk[1],m_active,m_piActive)
- m_verrExpand[Fk[1]]);
Vec2 bend(rt.m_slipVel - db);
if (hasAppliedImpulse)
bend += Vec2(verrApplied[Fk[0]],verrApplied[Fk[1]]);
#ifndef NDEBUG
cout << "slipVel " << k << " from " << rt.m_slipVel
<< " to " << bend << endl;
#endif
const Real bendMag = bend.norm();
SimTK_ASSERT2_ALWAYS(rt.m_slipMag > m_maxRollingTangVel,
"PLUSImpulseSolver::solve(): contact %d misclassified as "
"Sliding; slip speed %g too small (Rolling at %g).",
rt.m_slipMag, m_maxRollingTangVel);
// See if we got lucky and sliding force slowed contact to below
// the rolling speed threshold (this is rare; reversal is much more
// common). Although not strictly necessary, we'll attempt to stop
// the step where it came closest to zero velocity to make the
// smoothest sliding->rolling transition possible.
if (bendMag <= m_maxRollingTangVel) {
SimTK_DEBUG3("Sliding contact %d slowed to rolling speed: "
"v=%g, vTrans=%g\n",
k, bendMag, m_maxRollingTangVel);
if (bendMag < SignificantReal) {
SimTK_DEBUG(" (Near dead stop -- accept the step as is.)\n");
continue;
}
Vec2 newEndPt;
Real s1 = calcSlidingStepLengthToOrigin(rt.m_slipVel,bend,
newEndPt);
SimTK_DEBUG2(" (Will use step=%g where speed was %g.)\n",
s1, newEndPt.norm());
s = std::min(s, s1);
continue;
}
// Still sliding; check change in direction from initial to final
// sliding velocity.
const Real cosTheta =
clamp(-1, dot(rt.m_slipVel,bend)/(rt.m_slipMag*bendMag), 1);
// This is the normal case: still sliding in roughly the same
// direction. Take the whole step.
if (cosTheta >= m_cosMaxSlidingDirChange) {
SimTK_DEBUG3("Friction %d rotated %g deg, less than max %g\n",
k, std::acos(cosTheta)*180/Pi,
std::acos(m_cosMaxSlidingDirChange)*180/Pi);
continue; // s==1 for this contact
}
// The sliding direction changed too much. It may have reversed
// and passed through or near zero, in which case we step only to
// the closest-to-zero point. Otherwise we'll reduce the step
// until the sliding direction change is within bounds.
SimTK_DEBUG4("TOO BIG: Sliding fric %d; endmag=%g, rot=%g deg > %g\n",
k, bendMag, std::acos(cosTheta)*180/Pi,
std::acos(m_cosMaxSlidingDirChange)*180/Pi);
Vec2 endPt;
Real s1 = calcSlidingStepLengthToOrigin(rt.m_slipVel,bend,endPt);
const Real endPtMagSq = endPt.normSqr();
if (endPtMagSq <= square(m_maxRollingTangVel)) {
SimTK_DEBUG2(" Frac=%g halts it, v=%g\n", s1,
std::sqrt(endPtMagSq));
s = std::min(s, s1);
continue;
}
// Substantial direction change without passing near zero.
// Just take part of the step to keep the change manageable.
Real s2 = calcSlidingStepLengthToMaxChange(rt.m_slipVel,bend);
SimTK_DEBUG2(" Frac=%g reduces angle to %g degrees.\n",
s2, std::acos(m_cosMaxSlidingDirChange)*180/Pi);
s = std::min(s, s2);
}
// If we're taking very close to the whole step, we would be left with
// a tiny sliver of a step that might cause numerical difficulties (and
// will be expensive). In that case just take the whole thing.
if (s > MaxPartialSlidingStepLength)
s = 1;
for (unsigned i=0; i < expanding.size(); ++i) {
const MultiplierIndex mx = expanding[i];
const Real sPiE = s*piELeft[mx];
piELeft[mx] -= sPiE; // How much piE left to do
}
m_piActive *= s;
addInActiveCol(m_active, m_piActive, piTotal); // accumulate in piTotal
// Update rhs. TODO: D*piActive
for (MultiplierIndex mx(0); mx < m; ++mx) {
m_verrLeft[mx] -= multRowTimesActiveCol(A,mx,m_active,m_piActive)
- s*m_verrExpand[mx];
}
if (hasAppliedImpulse) {
m_verrLeft += s*verrApplied;
verrApplied -= s*verrApplied;
}
#ifndef NDEBUG
printf("SP interval %d end: s=%g\n", interval, s);
cout << ": m_piActive=" << m_piActive << endl;
cout << ": m_verrLeft=" << m_verrLeft << endl;
cout << ": verrAppliedLeft=" << verrApplied << endl;
cout << ": piELeft=" << piELeft << endl;
#endif
}
// Return the result. TODO: don't copy
pi = piTotal; // doesn't include piE
verrStart = m_verrLeft;
// Check how we did on the original problem.
SimTK_DEBUG("SP DONE. Check normal complementarity ...\n");
for (unsigned k=0; k < uniContact.size(); ++k) {
const UniContactRT& rt = uniContact[k];
const MultiplierIndex mx = rt.m_Nk;
SimTK_DEBUG4("%d: pi=%g verr=%g pi*v=%g\n", k,
pi[mx], verrStart[mx], pi[mx]*verrStart[mx]);
}
//TODO: printf("SP DONE. Check friction cones ...\n");
#ifndef NDEBUG
cout << "SP FINAL " << interval << " intervals, piTotal=" << piTotal
<< " errNorm=" << m_errActive.norm() << endl;
#endif
return converged;
}
//------------------------------------------------------------------------------
// SOLVE BILATERAL
//------------------------------------------------------------------------------
bool PLUSImpulseSolver::
solveBilateral
(const Array_<MultiplierIndex>& participating, // p<=m of these
const Matrix& A, // m X m, symmetric
const Vector& D, // m, diag>=0 added to A
const Vector& rhs, // m, RHS
Vector& pi // m, unknown result
) const
{
SimTK_DEBUG("--------------------------------\n");
SimTK_DEBUG( "PLUS BILATERAL SOLVER:\n");
++m_nBilateralSolves;
const int m=A.nrow();
const int p = (int)participating.size();
assert(A.ncol()==m);
assert(D.size()==0 || D.size()==m);
assert(rhs.size()==m);
assert(p<=m);
pi.resize(m);
pi.setToZero(); // That takes care of all non-participators.
if (p == 0) {
SimTK_DEBUG(" no bilateral participators. Nothing to do.\n");
SimTK_DEBUG("--------------------------------\n");
return true;
}
m_nBilateralIters++; // Just one "iteration".
// Set up the smaller problem containing only the participating constraints:
// bilateralActive = P*A*~P
// rhsActive = P*rhs
// piActive = a place to put the result for just the active part
m_bilateralActive.resize(p,p);
m_rhsActive.resize(p); m_piActive.resize(p);
const bool hasD = (D.size() > 0);
for (ActiveIndex aj(0); aj < p; ++aj) {
const MultiplierIndex mj = participating[aj];
for (ActiveIndex ai(0); ai < p; ++ai) {
const MultiplierIndex mi = participating[ai];
m_bilateralActive(ai,aj) = A(mi,mj);
}
if (hasD)
m_bilateralActive(aj,aj) += D[mj];
m_rhsActive[aj] = rhs[mj];
}
// Calculate the pseudoinverse of P*A*~P, and then solve to get
// piActive = pinv(P*A*~P) * rhsActive
FactorQTZ pinv(m_bilateralActive);
pinv.solve(m_rhsActive, m_piActive);
// Distribute the active result into the full impulse vector.
for (ActiveIndex ai(0); ai < p; ++ai) {
const MultiplierIndex mi = participating[ai];
pi[mi] = m_piActive[ai];
}
#ifndef NDEBUG
cout << "A=" << A;
cout << "D=" << D << endl;
cout << "rcond(A+D)=" << pinv.getRCondEstimate()
<< " rank=" << pinv.getRank() << endl;
cout << "rhs=" << rhs << endl;
cout << "active=" << participating << endl;
cout << "-> piActive=" << m_piActive << endl;
cout << "-> pi=" << pi << endl;
cout << "resid active=" << m_bilateralActive*m_piActive-m_rhsActive << endl;
if (D.size()) cout << "resid=" << A*pi+D.elementwiseMultiply(pi)-rhs << endl;
else cout << "resid=" << A*pi-rhs << endl;
#endif
SimTK_DEBUG("--------------------------------\n");
return true;
}
//------------------------------------------------------------------------------
// CALC SLIDING STEP LENGTH TO ORIGIN (Vec2 and Vec3)
//------------------------------------------------------------------------------
Real PLUSImpulseSolver::
calcSlidingStepLengthToOrigin(const Vec2& A, const Vec2& B, Vec2& Q) const
{
// Check whether initial tangential velocity is small (impending slip).
if (A.normSqr() < square(m_maxRollingTangVel)) {
SimTK_DEBUG2("--> initial slip velocity small (%g<%g); stepLen=1\n",
A.norm(), m_maxRollingTangVel);
Q = B;
return 1;
}
const Vec2 P = Vec2(0);
const Vec2 AtoP = P-A, AtoB = B-A;
const Real ABsqr = AtoB.normSqr();
// Ensure line segment is of meaningful length.
if (ABsqr < SimTK::SignificantReal) {
SimTK_DEBUG1("-->ABsqr=%g short; returning stepLength=1\n", ABsqr);
Q = B;
return 1;
}
// Normalized distance from A to Q.
const Real stepLength = clamp(0.0, dot(AtoP,AtoB)/ABsqr, 1.0);
Q = A + stepLength*AtoB;
SimTK_DEBUG2("--> returning stepLength=%g (dist to origin=%g)\n",
stepLength, Q.norm());
return stepLength;
}
Real PLUSImpulseSolver::
calcSlidingStepLengthToOrigin(const Vec3& A, const Vec3& B, Vec3& Q) const
{
// Check whether initial tangential velocity is small (impending slip).
if (A.normSqr() < square(m_maxRollingTangVel)) {
SimTK_DEBUG2("--> initial slip velocity small (%g<%g); stepLen=1\n",
A.norm(), m_maxRollingTangVel);
Q = B;
return 1;
}
const Vec3 P = Vec3(0);
const Vec3 AtoP = P-A, AtoB = B-A;
const Real ABsqr = AtoB.normSqr();
// Ensure line segment is of meaningful length.
if (ABsqr < SimTK::SignificantReal) {
SimTK_DEBUG1("-->ABsqr=%g short; returning stepLength=1\n", ABsqr);
Q = B;
return 1;
}
// Normalized distance from A to Q.
const Real stepLength = clamp(0.0, dot(AtoP,AtoB)/ABsqr, 1.0);
Q = A + stepLength*AtoB;
SimTK_DEBUG2("--> returning stepLength=%g (dist to origin=%g)\n",
stepLength, Q.norm());
return stepLength;
}
//------------------------------------------------------------------------------
// CALC SLIDING STEP LENGTH TO MAX CHANGE (Vec2 and Vec3)
//------------------------------------------------------------------------------
Real PLUSImpulseSolver::
calcSlidingStepLengthToMaxChange(const Vec2& A, const Vec2& B) const
{
// Temporary variables created by dsolve/numeric/optimize.
Real t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, sol1, sol2;
const Vec2 v = B-A;
// Optimized computation sequence generated in Maple.
t1 = m_cosMaxSlidingDirChange;
t1 *= t1;
t2 = t1 - 1;
t3 = A[0]*v[1] - A[1]*v[0];
t3 = std::sqrt(-t1*t2*t3*t3);
t4 = t2*v[0]*A[0];
t5 = A[1]*v[1];
t2 *= t5;
t6 = v[1]*v[1];
t7 = v[0]*v[0];
t8 = t6 + t7;
t9 = A[1]*A[1];
t10 = A[0]*A[0];
t1 = t1*(t10*t8 + t8*t9) - t10*t7 - t6*t9 - 2*t5*A[0]*v[0];
t5 = t10 + t9;
t1 = 1 / t1;
sol1 = -t1*t5*(t2 + t4 + t3);
sol2 = -t1*t5*(t2 + t4 - t3);
assert(sol1>=0 || sol2>=0); //TODO: is this guaranteed?
Real sol;
if (sol1 < 0) sol=sol2;
else if (sol2 < 0) sol=sol1;
else sol = std::min(sol1, sol2);
SimTK_DEBUG3("-->max change solutions: %g and %g; returning %g\n",
sol1,sol2,sol);
return sol;
}
Real PLUSImpulseSolver::
calcSlidingStepLengthToMaxChange(const Vec3& A, const Vec3& B) const
{
// Temporary variables created by dsolve/numeric/optimize.
Real t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12, t13, t14, t15;
Real sol1, sol2;
const Vec3 v = B-A;
// Optimized computation sequence generated in Maple.
t1 = m_cosMaxSlidingDirChange;
t1 *= t1;
t2 = t1 - 1;
t3 = A[0] * A[0];
t4 = v[0] * v[0];
t5 = A[2] * A[2];
t6 = v[1] * v[1];
t7 = A[1] * A[1];
t8 = A[1] * v[1];
t9 = A[0] * v[0];
t10 = std::sqrt(-(t1 * t2 * (t3 * t6 + t4 * t7 + t5 * (t6 + t4)
+ (-2 * A[2] * (t9 + t8) + (t7 + t3) * v[2]) * v[2] - 2 * t8 * t9)));
t11 = t9 * t2;
t12 = t8 * t2;
t13 = A[2] * v[2];
t2 = t13 * t2;
t14 = v[2] * v[2];
t15 = t6 + t14 + t4;
t1 = t1 * (t15 * t3 + t15 * t5 + t15 * t7) - t14 * t5 - t3 * t4 - t6 * t7
+ t9 * (-2 * t8 - 2 * t13) - 2 * t13 * t8;
t3 = t7 + t3 + t5;
t1 = 1 / t1;
sol1 = -(t12 + t2 + t11 + t10) * t1 * t3;
sol2 = -(t12 + t2 + t11 - t10) * t1 * t3;
Real sol;
if (sol1 < 0) sol=sol2;
else if (sol2 < 0) sol=sol1;
else sol = std::min(sol1, sol2);
SimTK_DEBUG3("-->max change solutions: %g and %g; returning %g\n",
sol1,sol2,sol);
return sol;
}
//------------------------------------------------------------------------------
// CLASSIFY FRICTIONALS
//------------------------------------------------------------------------------
// At the start of each sliding interval, classify all frictional contacts
// based on the actual start-of-interval constraint-space velocity.
// For unilateral contact friction, if the unilateral normal contact is
// Observing (passive) then its friction constraints are off also. Otherwise
// (normal is Participating or Known), every frictional contact is classified
// as Rolling or Sliding depending on the current slip velocity as present
// in m_verrLeft. No frictional contact is marked Impending at the start of a
// sliding interval; that only occurs as a result of a transition from Rolling.
void PLUSImpulseSolver::
classifyFrictionals(Array_<UniContactRT>& uniContact) const {
SimTK_DEBUG1("classifyFrictionals(): %d uni contacts\n",
(int)uniContact.size());
for (unsigned k=0; k < uniContact.size(); ++k) {
UniContactRT& rt = uniContact[k];
// Set contact condition.
if (rt.m_type==Participating) rt.m_contactCond = UniActive;
else if (rt.m_type==Known) rt.m_contactCond = UniKnown;
else {assert(rt.m_type==Observing); rt.m_contactCond = UniOff;}
// Set friction condition and slip velocity.
if (rt.m_type == Observing || !rt.hasFriction()) {
rt.m_frictionCond = FricOff;
rt.m_slipVel = Vec2(NaN); // for bug catching
rt.m_slipMag = NaN;
} else { // normal is Participating or Known and has friction.
const Array_<MultiplierIndex>& Fk = rt.m_Fk; // friction components
assert(Fk.size()==2); //TODO: generalize
Real tmag=0;
for (unsigned i=0; i<Fk.size(); ++i) {
const MultiplierIndex mx = Fk[i];
rt.m_slipVel[i] = m_verrLeft[mx];
tmag += square(m_verrLeft[mx]);
}
tmag = std::sqrt(tmag);
rt.m_slipMag = tmag;
rt.m_frictionCond = tmag > m_maxRollingTangVel ? Sliding : Rolling;
}
#ifndef NDEBUG
printf(" %s contact %d is %s; vel=%g,%g, mag=%g\n",
getContactTypeName(rt.m_type), (int)k,
getFricCondName(rt.m_frictionCond), rt.m_slipVel[0],
rt.m_slipVel[1], rt.m_slipMag);
#endif
}
}
//------------------------------------------------------------------------------
// FILL MULT 2 ACTIVE
//------------------------------------------------------------------------------
// mult2active must already have been resized to size of A
void PLUSImpulseSolver::
fillMult2Active(const Array_<MultiplierIndex,ActiveIndex>& active,
Array_<ActiveIndex,MultiplierIndex>& mult2active) const
{
const int p = active.size();
mult2active.fill(ActiveIndex()); // invalid
for (ActiveIndex aj(0); aj < p; ++aj) {
const MultiplierIndex mj = active[aj];
mult2active[mj] = aj;
}
#ifndef NDEBUG
printf("fillMult2Active:\n");
cout << ": active=" << active << endl;
cout << ": mult2active=" << mult2active << endl;
#endif
}
//------------------------------------------------------------------------------
// INITIALIZE NEWTON
//------------------------------------------------------------------------------
// Initialize for a Newton iteration. Fill in the part of the Jacobian
// corresponding to linear equations since those won't change. Transfer
// previous impulses pi to new piActive. Assumes m_active and m_mult2active
// have been filled in.
void PLUSImpulseSolver::
initializeNewton(const Matrix& A,
const Vector& pi, // m of these
const Vector& verrApplied,
const Array_<UniContactRT>& uniContact) const {
const int na = m_active.size();
const bool hasAppliedImpulse = (verrApplied.size() > 0);
m_JacActive.resize(na,na); m_rhsActive.resize(na); m_piActive.resize(na);
m_errActive.resize(na);
for (ActiveIndex aj(0); aj < na; ++aj) {
const MultiplierIndex mj = m_active[aj];
for (ActiveIndex ai(0); ai < na; ++ai) {
const MultiplierIndex mi = m_active[ai];
m_JacActive(ai,aj) = A(mi,mj);
}
m_rhsActive[aj] = m_verrLeft[mj] + m_verrExpand[mj];
if (hasAppliedImpulse) m_rhsActive[aj] += verrApplied[mj];
m_piActive[aj] = pi[mj];
}
// For impacters, guess a small separating impulse. This improves
// convergence because it puts the max() terms in the Jacobian on
// the right branch.
for (unsigned k=0; k < uniContact.size(); ++k) {
const UniContactRT& rt = uniContact[k];
if (rt.m_contactCond != UniActive)
continue;
const MultiplierIndex mz = rt.m_Nk;
const ActiveIndex az = m_mult2active[mz];
assert(az.isValid());
// Don't use rt.m_sign here because it affects both pi & rhs; we just
// want the signs to match.
m_piActive[az] = .01*sign(m_rhsActive[az]); //-1,0,1
SimTK_DEBUG3(" active normal %d has v=%g; guess pi=%g\n",
(int)az,m_rhsActive[az],m_piActive[az]);
}
#ifndef NDEBUG
printf("initializeNewton:\n");
cout << ": verrLeft was=" << m_verrLeft << endl;
cout << ": verrExpand was=" << m_verrExpand << endl;
cout << ": verrApplied was=" << verrApplied << endl;
cout << ": rhsActive=" << m_rhsActive << endl;
cout << ": pi was=" << pi << endl;
cout << ": piActive=" << m_piActive << endl;
#endif
}
//------------------------------------------------------------------------------
// UPDATE DIRECTIONS AND CALC CURRENT ERROR
//------------------------------------------------------------------------------
// Calculate err(pi). For Impending slip frictional contacts we also revise
// the slip direction based on the current values of pi and piExpand.
void PLUSImpulseSolver::
updateDirectionsAndCalcCurrentError
(const Matrix& A, Array_<UniContactRT>& uniContact,
const Vector& piELeft, const Vector& verrAppliedLeft,
const Vector& piActive,
Vector& errActive) const
{
const int na = m_active.size();
assert(piActive.size() == na);
errActive.resize(na);
const bool hasAppliedImpulse = (verrAppliedLeft.size() > 0);
// Initialize as though all rolling.
for (ActiveIndex ai(0); ai < na; ++ai) {
const MultiplierIndex mi = m_active[ai];
// err = A pi - rhs (piExpand included in rhs)
errActive[ai] = multRowTimesActiveCol(A,mi,m_active,piActive)
- m_rhsActive[ai];
}
// Replace error equations for sliding and impending slip. For impending
// slip we'll also update slipVel and slipMag since we'll need them again
// when we calculate the Jacobian.
for (unsigned k=0; k < uniContact.size(); ++k) {
UniContactRT& rt = uniContact[k];
if (rt.m_contactCond == UniOff || !rt.hasFriction())
continue; // inactive, or no friction
if (!(rt.m_frictionCond==Sliding || rt.m_frictionCond==Impending))
continue; // no need to modify the equations
const Array_<MultiplierIndex>& Fk = rt.m_Fk;
const MultiplierIndex Nk = rt.m_Nk;
assert(Fk.size()==2); //TODO: generalize
const MultiplierIndex mx=Fk[0], my=Fk[1], mz=Nk;
if (rt.m_frictionCond==Impending) {
// Update slip direction to [Ax Ay]*(pi+piE) - verrApplied.
Vec2 d(multRowTimesActiveCol(A,mx,m_active,piActive)
- m_verrExpand[mx],
multRowTimesActiveCol(A,my,m_active,piActive)
- m_verrExpand[my]);
if (hasAppliedImpulse)
d -= Vec2(verrAppliedLeft[mx],verrAppliedLeft[my]);
const Real dnorm = d.norm();
rt.m_slipVel = d; rt.m_slipMag = dnorm;
SimTK_DEBUG3("Updated impending slipVel %d to %g,%g\n",k,d[0],d[1]);
}
const Real mu = rt.m_effMu;
const ActiveIndex ax=m_mult2active[mx], ay=m_mult2active[my],
az=m_mult2active[mz];
const Real pix = piActive[ax], piy=piActive[ay];
// Applying the sign here makes sure pizE is negative.
const Real pizE = rt.m_sign*piELeft[mz];
// The slipping or impending slip equation is
// f = - mu N v/|v|
// where v is the slip velocity or impending slip velocity (above), and
// f is the tangential friction force vector, and N>=0 is the magnitude
// of the normal force. Our convention for multipliers is opposite
// applied forces, so we have
// -pi_xy = - mu (-piz) v/|v|
// ==> pi_xy = - mu piz v/|v|
// ==> |v| pi_xy + mu piz v = 0
// We write the two error functions like this:
// errx=|v|pi_x + mu*vx*[piE+min(pi_z,0)]
// erry=|v|pi_y + mu*vy*[piE+min(pi_z,0)]
// Calculate the terms common to Active and Known contacts.
errActive[ax] = rt.m_slipMag*pix + mu*rt.m_slipVel[0]*pizE;
errActive[ay] = rt.m_slipMag*piy + mu*rt.m_slipVel[1]*pizE;
// Add in the additional term for Active contacts.
if (rt.m_contactCond == UniActive) {
const ActiveIndex az=m_mult2active[mz];
assert(az.isValid());
// Applying the sign here makes piz negative if it represents a
// valid "pushing" force.
const Real piz=rt.m_sign*piActive[az];
const Real minz = std::min(piz, Real(0));
errActive[ax] += mu*rt.m_slipVel[0]*minz;
errActive[ay] += mu*rt.m_slipVel[1]*minz;
}
}
}
//------------------------------------------------------------------------------
// UDPATE JACOBIAN FOR SLIDING
//------------------------------------------------------------------------------
// Calculate Jacobian
// J= D err(pi) / D pi
// See updateDirectionsAndCalcCurrentError() for err(pi). All rows of J
// corresponding to linear equations, including rolling constraints, have
// already been filled in since they can't change during the iteration. Only
// sliding and impending friction rows are potentially nonlinear and thus
// subject to change during the Newton iterations.
void PLUSImpulseSolver::
updateJacobianForSliding(const Matrix& A,
const Array_<UniContactRT>& uniContact,
const Vector& piELeft,
const Vector& verrAppliedLeft) const {
int nPairsChanged = 0;
for (unsigned k=0; k < uniContact.size(); ++k) {
const UniContactRT& rt = uniContact[k];
if (!(rt.m_contactCond==UniActive||rt.m_contactCond==UniKnown)
|| !rt.hasFriction())
continue;
// Known, or Participating and active, and has friction.
if (!(rt.m_frictionCond==Sliding || rt.m_frictionCond==Impending))
continue;
const Array_<MultiplierIndex>& Fk = rt.m_Fk;
assert(Fk.size()==2); //TODO: generalize
const MultiplierIndex mx=Fk[0], my=Fk[1];
assert(m_mult2active[mx].isValid());
assert(m_mult2active[my].isValid());
// Handy abbreviations to better match equations.
const Real mu = rt.m_effMu;
const ActiveIndex ax=m_mult2active[mx], ay=m_mult2active[my];
const Real pix = m_piActive[ax], piy=m_piActive[ay];
const Vec2 d = rt.m_slipVel;
const Real dnorm = rt.m_slipMag;
const Vec2 dhat = dnorm > TinyReal ? d/dnorm : Vec2(0);
m_JacActive[ax] = m_JacActive[ay] = 0; // zero the rows
if (rt.m_frictionCond==Impending) {
// Calculate terms for derivative of norm(d) w.r.t. pi.
const RowVectorView Ax = A[mx], Ay = A[my];
const MultiplierIndex mz = rt.m_Nk;
const Real pizE = rt.m_sign*piELeft[mz];
if (rt.m_contactCond==UniActive) { // Impending normal is active
const ActiveIndex az=m_mult2active[mz];
assert(az.isValid());
const Real piz=rt.m_sign*m_piActive[az];
const Real Axz=Ax(mz), Ayz=Ay(mz);
const Real minz = softmin0(piz, m_minSmoothness);
const Real dminz = dsoftmin0(piz, m_minSmoothness);
// errx=|d|pix + dx*mu*(pizE+softmin0(piz)) [erry similar]
// d/dpii errx = s*pix + mu*Axi*(pizE+softmin0(piz)), i!=x,z
// d/dpix errx = s*pix + mu*Axx*(pizE+softmin0(piz)) + |d|
// d/dpiz errx = s*pix + mu*Axz*(pizE+softmin0(piz))
// + mu*dx*dsoftmin0(piz)
// where s = dot(d/|d|, [Axi Ayi]).
// Fill in generic terms for unrelated constraints (not x,y,z)
for (ActiveIndex ai(0); ai<m_active.size(); ++ai) {
const MultiplierIndex mi = m_active[ai];
const Real pii=m_piActive[ai];
const Real Axi=Ax(mi), Ayi=Ay(mi);
const Real s = ~dhat*Vec2(Axi,Ayi);
m_JacActive(ax,ai) = s*pix + mu*Axi*(pizE+minz);
m_JacActive(ay,ai) = s*piy + mu*Ayi*(pizE+minz);
}
// Add additional terms for related rows.
m_JacActive(ax,ax) += dnorm; // d errx / dx
m_JacActive(ay,ay) += dnorm; // d erry / dy
m_JacActive(ax,az) += mu*d[0]*dminz; // d errx / dz
m_JacActive(ay,az) += mu*d[1]*dminz; // d erry / dz
} else { // Impending normal is an expander; piz is not variable
assert(rt.m_contactCond==UniKnown);
// errx=|d|pix + dx*mu*pizE [erry similar]
// d/dpii errx = s*pix + mu*Axi*pizE, for i != x
// d/dpix errx = s*pix + mu*Axx*pizE + |d|
// where s = dot(d/|d|, [Axi Ayi]).
// Fill in generic terms for unrelated constraints (not x,y)
for (ActiveIndex ai(0); ai<m_active.size(); ++ai) {
const MultiplierIndex mi = m_active[ai];
const Real pii=m_piActive[ai];
const Real Axi=Ax(mi), Ayi=Ay(mi);
const Real s = ~dhat*Vec2(Axi,Ayi);
m_JacActive(ax,ai) = s*pix + mu*Axi*pizE;
m_JacActive(ay,ai) = s*piy + mu*Ayi*pizE;
}
m_JacActive(ax,ax) += dnorm;
m_JacActive(ay,ay) += dnorm;
}
} else { // Slipping
m_JacActive(ax,ax) = m_JacActive(ay,ay) = dnorm;
// That's all for an expander; active also has z derivs.
if (rt.m_contactCond==UniActive) { // normal is active
const ActiveIndex az=m_mult2active[rt.m_Nk];
assert(az.isValid());
const Real piz=m_piActive[az];
// errx=|d|pi_x + mu*dx*softmin0(piz) [erry similar]
// d/dpi_x errx = |d|
// d/dpi_z errx = mu*dx*dsoftmin0(piz)
const Real dminz = dsoftmin0(piz, m_minSmoothness);
m_JacActive(ax,az) = mu*d[0]*dminz;
m_JacActive(ay,az) = mu*d[1]*dminz;
}
}
++nPairsChanged;
}
#ifndef NDEBUG
if (nPairsChanged) {
printf("Updated %d pairs of rows in Jacobian:", nPairsChanged);
//cout << m_JacActive;
}
// Calculate Jacobian numerically.
Array_<UniContactRT> uniContactTmp = uniContact;
Vector piActive = m_piActive;
Vector errActive0, errActive1;
Matrix numJac(piActive.size(), piActive.size());
for (int i=0; i < piActive.size(); ++i) {
const Real save = piActive[i];
piActive[i] = save - 1e-6;
updateDirectionsAndCalcCurrentError(A,uniContactTmp,
piELeft, verrAppliedLeft,
piActive,errActive0);
piActive[i] = save + 1e-6;
updateDirectionsAndCalcCurrentError(A,uniContactTmp,
piELeft, verrAppliedLeft,
piActive,errActive1);
numJac(i) = (errActive1-errActive0)/2e-6;
piActive[i] = save;
}
//cout << "JacErr=" << m_JacActive-numJac;
cout << "Jacobian num vs. analytic norm=" << (m_JacActive-numJac).norm() << endl;
//cout << "USING NUMERICAL JAC\n"; m_JacActive = numJac;
#endif
}
} // namespace SimTK
|