1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
|
/* -------------------------------------------------------------------------- *
* Simbody(tm): Gazebo Reaction Force With Applied Force (Rigid) *
* -------------------------------------------------------------------------- *
* This is part of the SimTK biosimulation toolkit originating from *
* Simbios, the NIH National Center for Physics-Based Simulation of *
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody. *
* *
* Portions copyright (c) 2013 Stanford University and the Authors. *
* Authors: Michael Sherman, John Hsu *
* Contributors: *
* *
* Licensed under the Apache License, Version 2.0 (the "License"); you may *
* not use this file except in compliance with the License. You may obtain a *
* copy of the License at http://www.apache.org/licenses/LICENSE-2.0. *
* *
* Unless required by applicable law or agreed to in writing, software *
* distributed under the License is distributed on an "AS IS" BASIS, *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
* See the License for the specific language governing permissions and *
* limitations under the License. *
* -------------------------------------------------------------------------- */
/* This test is drawn from the Open Source Robotics Foundation Gazebo physics
regression test "Joint_TEST::GetForceTorqueWithAppliedForce". Here we are
using Simbody's unilateral rigid contact which should behave very similar to
the Gazebo reference.
See GazeboReactionForceWithAppliedForceCompliant.cpp for the same problem done
using compliant contact. (The rigid test case here was modified from the
compliant one so may have some dead code left over from that version.)
It is a stack of three cubes hinged together at their edges. The bottom block
is heavy and rests on the ground, the other two are light and have their
positions maintained by a pair of PD controllers like this:
/
link3 / \ * = pin joint
/ \
\ 1 /
\ / z
------* 45 degrees ^ g = 0 0 -50
link2 | | | y |
| 6 | | / |
-----*------ | / v
| | 0 degrees ---------> x
| 100 |
------- link1
contact
GROUND
All the cube edges are of length 1. Masses are 100,6,1 as shown. The top block
has a COM that is offset into the +y direction by 0.5.
Expected reaction force results:
pin1 on inboard: tx=-25, ty= 175, fz=-300
pin1 on outboard: tx= 25, ty=-175, fx=1, fz= 300,
pin2 on inboard: tx=-25, fz=-50
pin2 in outboard: tx=25*pi/4, tz=-25*pi/4, fx=fz=50*pi/4
The reason for fx=1 in the second line is that with a gain of only 50000, the
first pin joint must be at an angle of 0.0035 radians to generate a torque of
175. That tips link2's frame in which (0,0,300)_G is reexpressed.
*/
#include "Simbody.h"
#include <cassert>
#include <iostream>
using std::cout; using std::endl;
using namespace SimTK;
//#define USE_VISUALIZER
// Control gains
const Real Kp1 = 50000; // link1-2 joint stiffness
const Real Kp2 = 10000; // link2-3 joint stiffness
const Real Cd1 = /*30*/100; // link1-2 joint damping
const Real Cd2 = 30; // link2-3 joint damping
// Target angles
const Real Target1 = 0;
const Real Target2 = -Pi/4;
const Vec3 Cube(.5,.5,.5); // half-dimensions of cube
const Real Mass1=100, Mass2=5, Mass3=1;
const Vec3 Centroid(.5,0,.5);
const Vec3 COM1=Centroid, COM2=Centroid, COM3=Centroid+Vec3(0,.5,0);
// Simbody requires inertias to be expressed about body origin rather than COM.
const Inertia Inertia1=Inertia(Vec3(1)).shiftFromMassCenter(-COM1,Mass1);
const Inertia Inertia2=Inertia(Vec3(.05)).shiftFromMassCenter(-COM2,Mass2);
const Inertia Inertia3=Inertia(Vec3(.001,.001,0)).shiftFromMassCenter(-COM3,Mass3);
// Define a stiff, lossy material.
const Real Stiffness = 1e8;
const Real Dissipation = 10;
const Real Mu_s = 0.15, Mu_d = 0.1, Mu_v = 0;
const ContactMaterial lossyMaterial(Stiffness,
Dissipation,
Mu_s,
Mu_d,
Mu_v);
const Real MaxStepSize = Real(1/1000.); // 1 ms (1000 Hz)
const int DrawEveryN = 33; // 33 ms frame update (30.3 Hz)
const Real SimTime = 5;
const int NSteps = // make this a whole number of viz frames
DrawEveryN*(int(SimTime/MaxStepSize/DrawEveryN+0.5));
// Use this class to hold references into the Simbody system.
struct MyMultibodySystem {
MyMultibodySystem(); // see below
MultibodySystem m_system;
SimbodyMatterSubsystem m_matter;
ContactTrackerSubsystem m_tracker;
CompliantContactSubsystem m_contact;
GeneralForceSubsystem m_forces;
Force::DiscreteForces m_discrete;
#ifdef USE_VISUALIZER
Visualizer m_viz;
#endif
MobilizedBody m_link1;
MobilizedBody::Pin m_link2, m_link3;
};
// Execute the simulation with a given integrator and accuracy, and verify that
// it produces the correct answers.
static void runOnce(const MyMultibodySystem& mbs, Integrator& integ,
Real accuracy);
//==============================================================================
// MAIN
//==============================================================================
int main() {
SimTK_START_TEST("GazeboReactionForce");
// Create the system.
MyMultibodySystem mbs;
printf("LOW ACCURACY\n");
SemiExplicitEuler2Integrator sexpeul2(mbs.m_system);
SimTK_SUBTEST3(runOnce, mbs, sexpeul2, 1e-2);
printf("\nHIGH ACCURACY\n");
RungeKuttaMersonIntegrator rkm(mbs.m_system);
SimTK_SUBTEST3(runOnce, mbs, rkm, 1e-6);
SimTK_END_TEST();
}
//==============================================================================
// MY MULTIBODY SYSTEM
//==============================================================================
// Construct the multibody system. The dampers are built in here but the springs
// are applied during execution.
MyMultibodySystem::MyMultibodySystem()
: m_system(), m_matter(m_system),
//m_tracker(m_system), m_contact(m_system,m_tracker),
m_forces(m_system), m_discrete(m_forces,m_matter)
#ifdef USE_VISUALIZER
, m_viz(m_system)
#endif
{
#ifdef USE_VISUALIZER
m_viz.setSystemUpDirection(ZAxis);
m_viz.setCameraTransform(
Transform(Rotation(BodyRotationSequence,Pi/2,XAxis,Pi/8,YAxis),
Vec3(5,-8,2)));
m_viz.setShowFrameNumber(true);
m_viz.setShowSimTime(true);
#endif
Force::Gravity(m_forces, m_matter, -ZAxis, 50);
DecorativeBrick drawCube(Cube); drawCube.setOpacity(0.5).setColor(Gray);
Body::Rigid link1Info(MassProperties(Mass1, COM1, Inertia1));
ContactGeometry::TriangleMesh cubeMesh
(PolygonalMesh::createBrickMesh(Cube, 3));
DecorativeMesh showMesh(cubeMesh.createPolygonalMesh());
showMesh.setRepresentation(DecorativeGeometry::DrawWireframe);
link1Info.addDecoration(Centroid, drawCube);
link1Info.addContactSurface(Centroid,
ContactSurface(cubeMesh, lossyMaterial, 1));
link1Info.addDecoration(Centroid, showMesh);
Body::Rigid link2Info(MassProperties(Mass2, COM2, Inertia2));
link2Info.addDecoration(Centroid, drawCube);
Body::Rigid link3Info(MassProperties(Mass3, COM3, Inertia3));
link3Info.addDecoration(Centroid, drawCube);
MobilizedBody& Ground = m_matter.updGround(); // Nicer name for Ground.
Ground.addBodyDecoration(Vec3(0,0,.05),
DecorativeFrame(2).setColor(Green));
// Add the Ground contact geometry. Contact half space has -XAxis normal
// (right hand wall) so we have to rotate.
const Rotation NegXToZ(Pi/2, YAxis);
Ground.updBody().addContactSurface(Transform(NegXToZ,Vec3(0)),
ContactSurface(ContactGeometry::HalfSpace(),lossyMaterial));
m_link1 = MobilizedBody::Free(Ground,Vec3(0),
link1Info, Vec3(0));
const double CoefRest = 0;
for (int i=-1; i<=1; i+=2)
for (int j=-1; j<=1; j+=2)
for (int k=-1; k<=1; k+=2) {
const Vec3 pt = Centroid + Vec3(i,j,k).elementwiseMultiply(Cube);
PointPlaneContact* contact = new PointPlaneContact
(Ground, ZAxis, 0., m_link1, pt, CoefRest, Mu_s, Mu_d, Mu_v);
m_matter.adoptUnilateralContact(contact);
}
// Use this instead of the free joint to remove contact.
//m_link1 = MobilizedBody::Weld(Ground,Vec3(0),
// link1Info, Vec3(0));
const Rotation ZtoY(-Pi/2, XAxis);
m_link2 = MobilizedBody::Pin(m_link1, Transform(ZtoY,2*Centroid),
link2Info, Transform(ZtoY,Vec3(0)));
m_link3 = MobilizedBody::Pin(m_link2, Transform(ZtoY,2*Centroid),
link3Info, Transform(ZtoY,Vec3(0)));
// It is more stable to build the springs into the mechanism like
// this rather than apply them discretely.
//Force::MobilityLinearSpring
// (m_forces, m_link2, MobilizerQIndex(0), Kp1, Target1);
//Force::MobilityLinearSpring
// (m_forces, m_link3, MobilizerQIndex(0), Kp2, Target2);
Force::MobilityLinearDamper
(m_forces, m_link2, MobilizerUIndex(0), Cd1);
Force::MobilityLinearDamper
(m_forces, m_link3, MobilizerUIndex(0), Cd2);
m_system.realizeTopology();
}
//==============================================================================
// RUN ONCE
//==============================================================================
// Reaction force information: results are the joint reaction, at the F frame
// on the parent and M frame on the child, expressed in the parent or child
// frame, resp. Note that Gazebo's GetForceTorque() method uses the negation of
// the joint reaction, and Gazebo's results are ordered (force,torque) rather
// than (torque,force) as in a Simbody SpatialVec.
struct ReactionPair {
SpatialVec reactionOnParentInParent;
SpatialVec reactionOnChildInChild;
};
static ReactionPair getReactionPair(const State& state,
const MobilizedBody& mobod);
// Write interesting integrator info to stdout.
static void dumpIntegratorStats(const Integrator& integ);
// Run the system until it settles down, then check the answers.
void runOnce(const MyMultibodySystem& mbs, Integrator& Xinteg, Real accuracy)
{
SemiExplicitEulerTimeStepper integ(mbs.m_system);
//integ.setImpulseSolverType(SemiExplicitEulerTimeStepper::PGS);
//integ.setImpulseSolverType(SemiExplicitEulerTimeStepper::PLUS);
integ.setPositionProjectionMethod(SemiExplicitEulerTimeStepper::Bilateral);
//integ.setPositionProjectionMethod(SemiExplicitEulerTimeStepper::Unilateral);
//integ.setPositionProjectionMethod(SemiExplicitEulerTimeStepper::NoPositionProjection);
//integ.setAllowInterpolation(false);
integ.setAccuracy(accuracy);
integ.setConstraintTolerance(.001);
//integ.setDefaultFrictionTransitionVelocity(.01);
//integ.setDefaultImpactCaptureVelocity(.01);
//integ.setDefaultImpactMinCORVelocity(.01);
printf("Using acc=%g consTol=%g, captureVel=%g, minCORvel=%g, stickVel=%g\n",
integ.getAccuracyInUse(),
integ.getConstraintToleranceInUse(),
integ.getDefaultImpactCaptureVelocityInUse(),
integ.getDefaultImpactMinCORVelocityInUse(),
integ.getDefaultFrictionTransitionVelocityInUse());
ImpulseSolver* solver =
//new PGSImpulseSolver
new PLUSImpulseSolver
(integ.getDefaultFrictionTransitionVelocityInUse());
//solver->setMaxIterations(200);
//solver->setConvergenceTol(1e-10);
integ.setImpulseSolver(solver);
integ.initialize(mbs.m_system.getDefaultState());
//printf("Test with order %d integator %s, Accuracy=%g, MaxStepSize=%g\n",
// integ.getMethodMinOrder(), integ.getMethodName(),
// integ.getAccuracyInUse(), MaxStepSize);
#ifdef USE_VISUALIZER
mbs.m_viz.report(integ.getState());
printf("Hit ENTER to simulate:");
getchar();
#endif
unsigned stepNum = 0;
while (true) {
// Get access to State being advanced by the integrator. Interpolation
// must be off so that we're modifying the actual trajectory.
State& state = integ.updAdvancedState();
#ifdef USE_VISUALIZER
// Output a frame to the Visualizer if it is time.
if (stepNum % (DrawEveryN*1) == 0) {
mbs.m_viz.report(state);
if ((stepNum) % (DrawEveryN*30) == 0) {
Vec3 p = mbs.m_link1.getBodyOriginLocation(state);
Vec3 v = mbs.m_link1.getBodyOriginVelocity(state);
cout << "t=" << state.getTime() << " p=" << p << " v=" << v << endl;
}
}
#endif
if (stepNum++ == NSteps)
break;
// Apply discrete spring forces.
const Real a1err = mbs.m_link2.getAngle(state)-Target1;
const Real a2err = mbs.m_link3.getAngle(state)-Target2;
mbs.m_discrete.setOneMobilityForce(state, mbs.m_link2,
MobilizerUIndex(0), -Kp1*a1err);
mbs.m_discrete.setOneMobilityForce(state, mbs.m_link3,
MobilizerUIndex(0), -Kp2*a2err);
// Advance time by MaxStepSize. Might take multiple internal steps to
// get there, depending on difficulty and required accuracy.
const Real tNext = stepNum * MaxStepSize;
//do {integ.stepTo(tNext,tNext);} while (integ.getTime() < tNext);
do {integ.stepTo(tNext);} while (integ.getTime() < tNext);
}
const State& state = integ.getAdvancedState();
//mbs.m_system.realize(state);
Rotation R_G1 = mbs.m_link1.getBodyRotation(state);
Vec3 a = R_G1.convertRotationToBodyFixedXYZ();
Vec3 w = mbs.m_link1.getBodyAngularVelocity(state);
ReactionPair reaction2 = getReactionPair(state, mbs.m_link2);
ReactionPair reaction3 = getReactionPair(state, mbs.m_link3);
cout << "t=" << state.getTime() << endl;
cout << " joint1 a=" << a << " w=" << w << endl;
cout << " joint2 qerr=" << mbs.m_link2.getAngle(state)-Target1
<< " u=" << mbs.m_link2.getRate(state) << endl;
cout << " joint3 qerr=" << mbs.m_link3.getAngle(state)-Target2
<< " u=" << mbs.m_link3.getRate(state) << endl;
cout << " Reaction 2p=" << reaction2.reactionOnParentInParent << "\n";
cout << " Reaction 2c=" << reaction2.reactionOnChildInChild << "\n";
cout << " Reaction 3p=" << reaction3.reactionOnParentInParent << "\n";
cout << " Reaction 3c=" << reaction3.reactionOnChildInChild << "\n";
// Check the answers. Note (torque,force) ordering.
SimTK_TEST_EQ_TOL(reaction2.reactionOnParentInParent,
SpatialVec(Vec3(-25, 175,0), Vec3(0,0,-300)), 0.5);
SimTK_TEST_EQ_TOL(reaction2.reactionOnChildInChild,
SpatialVec(Vec3( 25,-175,0), Vec3(-1,0, 300)), 0.5);
SimTK_TEST_EQ_TOL(reaction3.reactionOnParentInParent,
SpatialVec(Vec3(-25,0,0), Vec3(0,0,-50)), 0.5);
SimTK_TEST_EQ_TOL(reaction3.reactionOnChildInChild,
(Pi/4)*SpatialVec(Vec3(25,0,-25), Vec3(50,0,50)), 0.5);
// dumpIntegratorStats(integ);
}
//==============================================================================
// GET REACTION PAIR
//==============================================================================
static ReactionPair getReactionPair(const State& state,
const MobilizedBody& mobod)
{
SpatialVec p = mobod.findMobilizerReactionOnParentAtFInGround(state);
SpatialVec c = mobod.findMobilizerReactionOnBodyAtMInGround(state);
const Rotation& R_GC = mobod.getBodyRotation(state);
const Rotation& R_GP = mobod.getParentMobilizedBody().getBodyRotation(state);
ReactionPair pair;
pair.reactionOnChildInChild = ~R_GC*c; // from Ground to Child
pair.reactionOnParentInParent = ~R_GP*p; // from Ground to Parent
return pair;
}
//==============================================================================
// DUMP INTEGRATOR STATS
//==============================================================================
static void dumpIntegratorStats(const Integrator& integ) {
const int evals = integ.getNumRealizations();
std::cout << "\nDone -- simulated " << integ.getTime() << "s with "
<< integ.getNumStepsTaken() << " steps, avg step="
<< (1000*integ.getTime())/integ.getNumStepsTaken() << "ms "
<< (1000*integ.getTime())/evals << "ms/eval\n";
printf("Used Integrator %s at accuracy %g:\n",
integ.getMethodName(), integ.getAccuracyInUse());
printf("# STEPS/ATTEMPTS = %d/%d\n", integ.getNumStepsTaken(),
integ.getNumStepsAttempted());
printf("# ERR TEST FAILS = %d\n", integ.getNumErrorTestFailures());
printf("# REALIZE/PROJECT = %d/%d\n", integ.getNumRealizations(),
integ.getNumProjections());
}
|