1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
|
/* -------------------------------------------------------------------------- *
* Simbody(tm) *
* -------------------------------------------------------------------------- *
* This is part of the SimTK biosimulation toolkit originating from *
* Simbios, the NIH National Center for Physics-Based Simulation of *
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody. *
* *
* Portions copyright (c) 2007-12 Stanford University and the Authors. *
* Authors: Peter Eastman *
* Contributors: *
* *
* Licensed under the Apache License, Version 2.0 (the "License"); you may *
* not use this file except in compliance with the License. You may obtain a *
* copy of the License at http://www.apache.org/licenses/LICENSE-2.0. *
* *
* Unless required by applicable law or agreed to in writing, software *
* distributed under the License is distributed on an "AS IS" BASIS, *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
* See the License for the specific language governing permissions and *
* limitations under the License. *
* -------------------------------------------------------------------------- */
#include "SimTKsimbody.h"
#include "SimTKcommon/Testing.h"
#include <vector>
#include <map>
using namespace SimTK;
using namespace std;
#define ASSERT(cond) {SimTK_ASSERT_ALWAYS(cond, "Assertion failed");}
static const int NUM_BODIES = 10;
static const Real BOND_LENGTH = 0.5;
static const int ITERATIONS = 4;
static const Real TOL = 1e-4;
bool testFitting
(const MultibodySystem& mbs, State& state,
const vector<MobilizedBodyIndex>& bodyIxs,
const vector<vector<Vec3> >& stations,
const vector<vector<Vec3> >& targetLocations,
Real minError, Real maxError, Real endDistance)
{
// Find the best fit.
Real reportedError = ObservedPointFitter::findBestFit(mbs, state, bodyIxs, stations, targetLocations, TOL);
cout << "[min,max]=" << minError << "," << maxError << " actual=" << reportedError << endl;
bool result = (reportedError <= maxError && reportedError >= minError);
// Verify that the error was calculated correctly.
Real error = 0.0;
int numStations = 0;
mbs.realize(state, Stage::Position);
const SimbodyMatterSubsystem& matter = mbs.getMatterSubsystem();
for (int i = 0; i < (int) bodyIxs.size(); ++i) {
MobilizedBodyIndex id = bodyIxs[i];
numStations += (int)stations[i].size();
for (int j = 0; j < (int) stations[i].size(); ++j)
error += (targetLocations[i][j]-matter.getMobilizedBody(id).getBodyTransform(state)*stations[i][j]).normSqr();
}
error = std::sqrt(error/numStations);
cout << "calc wrms=" << error << endl;
ASSERT(std::abs(1.0-error/reportedError) < 0.0001); // should match to machine precision
if (endDistance >= 0) {
// Verify that the ends are the correct distance apart.
Real distance = (matter.getMobilizedBody(bodyIxs[0]).getBodyOriginLocation(state)-matter.getMobilizedBody(bodyIxs[bodyIxs.size()-1]).getBodyOriginLocation(state)).norm();
cout << "required dist=" << endDistance << ", actual=" << distance << endl;
ASSERT(std::abs(1.0-endDistance/distance) < TOL);
}
return result;
}
static void testObservedPointFitter(bool useConstraint) {
int failures = 0;
for (int iter = 0; iter < ITERATIONS; ++iter) {
// Build a system consisting of a chain of bodies with occasional side chains, and
// a variety of mobilizers.
MultibodySystem mbs;
SimbodyMatterSubsystem matter(mbs);
Body::Rigid body = Body::Rigid(MassProperties(1, Vec3(0), Inertia(1)));
body.addDecoration(Transform(), DecorativeSphere(.1));
MobilizedBody* lastBody = &matter.Ground();
MobilizedBody* lastMainChainBody = &matter.Ground();
vector<MobilizedBody*> bodies;
Random::Uniform random(0.0, 1.0);
random.setSeed(iter);
for (int i = 0; i < NUM_BODIES; ++i) {
bool mainChain = random.getValue() < 0.5;
MobilizedBody* parent = (mainChain ? lastMainChainBody : lastBody);
int type = (int) (random.getValue()*4);
MobilizedBody* nextBody;
if (type == 0) {
MobilizedBody::Cylinder cylinder(*parent, Transform(Vec3(0, 0, 0)), body, Transform(Vec3(0, BOND_LENGTH, 0)));
nextBody = &matter.updMobilizedBody(cylinder.getMobilizedBodyIndex());
}
else if (type == 1) {
MobilizedBody::Slider slider(*parent, Transform(Vec3(0, 0, 0)), body, Transform(Vec3(0, BOND_LENGTH, 0)));
nextBody = &matter.updMobilizedBody(slider.getMobilizedBodyIndex());
}
else if (type == 2) {
MobilizedBody::Ball ball(*parent, Transform(Vec3(0, 0, 0)), body, Transform(Vec3(0, BOND_LENGTH, 0)));
nextBody = &matter.updMobilizedBody(ball.getMobilizedBodyIndex());
}
else {
MobilizedBody::Pin pin(*parent, Transform(Vec3(0, 0, 0)), body, Transform(Vec3(0, BOND_LENGTH, 0)));
nextBody = &matter.updMobilizedBody(pin.getMobilizedBodyIndex());
}
bodies.push_back(nextBody);
if (mainChain)
lastMainChainBody = nextBody;
lastBody = nextBody;
}
mbs.realizeTopology();
State s = mbs.getDefaultState();
matter.setUseEulerAngles(s, true);
mbs.realizeModel(s);
// Choose a random initial conformation.
vector<Real> targetQ(s.getNQ(), Real(0));
for (MobilizedBodyIndex mbx(1); mbx < matter.getNumBodies(); ++mbx) {
const MobilizedBody& mobod = matter.getMobilizedBody(mbx);
for (int i = 0; i < mobod.getNumQ(s); ++i) {
const QIndex qx0 = mobod.getFirstQIndex(s);
s.updQ()[qx0+i] = targetQ[qx0+i] = 2.0*random.getValue();
}
}
//cout << "q0=" << s.getQ() << endl;
mbs.realize(s, Stage::Position);
// Select some random stations on each body.
vector<vector<Vec3> > stations(NUM_BODIES);
vector<vector<Vec3> > targetLocations(NUM_BODIES);
vector<MobilizedBodyIndex> bodyIxs;
for (int i = 0; i < NUM_BODIES; ++i) {
MobilizedBodyIndex id = bodies[i]->getMobilizedBodyIndex();
bodyIxs.push_back(id);
int numStations = 1 + (int) (random.getValue()*4);
for (int j = 0; j < numStations; ++j) {
Vec3 pos(2.0*random.getValue()-1.0, 2.0*random.getValue()-1.0, 2.0*random.getValue()-1.0);
stations[i].push_back(pos);
targetLocations[i].push_back(bodies[i]->getBodyTransform(s)*pos);
}
}
Real distance = -1;
if (useConstraint) {
// Add a constraint fixing the distance between the first and last bodies.
Real distance = (bodies[0]->getBodyOriginLocation(s)-bodies[NUM_BODIES-1]->getBodyOriginLocation(s)).norm();
// (sherm 140506) Without this 1.001 this failed on clang.
Constraint::Rod(*bodies[0], Vec3(0), *bodies[NUM_BODIES-1], Vec3(0), 1.001*distance);
}
s = mbs.realizeTopology();
matter.setUseEulerAngles(s, true);
mbs.realizeModel(s);
// Try fitting it.
State initState = s;
// (sherm 140506) I raised this from .02 to .03 to make this more robust.
if (!testFitting(mbs, s, bodyIxs, stations, targetLocations, 0.0, 0.03, distance))
failures++;
//cout << "q1=" << s.getQ() << endl;
// Now add random noise to the target locations, and see if it can still fit decently.
Random::Gaussian gaussian(0.0, 0.15);
for (int i = 0; i < (int) targetLocations.size(); ++i) {
for (int j = 0; j < (int) targetLocations[i].size(); ++j) {
targetLocations[i][j] += Vec3(gaussian.getValue(), gaussian.getValue(), gaussian.getValue());
}
}
s = initState; // start from same config as before
if (!testFitting(mbs, s, bodyIxs, stations, targetLocations, 0.1, 0.5, distance))
failures++;
//cout << "q2=" << s.getQ() << endl;
}
ASSERT(failures == 0); // It found a reasonable fit every time.
std::cout << "Done" << std::endl;
}
static void testUnconstrained() {
testObservedPointFitter(false);
}
static void testConstrained() {
testObservedPointFitter(true);
}
int main() {
#ifdef __s390__
return 0;
#endif
SimTK_START_TEST("TestObservedPointFitter");
SimTK_SUBTEST(testUnconstrained);
SimTK_SUBTEST(testConstrained);
SimTK_END_TEST();
}
|