1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
|
/* -------------------------------------------------------------------------- *
* Simbody(tm): Chain Example *
* -------------------------------------------------------------------------- *
* This is part of the SimTK biosimulation toolkit originating from *
* Simbios, the NIH National Center for Physics-Based Simulation of *
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody. *
* *
* Portions copyright (c) 2010-12 Stanford University and the Authors. *
* Authors: Michael Sherman *
* Contributors: *
* *
* Licensed under the Apache License, Version 2.0 (the "License"); you may *
* not use this file except in compliance with the License. You may obtain a *
* copy of the License at http://www.apache.org/licenses/LICENSE-2.0. *
* *
* Unless required by applicable law or agreed to in writing, software *
* distributed under the License is distributed on an "AS IS" BASIS, *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
* See the License for the specific language governing permissions and *
* limitations under the License. *
* -------------------------------------------------------------------------- */
/* Simbody ChainExample
This example demonstrates how to use the Simbody Visualizer to display and
interact with a real time simulation. It shows the use of sliders to control
"wind", uses a FrameController to track a body with the camera and show some
feedback to the user, and adds a menu to the display. A description of all user
input received is written to the console, and some inputs are used to control
the simulation. */
#include "Simbody.h"
#include <cstdio>
#include <iostream>
using namespace SimTK;
static const int NBodies = 100;
const Real FrameRate = 30;
const Real TimeScale = 1; // i.e., 2 -> 2X real time
// We call this "wind" but it is implemented with Force::Gravity.
static const int GravityX=1, GravityY=2, GravityZ=3, GravityMag=4; // sliders
static const Real GravityDefault=10, GravityMax=20;
// A FrameController is called by the Visualizer just prior to rendering a
// frame. Here we'll point the camera and add some geometry showing the direction
// and magnitude of gravity (which the user can change via sliders).
class MyFrameController : public Visualizer::FrameController {
public:
MyFrameController(const SimbodyMatterSubsystem& matter,
MobilizedBodyIndex whichBody, // tracked with camera
const Force::Gravity& gravity)
: m_matter(matter), m_whichBody(whichBody), m_gravity(gravity) {}
virtual void generateControls(const Visualizer& viz,
const State& state,
Array_<DecorativeGeometry>& geometry) override
{
const MobilizedBody& mobod = m_matter.getMobilizedBody(m_whichBody);
const Transform& X_GB = mobod.getBodyTransform(state);
const UnitVec3& downDir = m_gravity.getDownDirection(state);
const Real gmag = m_gravity.getMagnitude(state);
// Point the camera at the chosen body.
viz.pointCameraAt(X_GB.p(), Vec3(0,1,0));
// Show gravity as a fat green line.
geometry.push_back(DecorativeLine(Vec3(0), gmag*downDir)
.setColor(Green).setLineThickness(4).setBodyId(0));
}
private:
const SimbodyMatterSubsystem& m_matter;
const MobilizedBodyIndex m_whichBody;
const Force::Gravity& m_gravity;
};
// This is a custom InputListener. We'll register it prior to the InputSilo so
// that we can intercept all input and say something about it. No input processing
// is done here other than that, and we pass on everything we receive down the
// chain to the next listener (which will be an InputSilo in this case).
class MyListener : public Visualizer::InputListener {
public:
// Pass in the menu strings just so we can translate the index back
// to a string to print out for testing.
MyListener(const Array_< std::pair<std::string, int> >& menu1,
const Array_< std::pair<std::string, int> >& menu2)
: m_menu1(menu1), m_menu2(menu2) {}
~MyListener() {}
virtual bool keyPressed(unsigned key, unsigned modifier) override {
String mod;
if (modifier&ControlIsDown) mod += "CTRL ";
if (modifier&ShiftIsDown) mod += "SHIFT ";
if (modifier&AltIsDown) mod += "ALT ";
const char* nm = "NoNickname";
switch(key) {
case KeyEsc: nm="ESC"; break;
case KeyDelete: nm="DEL"; break;
case KeyRightArrow: nm="Right"; break;
case KeyLeftArrow: nm="Left"; break;
case KeyUpArrow: nm="Up"; break;
case KeyDownArrow: nm="Down"; break;
case KeyEnter: nm="ENTER"; break;
case KeyF1: nm="F1"; break;
case KeyF12: nm="F12"; break;
case 'a': nm="lower a"; break;
case 'Z': nm="upper Z"; break;
case '}': nm="right brace"; break;
}
if (modifier&IsSpecialKey)
std::cout << "Listener saw special key hit: "
<< mod << " key=" << key << " glut=" << (key & ~SpecialKeyOffset);
else
std::cout << "Listener saw ordinary key hit: "
<< mod << char(key) << " (" << (int)key << ")";
std::cout << " " << nm << std::endl;
return false; // key passed on
}
virtual bool menuSelected(int menuId, int item) override {
std::cout << "Listener sees pick of menu " << menuId << " item " << item << ": ";
Array_< std::pair<std::string, int> >& menu = menuId==1 ? m_menu1 : m_menu2;
for (unsigned i=0; i < menu.size(); ++i)
if (menu[i].second==item)
std::cout << menu[i].first;
std::cout << std::endl;
return false; // menu click passed on
}
virtual bool sliderMoved(int whichSlider, Real value) override {
printf("Listener sees slider %d now at %g\n", whichSlider, value);
return false; // slider move passed on
}
private:
Array_< std::pair<std::string, int> > m_menu1, m_menu2;
};
// This is a periodic event handler that interrupts the simulation on a regular
// basis to poll the InputSilo for user input. If there has been some, process it.
class UserInputHandler : public PeriodicEventHandler {
public:
UserInputHandler(Visualizer& viz,
Visualizer::InputSilo& silo,
const Force::Gravity& gravity,
Real interval)
: PeriodicEventHandler(interval), m_viz(viz), m_silo(silo), m_gravity(gravity) {}
virtual void handleEvent(State& state, Real accuracy,
bool& shouldTerminate) const override
{
while (m_silo.isAnyUserInput()) {
unsigned key, modifiers;
int whichMenu, menuItem;
int whichSlider; Real sliderValue;
while (m_silo.takeKeyHit(key,modifiers)) {
if (key == Visualizer::InputListener::KeyEsc) {
printf("User hit ESC!!\n");
shouldTerminate = true;
m_silo.clear();
return;
}
printf("Handler sees key=%u, modifiers=%u\n",key,modifiers);
}
while (m_silo.takeMenuPick(whichMenu, menuItem)) {
printf("Handler sees menu %d, pick %d\n", whichMenu, menuItem);
}
while (m_silo.takeSliderMove(whichSlider, sliderValue)) {
if (whichSlider == GravityMag) {
m_gravity.setMagnitude(state, sliderValue);
continue;
}
Vec3 gdir = m_gravity.getDownDirection(state);
Real remaining = std::sqrt(std::max(Real(0), 1-square(sliderValue)));
CoordinateAxis axis = CoordinateAxis(whichSlider-GravityX);
CoordinateAxis prev = axis.getPreviousAxis();
CoordinateAxis next = axis.getNextAxis();
Vec2 other(gdir[prev], gdir[next]);
if (other.norm() >= SignificantReal) other *= (remaining/other.norm());
gdir[axis]=sliderValue; gdir[prev]=other[0]; gdir[next]=other[1];
if (gdir.norm() < SignificantReal) gdir[next] = 1;
m_viz.setSliderValue(GravityX+prev, gdir[prev]);
m_viz.setSliderValue(GravityX+next, gdir[next]);
m_gravity.setDownDirection(state, gdir);
}
}
}
private:
Visualizer& m_viz;
Visualizer::InputSilo& m_silo;
const Force::Gravity& m_gravity;
};
int main() {
try {
// Create the system.
printf("\n\n************\n");
printf( "ESC to quit\n");
printf( "************\n\n");
MultibodySystem system;
SimbodyMatterSubsystem matter(system);
GeneralForceSubsystem forces(system);
Force::Gravity gravity(forces, matter, YAxis, GravityDefault); // up! (weird)
Force::GlobalDamper(forces, matter, 7);
Body::Rigid pendulumBody[2]; // solid, translucent
pendulumBody[0].setDefaultRigidBodyMassProperties(MassProperties(1.0, Vec3(0), Inertia(1)));
pendulumBody[0].addDecoration(Transform(), DecorativeSphere(Real(0.49)).setOpacity(1));
pendulumBody[1].setDefaultRigidBodyMassProperties(MassProperties(1.0, Vec3(0), Inertia(1)));
pendulumBody[1].addDecoration(Transform(), DecorativeSphere(Real(0.49)).setOpacity(.5));
MobilizedBody lastBody = matter.Ground();
for (int i = 0; i < NBodies; ++i) {
MobilizedBody::Ball pendulum(lastBody, Transform(Vec3(0)),
pendulumBody[i%2], Transform(Vec3(0, 1, 0))); // alternate solid, translucent
lastBody = pendulum;
}
// Attach the last body back to ground.
Constraint::Ball(matter.Ground(), Vec3(NBodies/2,0,0), lastBody, Vec3(0));
//matter.setShowDefaultGeometry(false);
Visualizer viz(system);
viz.setWindowTitle("This is the so-called 'ChainExample'.");
// Add a menu, just for fun.
Array_< std::pair<std::string,int> > menu1, menu2;
menu1.push_back(std::make_pair("One", 1));
menu1.push_back(std::make_pair("Top/SubA/first", 2));
menu1.push_back(std::make_pair("Top/SubA/second", 3));
menu1.push_back(std::make_pair("Top/SubB/only", 4));
menu1.push_back(std::make_pair("Two", 5));
viz.addMenu("Test Menu", 1, menu1);
// And another one, to check the id handling.
menu2.push_back(std::make_pair("One", 1));
menu2.push_back(std::make_pair("Two", 2));
viz.addMenu("More", 2, menu2);
MyListener* listener = new MyListener(menu1,menu2);
Visualizer::InputSilo* silo = new Visualizer::InputSilo();
viz.addInputListener(listener); // order matters here
viz.addInputListener(silo);
// Tell the frame controller to track the middle body.
viz.addFrameController(new MyFrameController(matter,
MobilizedBodyIndex(NBodies/2), gravity));
viz.setRealTimeScale(TimeScale);
//viz.setDesiredBufferLengthInSec(.15);
viz.setDesiredFrameRate(FrameRate);
//viz.setMode(Visualizer::Sampling);
//viz.setMode(Visualizer::PassThrough);
viz.setMode(Visualizer::RealTime);
viz.setCameraTransform(Vec3(0,NBodies/4,2*NBodies));
system.addEventHandler
(new UserInputHandler(viz,*silo, gravity, Real(0.1))); // check input every 100ms
// Report visualization frames.
Visualizer::Reporter* vr = new Visualizer::Reporter(viz, TimeScale/FrameRate);
system.addEventReporter(vr);
// Initialize the system and state.
system.realizeTopology();
State state = system.getDefaultState();
Random::Gaussian random;
for (int i = 0; i < state.getNQ(); ++i)
state.updQ()[i] = random.getValue();
// Use the Assembler to satisfy the loop-closing constraint.
Assembler assembler(system);
std::cout << "ASSEMBLING ... start configuration shown\n";
viz.report(state);
std::cout << " Type something to continue:\n"; getchar();
double asmRTstart=realTime(), asmCPUstart=cpuTime();
assembler.addReporter(*vr);
assembler.setSystemConstraintsWeight(1);
Visualizer::Mode oldMode = viz.getMode();
viz.setMode(Visualizer::PassThrough);
assembler.assemble(state);
viz.setMode(oldMode);
printf("...ASSEMBLED in %gs, cpu=%gs. Final configuration shown\n",
realTime()-asmRTstart, cpuTime()-asmCPUstart);
viz.report(state);
std::cout << " Type something to continue:\n"; getchar();
// Simulate it.
// Add sliders to control gravity. They will display from bottom up.
// Joy Ku thought calling this "wind direction" makes more sense.
viz.addSlider("Wind Z", 3, -1, 1, 0);
viz.addSlider("Wind Y", 2, -1, 1, 1);
viz.addSlider("Wind X", 1, -1, 1, 0);
viz.addSlider("Wind Mag", 4, 0, GravityMax, GravityDefault);
//RungeKutta3Integrator integ(system);
RungeKuttaMersonIntegrator integ(system);
//RungeKuttaFeldbergIntegrator integ(system);
//CPodesIntegrator integ(system);
integ.setAccuracy(Real(1e-2));
TimeStepper ts(system, integ);
ts.initialize(state);
double cpuStart = cpuTime();
double realStart = realTime();
//ts.stepTo(10);
ts.stepTo(Infinity); // user must hit ESC to stop sim
std::cout << "cpu time: "<<cpuTime()-cpuStart<< std::endl;
std::cout << "real time: "<<realTime()-realStart<< std::endl;
std::cout << "steps: "<<integ.getNumStepsTaken()<< std::endl;
vr->getVisualizer().dumpStats(std::cout);
std::cout << "Type something to quit: "; getchar();
} catch (const std::exception& exc) {
std::cout << "EXCEPTION: " << exc.what() << std::endl;
}
}
|