1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
|
/* -------------------------------------------------------------------------- *
* Simbody(tm) Example: UR10 Task Space Control *
* -------------------------------------------------------------------------- *
* This is part of the SimTK biosimulation toolkit originating from *
* Simbios, the NIH National Center for Physics-Based Simulation of *
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody. *
* *
* Portions copyright (c) 2014 Stanford University and the Authors. *
* Authors: Chris Dembia, Michael Sherman *
* Contributors: John Hsu *
* *
* Licensed under the Apache License, Version 2.0 (the "License"); you may *
* not use this file except in compliance with the License. You may obtain a *
* copy of the License at http://www.apache.org/licenses/LICENSE-2.0. *
* *
* Unless required by applicable law or agreed to in writing, software *
* distributed under the License is distributed on an "AS IS" BASIS, *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
* See the License for the specific language governing permissions and *
* limitations under the License. *
* -------------------------------------------------------------------------- */
/* This example shows a task space (a.k.a. operational space) controller for
a robot arm in Simbody. Task space controllers are model-based, meaning that
the controller itself contains a model of the system being controlled. Since
we don't have a real robot handy, that means there will be two versions of
the UR10 system here: one that we're simulating that is taking the role of the
"real" robot, and one contained in the task space controller that we'll call
the "model" robot. In real life the internal model won't perfectly match the
real one; we'll fake that here by introducing some sensor noise which you can
control with sliders in the user interface.
We assume the system has a direct-drive motor at each of its degrees of freedom.
The task the controller will achieve has two components:
1. The arm reaches for a target point that can be moved with arrow keys.
2. All links are subject to gravity compensation (to counteract the effect
of gravity).
You can also optionally sense the end effector position on the real robot
and have that sent to the controller so that it doesn't have to depend
entirely on the behavior of the model robot when the real robot's sensors are
noisy. Try cranking up the noise, which causes poor tracking, and then hit
"e" to enable the end effector sensing which improves things dramatically.
For more information about operational space control, see:
Khatib, Oussama, et al. "Robotics-based synthesis of human motion."
Journal of physiology-Paris 103.3 (2009): 211-219.
*/
#include "Simbody.h"
#include "UR10.h"
#include "shared/TaskSpace.h"
#include "shared/SimbodyExampleHelper.h"
#include <iostream>
using namespace SimTK;
using namespace std;
static const int QNoise=1, UNoise=2; // sliders in the UI
//==============================================================================
// TASKS MEASURE
//==============================================================================
// This Measure is added to the modelRobot and is used to manage the tasks
// it is supposed to achieve and to return as its value the control torques
// that should be applied to the realRobot (that is, the simulated one).
// This should only be instantiated with T=Vector.
template <class T>
class TasksMeasure : public Measure_<T> {
public:
SimTK_MEASURE_HANDLE_PREAMBLE(TasksMeasure, Measure_<T>);
TasksMeasure(UR10& modelRobot)
: Measure_<T>(modelRobot.updForceSubsystem(),
new Implementation(modelRobot),
AbstractMeasure::SetHandle()) {}
const Vec3& getTarget() const { return getImpl().m_desiredTaskPosInGround; }
Vec3& updTarget() { return updImpl().m_desiredTaskPosInGround; }
void setTarget(Vec3 pos) { updImpl().m_desiredTaskPosInGround = pos; }
void toggleGravityComp() {
updImpl().m_compensateForGravity = !isGravityCompensationOn();}
void toggleTask() {updImpl().m_controlTask = !getImpl().m_controlTask;}
void toggleEndEffectorSensing()
{ updImpl().m_endEffectorSensing = !getImpl().m_endEffectorSensing;}
bool isGravityCompensationOn() const
{ return getImpl().m_compensateForGravity; }
bool isEndEffectorSensingOn() const
{ return getImpl().m_endEffectorSensing; }
bool isTaskPointFollowingOn() const
{ return getImpl().m_controlTask; }
const Vec3& getTaskPointInEndEffector() const
{ return getImpl().m_taskPointInEndEffector; }
SimTK_MEASURE_HANDLE_POSTSCRIPT(TasksMeasure, Measure_<T>);
};
template <class T>
class TasksMeasure<T>::Implementation : public Measure_<T>::Implementation {
public:
Implementation(const UR10& modelRobot,
Vec3 taskPointInEndEffector=Vec3(0,0,0),
Real proportionalGain=225, double derivativeGain=30)
//Real proportionalGain=100, double derivativeGain=20)
: Measure_<T>::Implementation(T(UR10::NumCoords,NaN), 1),
m_modelRobot(modelRobot),
m_tspace1(m_modelRobot.getMatterSubsystem(), m_modelRobot.getGravity()),
m_taskPointInEndEffector(taskPointInEndEffector),
m_proportionalGain(proportionalGain),
m_derivativeGain(derivativeGain),
m_dampingGain(0.5),
m_compensateForGravity(true),
m_controlTask(true),
m_endEffectorSensing(false),
m_desiredTaskPosInGround(Vec3(0.4, 0.1, 1)) // Z is up
{
m_tspace1.addStationTask(m_modelRobot.getBody(UR10::EndEffector),
m_taskPointInEndEffector);
}
// Default copy constructor, destructor, copy assignment are fine.
// Implementations of virtual methods.
Implementation* cloneVirtual() const override
{ return new Implementation(*this); }
int getNumTimeDerivativesVirtual() const override {return 0;}
Stage getDependsOnStageVirtual(int order) const override
{ return Stage::Velocity; }
// This is the task space controller. It returns joint torques tau as the
// value of the enclosing Measure.
void calcCachedValueVirtual(const State& s, int derivOrder, T& tau) const
override;
// TaskSpace objects require some State resources; this call is the time
// for doing that so forward on to the TaskSpace.
void realizeMeasureTopologyVirtual(State& modelState) const override {
m_tspace1.realizeTopology(modelState);
}
private:
friend class TasksMeasure<T>;
const UR10& m_modelRobot;
TaskSpace m_tspace1;
const Vec3 m_taskPointInEndEffector;
const Real m_proportionalGain;
const Real m_derivativeGain;
const Real m_dampingGain;
bool m_compensateForGravity;
bool m_controlTask;
bool m_endEffectorSensing;
Vec3 m_desiredTaskPosInGround;
};
//==============================================================================
// REACHING AND GRAVITY COMPENSATION
//==============================================================================
// This is a task-space controller that tries to move the end effector to
// a particular target location, and applies gravity compensation and some
// joint damping as lower-priority tasks.
//
// The controller has its own internal UR10 model which in general does not
// match the "real" UR10 perfectly. Each time it is asked to
// generate control torques it reads the sensors on the real UR10, updates
// its internal model to match. It then generates torques that would be right
// for the internal model, but returns them to be applied to the real UR10.
class ReachingAndGravityCompensation : public Force::Custom::Implementation {
public:
// The arm reaches for a target location, and the controller
// compensates for gravity.
//
// @param[in] taskPointInEndEffector The point whose location we want
// to control.
// @param[in] proportionalGain Units of N-m/rad
// @param[in] derivativeGain Units of N-m-s/rad
ReachingAndGravityCompensation(const std::string& auxDir,
const UR10& realRobot)
: m_modelRobot(auxDir), m_modelTasks(m_modelRobot),
m_realRobot(realRobot), m_targetColor(Red)
{
m_modelRobot.initialize(m_modelState);
}
const Vec3& getTarget() const {return m_modelTasks.getTarget();}
Vec3& updTarget() {return m_modelTasks.updTarget();}
void setTarget(Vec3 pos) {m_modelTasks.setTarget(pos);}
void toggleGravityComp() {m_modelTasks.toggleGravityComp();}
void toggleTask() {m_modelTasks.toggleTask();}
void toggleEndEffectorSensing() {m_modelTasks.toggleEndEffectorSensing();}
bool isGravityCompensationOn() const
{ return m_modelTasks.isGravityCompensationOn(); }
// This method calculates the needed control torques and adds them into
// the given mobilityForces Vector which will be applied to the real UR10.
// The supplied State is from the real UR10 and will be used to read its
// sensors.
void calcForce(const SimTK::State& realState,
SimTK::Vector_<SimTK::SpatialVec>& bodyForces,
SimTK::Vector_<SimTK::Vec3>& particleForces,
SimTK::Vector& mobilityForces) const
override;
// This controller does not contribute potential energy to the system.
Real calcPotentialEnergy(const SimTK::State& state) const override
{ return 0; }
// Add some useful text and graphics that changes due to user input.
void calcDecorativeGeometryAndAppend(const State & state, Stage stage,
Array_<DecorativeGeometry>& geometry) const override;
private:
UR10 m_modelRobot; // The controller's internal model.
TasksMeasure<Vector> m_modelTasks;
mutable State m_modelState; // Temporary: State for the model robot.
const UR10& m_realRobot; // The "real" robot being controlled.
const Vec3 m_targetColor;
};
//==============================================================================
// USER INPUT HANDLER
//==============================================================================
/// This is a periodic event handler that interrupts the simulation on a
/// regular basis to poll the InputSilo for user input.
class UserInputHandler : public PeriodicEventHandler {
public:
UserInputHandler(Visualizer::InputSilo& silo,
UR10& realRobot,
ReachingAndGravityCompensation& controller,
Real interval)
: PeriodicEventHandler(interval), m_silo(silo), m_realRobot(realRobot),
m_controller(controller), m_increment(0.05) {}
void handleEvent(State& realState, Real accuracy,
bool& shouldTerminate) const override;
private:
Visualizer::InputSilo& m_silo;
UR10& m_realRobot;
ReachingAndGravityCompensation& m_controller;
const Real m_increment;
};
//==============================================================================
// MAIN
//==============================================================================
int main(int argc, char **argv) {
try {
cout << "This is Simbody example '"
<< SimbodyExampleHelper::getExampleName() << "'\n";
cout << "Working dir=" << Pathname::getCurrentWorkingDirectory() << endl;
const std::string auxDir =
SimbodyExampleHelper::findAuxiliaryDirectoryContaining
("geometry/Base.obj");
std::cout << "Getting geometry from '" << auxDir << "'\n";
// Set some options.
const double duration = Infinity; // seconds.
// Create the "real" robot (the one that is being simulated).
UR10 realRobot(auxDir);
// Add the controller.
ReachingAndGravityCompensation* controller =
new ReachingAndGravityCompensation(auxDir, realRobot);
// Force::Custom takes ownership over controller.
Force::Custom control(realRobot.updForceSubsystem(), controller);
// Set up visualizer and event handlers.
Visualizer viz(realRobot);
viz.setShowFrameRate(true);
viz.setShowSimTime(true);
viz.addSlider("Rate sensor noise", UNoise, 0, 1, 0);
viz.addSlider("Angle sensor noise", QNoise, 0, 1, 0);
Visualizer::InputSilo* userInput = new Visualizer::InputSilo();
viz.addInputListener(userInput);
realRobot.addEventHandler(
new UserInputHandler(*userInput, realRobot, *controller, 0.05));
realRobot.addEventReporter(
new Visualizer::Reporter(viz, 1./30));
// Display message on the screen about how to start simulation.
DecorativeText help("Any input to start; ESC to quit.");
help.setIsScreenText(true);
viz.addDecoration(MobilizedBodyIndex(0), Vec3(0), help);
help.setText("Move target: Arrows, PageUp/Down");
viz.addDecoration(MobilizedBodyIndex(0), Vec3(0), help);
// Initialize the real robot and other related classes.
State s;
realRobot.initialize(s);
s.updQ()[UR10::LiftCoord] = -Pi/4;
s.updQ()[UR10::ElbowCoord] = -Pi/2;
//RungeKuttaMersonIntegrator integ(realRobot);
SemiExplicitEuler2Integrator integ(realRobot);
integ.setAccuracy(0.001);
TimeStepper ts(realRobot, integ);
ts.initialize(s);
viz.report(ts.getState());
userInput->waitForAnyUserInput();
userInput->clear();
const double startCPU = cpuTime(), startTime = realTime();
// Simulate.
ts.stepTo(duration);
std::cout << "CPU time: " << cpuTime() - startCPU << " seconds. "
<< "Real time: " << realTime() - startTime << " seconds."
<< std::endl;
} catch (const std::exception& e) {
std::cout << "ERROR: " << e.what() << std::endl;
return 1;
}
return 0;
}
//------------------------------------------------------------------------------
// TASKS MEASURE :: CALC CACHED VALUE VIRTUAL
//------------------------------------------------------------------------------
// Given a modelState that has been updated from the real robot's sensors,
// generate control torques as the TasksMeasure's value. This is the only part
// of the code that is actually doing task space operations.
template <class T>
void TasksMeasure<T>::Implementation::calcCachedValueVirtual
(const State& modelState, int derivOrder, T& tau) const
{
SimTK_ASSERT1_ALWAYS(derivOrder==0,
"TasksMeasure::Implementation::calcCachedValueVirtual():"
" derivOrder %d seen but only 0 allowed.", derivOrder);
// Shorthands.
// -----------
const TaskSpace& p1 = m_tspace1;
const int nu = tau.size();
const Real& kd = m_derivativeGain;
const Real& kp = m_proportionalGain;
const Vec3& x1_des = m_desiredTaskPosInGround;
// Abbreviate model state for convenience.
const State& ms = modelState;
// Compute control law in task space (F*).
// ---------------------------------------
Vec3 xd_des(0);
Vec3 xdd_des(0);
// Get info about the actual location, etc. of the model robot.
Vec3 x1, x1d;
p1.findStationLocationAndVelocityInGround(ms,
TaskSpace::StationTaskIndex(0),
m_taskPointInEndEffector, x1, x1d);
if (m_endEffectorSensing)
x1 = m_modelRobot.getSampledEndEffectorPos(ms);
// Units of acceleration.
Vec3 Fstar1 = xdd_des + kd * (xd_des - x1d) + kp * (x1_des - x1);
// Compute task-space force that achieves the task-space control.
// F = Lambda Fstar + p
Vector F1 = p1.Lambda(ms) * Fstar1 + p1.mu(ms) + p1.p(ms);
//Vector F2 = p2.calcInverseDynamics(ms, Fstar2);
// Combine the reaching task with the gravity compensation and nullspace
// damping.
// Gamma = J1T F1 + N1T J1T F2 + N1T N2T (g - c u)
const Vector& u = ms.getU();
const Real c = m_dampingGain;
tau.setToZero();
//tau += p1.JT(s) * F1
// + p1.NT(s) * ( p2.JT(s) * F2
// + p2.NT(s) * (p1.g(s) - c * u));
if (m_controlTask) {
tau += p1.JT(ms) * F1;
if (m_compensateForGravity)
tau += p1.NT(ms) * p1.g(ms);
tau -= p1.NT(ms) * (c*u); // damping
} else if (m_compensateForGravity) {
tau += p1.g(ms) - (c*u);
} else
tau -= c*u;
UR10::clampToLimits(tau);
}
//------------------------------------------------------------------------------
// REACHING AND GRAVITY COMPENSATION :: CALC FORCE
//------------------------------------------------------------------------------
// Given sensor readings from the real robot, generate control torques for it.
// We'll pass on those sensor readings to the task space controller for it to
// use to update its internal modelRobot.
void ReachingAndGravityCompensation::calcForce(
const State& realState,
Vector_<SpatialVec>& bodyForces,
Vector_<Vec3>& particleForces,
Vector& mobilityForces) const
{
// Sense the real robot and use readings to update model robot.
// ------------------------------------------------------------
const Vector& sensedQ = m_realRobot.getSampledAngles(realState);
const Vector& sensedU = m_realRobot.getSampledRates(realState);
for (int i=0; i < UR10::NumCoords; ++i) {
const UR10::Coords coord = UR10::Coords(i);
m_modelRobot.setJointAngle(m_modelState, coord, sensedQ[coord]);
m_modelRobot.setJointRate(m_modelState, coord, sensedU[coord]);
}
// Optional: if real robot end effector location can be sensed, it can
// be used to improve accuracy. Otherwise, estimate the end effector
// location using the model robot.
const Vec3 sensedEEPos =
m_realRobot.getSampledEndEffectorPos(realState);
m_modelRobot.setSampledEndEffectorPos(m_modelState, sensedEEPos);
m_modelRobot.realize(m_modelState, Stage::Velocity);
const Vector& tau = m_modelTasks.getValue(m_modelState);
mobilityForces += tau;
}
//------------------------------------------------------------------------------
// REACHING AND GRAVITY COMPENSATION :: CALC DECORATIVE GEOMETRY
//------------------------------------------------------------------------------
void ReachingAndGravityCompensation::
calcDecorativeGeometryAndAppend(const State & state, Stage stage,
Array_<DecorativeGeometry>& geometry) const
{
if (stage != Stage::Position) return;
const Vec3 targetPos = m_modelTasks.getTarget();
geometry.push_back(DecorativeSphere(0.02)
.setTransform(targetPos)
.setColor(m_targetColor));
geometry.push_back(DecorativeText("Target: " +
String(targetPos[0])+","+String(targetPos[1])+","+String(targetPos[2]))
.setIsScreenText(true));
const MobilizedBody& ee = m_realRobot.getBody(UR10::EndEffector);
Vec3 taskPosInGround = ee.findStationLocationInGround(state,
m_modelTasks.getTaskPointInEndEffector());
geometry.push_back(DecorativePoint(taskPosInGround)
.setColor(Green).setLineThickness(3));
geometry.push_back(DecorativeText(String("TOGGLES: [t]Task point ")
+ (m_modelTasks.isTaskPointFollowingOn() ? "ON" : "OFF")
+ "...[g]Gravity comp "
+ (m_modelTasks.isGravityCompensationOn() ? "ON" : "OFF")
+ "...[e]End effector sensor "
+ (m_modelTasks.isEndEffectorSensingOn() ? "ON" : "OFF")
)
.setIsScreenText(true));
}
//------------------------------------------------------------------------------
// USER INPUT HANDLER :: HANDLE EVENT
//------------------------------------------------------------------------------
void UserInputHandler::handleEvent(State& realState, Real accuracy,
bool& shouldTerminate) const
{
while (m_silo.isAnyUserInput()) {
int whichSlider; Real sliderValue;
while (m_silo.takeSliderMove(whichSlider, sliderValue)) {
if (whichSlider == QNoise) {
m_realRobot.setAngleNoise(realState, sliderValue);
continue;
}
if (whichSlider == UNoise) {
m_realRobot.setRateNoise(realState, sliderValue);
continue;
}
}
unsigned key, modifiers;
while (m_silo.takeKeyHit(key, modifiers)) {
if (key == Visualizer::InputListener::KeyEsc) {
shouldTerminate = true;
m_silo.clear();
continue;
}
if (key == 'g') {
m_controller.toggleGravityComp();
continue;
}
if (key == 't') {
m_controller.toggleTask();
continue;
}
if (key == 'e') {
m_controller.toggleEndEffectorSensing();
continue;
}
else if (key == Visualizer::InputListener::KeyRightArrow) {
// x coordinate goes in and out of the screen.
m_controller.updTarget()[XAxis] -= m_increment;
continue;
}
else if (key == Visualizer::InputListener::KeyLeftArrow) {
m_controller.updTarget()[XAxis] += m_increment;
continue;
}
else if (key == Visualizer::InputListener::KeyUpArrow) {
m_controller.updTarget()[ZAxis] += m_increment;
continue;
}
else if (key == Visualizer::InputListener::KeyDownArrow) {
m_controller.updTarget()[ZAxis] -= m_increment;
continue;
}
else if (key == Visualizer::InputListener::KeyPageUp) {
m_controller.updTarget()[YAxis] -= m_increment;
continue;
}
else if (key == Visualizer::InputListener::KeyPageDown) {
m_controller.updTarget()[YAxis] += m_increment;
continue;
}
}
}
}
|