File: TaskSpace.h

package info (click to toggle)
simbody 3.7%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 72,876 kB
  • sloc: cpp: 248,828; ansic: 18,240; sh: 29; makefile: 24
file content (519 lines) | stat: -rw-r--r-- 20,820 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
#ifndef SimTK_SIMBODY_EXAMPLE_SHARED_TASK_SPACE_H_
#define SimTK_SIMBODY_EXAMPLE_SHARED_TASK_SPACE_H_

/* -------------------------------------------------------------------------- *
 *                               Simbody(tm)                                  *
 * -------------------------------------------------------------------------- *
 * This is part of the SimTK biosimulation toolkit originating from           *
 * Simbios, the NIH National Center for Physics-Based Simulation of           *
 * Biological Structures at Stanford, funded under the NIH Roadmap for        *
 * Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody.  *
 *                                                                            *
 * Portions copyright (c) 2014 Stanford University and the Authors.           *
 * Authors: Chris Dembia                                                      *
 * Contributors: Michael Sherman                                              *
 *                                                                            *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may    *
 * not use this file except in compliance with the License. You may obtain a  *
 * copy of the License at http://www.apache.org/licenses/LICENSE-2.0.         *
 *                                                                            *
 * Unless required by applicable law or agreed to in writing, software        *
 * distributed under the License is distributed on an "AS IS" BASIS,          *
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.   *
 * See the License for the specific language governing permissions and        *
 * limitations under the License.                                             *
 * -------------------------------------------------------------------------- */

#include "SimTKmath.h"
#include "simbody/internal/common.h"
#include "simbody/internal/SimbodyMatterSubsystem.h"
#include "simbody/internal/Force_Gravity.h"

namespace SimTK {

#define TASKSPACEQUANTITY_GETTER_HELPER(CLASS, MEMVAR, SHORT) \
        realize ## CLASS(s); \
        return Value<CLASS>::downcast( \
        m_matter.getCacheEntry(s, m_ ## MEMVAR ## Index)); \

#define TASKSPACEQUANTITY_MEMBERS(CLASS, MEMVAR, SHORT) \
private: \
    void realize ## CLASS(const State& s) const { \
        if (m_matter.isCacheValueRealized(s, m_ ## MEMVAR ## Index)) \
            return; \
        CLASS& qty = upd ## CLASS(s); \
        if (!qty.m_tspace) qty.m_tspace = this; \
        qty.realize(s); \
        m_matter.markCacheValueRealized(s, m_ ## MEMVAR ## Index); \
    } \
    CLASS& upd ## CLASS(const State& s) const { \
        return Value<CLASS>::updDowncast( \
        m_matter.updCacheEntry(s, m_ ## MEMVAR ## Index)); \
    } \
    CacheEntryIndex m_ ## MEMVAR ## Index; \
public: \
    const CLASS& get ## CLASS(const State& s) const { \
        TASKSPACEQUANTITY_GETTER_HELPER(CLASS, MEMVAR, SHORT); \
    } \
    const CLASS& SHORT(const State& s) const { \
        TASKSPACEQUANTITY_GETTER_HELPER(CLASS, MEMVAR, SHORT); \
    } \

/** (Experimental – API will change – use at your own risk) Efficient and
* convenient computation of quantities necessary for task-space
* model-based controllers.
*
* This class provides convenient access to the quantities used in task-space
* or operational-space controllers, such as the jacobian and the task-space
* mass matrix. Each such quantity is encapsulated in its own class, and objects
* of these types can be used as if they were the quantities (e.g. matrix)
* themselves. This encapsulation allows us to perform
* the necessary calculations more efficiently under the covers.
*
* Computing quantities such as the jacobian \a explicitly is often very
* inefficient, and is usually unnecessary. The jacobian usually appears in a
* matrix-vector product, which is more efficient to compute. This class and
* the classes within use operator overloading to allow a user to write code
* as if they had the matrices explicitly; internally, we compute matrix-vector
* products instead. Also, this class caches the quantities once they've
* been computed.
*
* <h3>List of task-space quantities</h3>
*
* In this class, we use Khatib's notation for operational-space controllers [1].
* This notation conflicts with the notation used elsewhere in Simbody.
*  - nu: number of degrees of freedom.
*  - nt: number of tasks (e.g., number of stations).
*  - nst: number of scalar tasks; 3 * nt.
*  - \f$ A \f$ (nu x nu): joint-space mass matrix (M elsewhere in Simbody).
*  - \f$ b \f$ (nu x 1): joint-space inertial forces (Coriolis, etc.).
*  - \f$ g \f$ (nu x 1): joint-space gravity forces.
*  - \f$ \Lambda \f$ (nst x nst): task-space mass matrix.
*  - \f$ p \f$ (nst x 1): task-space gravity forces.
*  - \f$ \mu \f$ (nst x 1): task-space inertial forces.
*  - \f$ J \f$ (nst x nu): task jacobian.
*  - \f$ \bar{J} \f$ (nu x nst): dynamically consistent generalized inverse of the jacobian.
*  - \f$ N \f$ (nu x nu): nullspace projection matrix.
*
*  See the individual TaskSpaceQuantity's for more information.
*
* <h3>Usage</h3>
*
* We expect you to use this class within a Force::Custom::Implementation, but
* this is not the only option. However, this class can only be used within a
* class that has a realizeTopology method. Here are the necessary steps for
* making use of this class:
*
*  -# Specify your tasks with the TaskSpace::addTask method. If your tasks
*     don't change throughout your simulation, you can do this in a constructor.
*  -# Call TaskSpace::realizeTopology within the owning class' realizeTopology.
*     This is used to allocate cache entries.
*  -# Access the quantities (perhaps in a calcForce method).
*
* Look at the TaskSpaceControl-{UR10,Atlas} examples to see how to use this 
* class.
*
* [1] Khatib, Oussama, et al. "Robotics-based synthesis of human motion."
* Journal of physiology-Paris 103.3 (2009): 211-219.
*/
class TaskSpace
{
public:

    //==========================================================================
    // nested classes
    //==========================================================================

    /** An abstract class for common task-space Matrix or Vector quantities.
    *
    * All task-space quantities must be capable of providing their explicit
    * value. After this value is computed, it is cached in the State for
    * efficiency. These classes may optionally provide operators that allow
    * for more efficient computations.
    *
    * The template parameter T is the type of the task-space quantity
    * (e.g., Matrix). The parameter S is used when allocating the cache entry;
    * it is the earliest stage at which the cache entry can be provided.
    */
    template <typename T, Stage::Level S=Stage::Position>
    class TaskSpaceQuantity {
    public:
        TaskSpaceQuantity() :
                m_tspace(NULL), m_state(NULL), m_cacheIsValid(false) {
        }

        /** Obtain this quantity explicitly. If possible, use operators
        * instead of this method.
        */
        const T& value() const {
            if (!m_cacheIsValid) {
                updateCache(const_cast<TaskSpaceQuantity*>(this)->m_cache);
                const_cast<TaskSpaceQuantity*>(this)->m_cacheIsValid = true;
            }
            return m_cache;
        }

    protected:

        const State& getState() const {
            return *m_state;
        }

        const TaskSpace* m_tspace;

    private:

        virtual void updateCache(T& cache) const = 0;

        CacheEntryIndex m_cacheIndex;
        bool m_cacheIsValid;
        const State* m_state;
        T m_cache;

        //  Methods that TaskSpace uses.
        friend class TaskSpace;

        void realize(const State& s) {
            m_state = &s;
            m_cacheIsValid = false;
        }

        // The earliest stage at which this quantity can be calculated. This
        // is used for creating lazy cache entries.
        static Stage getEarliestStage() { return S; }
    };

    // Forward declarations.
    class JacobianTranspose;
    class Inertia;
    class DynamicallyConsistentJacobianInverseTranspose;
    class InertiaInverse;
    class NullspaceProjectionTranspose;

    /** Relates task-space velocities to generalized speeds; (nst x nu).
    */
    class Jacobian : public TaskSpaceQuantity<Matrix> {
    public:
        Jacobian() {}
        const JacobianTranspose& transpose() const;
        const JacobianTranspose& operator~() { return transpose(); }
        /// Using this operator is likely more efficient than obtaining this
        /// matrix explicitly and performing the multiplication on your own.
        Vector operator*(const Vector& u) const;
        // TODO Matrix_<Vec3> operator*(const Matrix& u) const;
        // TODO Matrix operator*(const Matrix& u) const;
        // TODO Matrix operator*(const NullspaceProjection& N) const;
    private:
        void updateCache(Matrix& cache) const override;
    };

    /** Used to compute task-space forces; (nu x nst).
    */
    class JacobianTranspose : public TaskSpaceQuantity<Matrix> {
    public:
        JacobianTranspose() {}
        const Jacobian& transpose() const;
        const Jacobian& operator~() { return transpose(); }
        Vector operator*(const Vector_<Vec3>& f_GP) const;
        Vector operator*(const Vector& f_GP) const;
        Vector operator*(const Vec3& f_GP) const;
        // TODO Matrix operator*(const Matrix_<Vec3>& f_GP) const;
        Matrix operator*(const Matrix& f_GP) const;
        Matrix operator*(const TaskSpace::Inertia& Lambda) const;
        Matrix operator*(
                const TaskSpace::DynamicallyConsistentJacobianInverseTranspose&
                JBarT) const;
    private:
        void updateCache(Matrix& cache) const override;
    };

    /** Task-space inertia matrix; \f$ \Lambda = (J A^{-1} J^T)^{-1} \f$
    * (nst x nst).
    */
    class Inertia : public TaskSpaceQuantity<Matrix> {
    public:
        Inertia() {}
        const InertiaInverse& inverse() const;
        Vector operator*(const Vector& a) const;
        Vector operator*(const Vec3& a) const;
    private:
        void updateCache(Matrix& cache) const override;
    };

    /** Inverse of task-space inertia matrix;
    * \f$ \Lambda^{-1} = J M^{-1} J^T \f$ (nst x nst).
    *
    * This is only needed for computing the Inertia matrix.
    */
    class InertiaInverse : public TaskSpaceQuantity<Matrix> {
    public:
        InertiaInverse() {}
        const Inertia& inverse() const;
    private:
        void updateCache(Matrix& cache) const override;
    };

    /** Mass-matrix weighted generalized inverse;
    * \f$ \bar{J} = A^{-1} J^T \Lambda \f$ (nu x nst).
    */
    class DynamicallyConsistentJacobianInverse :
        public TaskSpaceQuantity<Matrix> {
    public:
        DynamicallyConsistentJacobianInverse() {}
        const DynamicallyConsistentJacobianInverseTranspose& transpose() const;
        const DynamicallyConsistentJacobianInverseTranspose& operator~() const
        { return transpose(); }
        Vector operator*(const Vector& vec) const;
        Matrix operator*(const Matrix& mat) const;
    private:
        void updateCache(Matrix& cache) const override;
    };

    /** (nst x nu).
    */
    class DynamicallyConsistentJacobianInverseTranspose :
        public TaskSpaceQuantity<Matrix> {
    public:
        DynamicallyConsistentJacobianInverseTranspose() {}
        const DynamicallyConsistentJacobianInverse& transpose() const;
        const DynamicallyConsistentJacobianInverse& operator~() const
        { return transpose(); }
        Vector operator*(const Vector& g) const;
    private:
        void updateCache(Matrix& cache) const override;
    };

    /** Includes Coriolis forces and the like;
    * \f$ \mu = \bar{J}^T b - \Lambda \dot{J} u \f$ (nst x 1).
    */
    class InertialForces : public TaskSpaceQuantity<Vector, Stage::Velocity> {
    public:
        InertialForces() {}
        Vector operator+(const Vector& f) const;
    private:
        void updateCache(Vector& cache) const override;
    };

    /** The task-space forces arising from gravity;
    * \f$ p = \bar{J}^T g \f$ (nst x 1).
    */
    class Gravity : public TaskSpaceQuantity<Vector> {
    public:
        Gravity() {}
        Vector operator+(const Vector& f) const;
        /** The joint-space gravity forces (nu x 1).
        */
        Vector systemGravity() const;
        /** A shorthand for the joint-space gravity forces (nu x 1).
        */
        Vector g() const { return systemGravity(); }
    private:
        void updateCache(Vector& cache) const override;
    };

    /** Used to prioritize tasks; \f$ N = I - \bar{J} J \f$ (nu x nu).
    */
    class NullspaceProjection :
            public TaskSpaceQuantity<Matrix> {
    public:
        NullspaceProjection() {}
        const NullspaceProjectionTranspose& transpose() const;
        const NullspaceProjectionTranspose& operator~() const
        { return transpose(); }
        Vector operator* (const Vector& vec) const;
    private:
        void updateCache(Matrix& cache) const override;
    };

    /** (nu x nu).
    */
    class NullspaceProjectionTranspose :
            public TaskSpaceQuantity<Matrix> {
    public:
        NullspaceProjectionTranspose() {}
        const NullspaceProjection& transpose() const;
        const NullspaceProjection& operator~() const
        { return transpose(); }
        Vector operator*(const Vector& vec) const;
    private:
        void updateCache(Matrix& cache) const override;
    };

    //==========================================================================
    // TaskSpace class
    //==========================================================================

    /** Constructor creates a new container for tasks at the same priority,
    initially containing no tasks.
    @param[in] matter       The matter subsystem being controlled.
    @param[in] gravityForce The gravity forces, which should be in the same
                            System as matter. **/
    TaskSpace(const SimbodyMatterSubsystem& matter,
              const Force::Gravity&         gravityForce) 
    :   m_matter(matter), m_gravityForce(gravityForce) {}

    /** This \a must be called within realizeTopology of the class that owns
    * this object.
    */
    void realizeTopology(State& state) const {
        TaskSpace* mThis = const_cast<TaskSpace*>(this);
        mThis->m_jacobianIndex =
                m_matter.allocateLazyCacheEntry(state,
                        Jacobian::getEarliestStage(),
                        new Value<Jacobian>());
        mThis->m_jacobianTransposeIndex =
                m_matter.allocateLazyCacheEntry(state,
                        JacobianTranspose::getEarliestStage(),
                        new Value<JacobianTranspose>());
        mThis->m_inertiaIndex =
                m_matter.allocateLazyCacheEntry(state,
                        Inertia::getEarliestStage(),
                        new Value<Inertia>());
        mThis->m_inertiaInverseIndex =
                m_matter.allocateLazyCacheEntry(state,
                        InertiaInverse::getEarliestStage(),
                        new Value<InertiaInverse>());
        mThis->m_jacobianInverseIndex =
                m_matter.allocateLazyCacheEntry(state,
                        DynamicallyConsistentJacobianInverse::getEarliestStage(),
                        new Value<DynamicallyConsistentJacobianInverse>());
        mThis->m_jacobianInverseTransposeIndex =
                m_matter.allocateLazyCacheEntry(state,
                        DynamicallyConsistentJacobianInverseTranspose::getEarliestStage(),
                        new Value<DynamicallyConsistentJacobianInverseTranspose>());
        mThis->m_inertialForcesIndex =
                m_matter.allocateLazyCacheEntry(state,
                        InertialForces::getEarliestStage(),
                        new Value<InertialForces>());
        mThis->m_gravityIndex =
                m_matter.allocateLazyCacheEntry(state,
                        Gravity::getEarliestStage(),
                        new Value<Gravity>());
        mThis->m_nullspaceIndex =
                m_matter.allocateLazyCacheEntry(state,
                        NullspaceProjection::getEarliestStage(),
                        new Value<NullspaceProjection>());
        mThis->m_nullspaceTransposeIndex =
                m_matter.allocateLazyCacheEntry(state,
                        NullspaceProjectionTranspose::getEarliestStage(),
                        new Value<NullspaceProjectionTranspose>());
    }

    /** The SimbodyMatterSubsystem that this TaskSpace object uses
    * to compute its quantities.
    */
    const SimbodyMatterSubsystem& getMatterSubsystem() const
    { return m_matter; }

    /// @name Access to TaskSpaceQuantity's.
    /// @{
    TASKSPACEQUANTITY_MEMBERS(Jacobian, jacobian, J);
    TASKSPACEQUANTITY_MEMBERS(JacobianTranspose, jacobianTranspose, JT);
    TASKSPACEQUANTITY_MEMBERS(Inertia, inertia, Lambda);
    TASKSPACEQUANTITY_MEMBERS(InertiaInverse, inertiaInverse, LambdaInv);
    TASKSPACEQUANTITY_MEMBERS(DynamicallyConsistentJacobianInverse, jacobianInverse, JBar);
    TASKSPACEQUANTITY_MEMBERS(DynamicallyConsistentJacobianInverseTranspose, jacobianInverseTranspose, JBarT);
    TASKSPACEQUANTITY_MEMBERS(InertialForces, inertialForces, mu);
    TASKSPACEQUANTITY_MEMBERS(Gravity, gravity, p);
    TASKSPACEQUANTITY_MEMBERS(NullspaceProjection, nullspace, N);
    TASKSPACEQUANTITY_MEMBERS(NullspaceProjectionTranspose, nullspaceTranspose, NT);
    /// @}

    /** Use this to identify Station tasks that have been added to this
    * TaskSpace.
    */
    SimTK_DEFINE_UNIQUE_LOCAL_INDEX_TYPE(TaskSpace,StationTaskIndex);

    /// @name Station tasks.
    /// @{
    /** Add a task for a station (point fixed on a rigid body).
    * @param[in] body The index of the body on which the point is fixed.
    * @param[in] station The point of the body, expressed in the body frame.
    */
    void addStationTask(MobilizedBodyIndex body, Vec3 station) {
        m_indices.push_back(body);
        m_stations.push_back(station);
    }

    /** The number of calls to add*Task that have been made (nt).
    */
    unsigned int getNumTasks() const {
        return m_indices.size();
    }

    /** The dimensionality of the task space (nst).
    */
    unsigned int getNumScalarTasks() const {
        return 3 * m_indices.size();
    }
    /// @}

    /// @name Convenience calculations.
    /// @{

    /** Obtain the location and velocity, in the ground frame and expressed
    * in the ground frame, of the station for a given station task.
    */
    void findStationLocationAndVelocityInGround(const State& s,
            StationTaskIndex index,
            const Vec3& stationLocationInBody,
            Vec3& locationInGround, Vec3& velocityInGround) const {
        m_matter.getMobilizedBody(m_indices[index])
                .findStationLocationAndVelocityInGround(s,
                        stationLocationInBody,
                        locationInGround, velocityInGround);
    }

    /** Given accelerations, computes inverse dynamics in the task-space
    * \f$ F = \Lambda F^{*} \mu + p \f$ (nst x 1).
    *
    * This is used to perform feedforward control: given a control law that
    * is specified as task-space accelerations, this provides the task-space
    * forces that achieve those accelerations.
    */
    Vector calcInverseDynamics(const State& s, const Vector& taskAccelerations)
        const;

    /** The joint-space gravity forces (nu x 1).
    */
    Vector g(const State& s) const { return getGravity(s).g(); }
    /// @}

private:

    const Array_<MobilizedBodyIndex>& getMobilizedBodyIndices() const
    { return m_indices; }
    const Array_<Vec3>& getStations() const { return m_stations; }

    //==========================================================================
    // Member variables.
    //==========================================================================

    const SimbodyMatterSubsystem& m_matter;
    const Force::Gravity& m_gravityForce;

    // For station tasks.
    Array_<MobilizedBodyIndex> m_indices;
    Array_<Vec3> m_stations;

};

// Namespace-scope functions using class operator members to provide
// reversed operand order for commutative operations.

/** @relates TaskSpace::InertialForces **/
inline Vector operator+(const Vector& f, const TaskSpace::InertialForces& p)
{
    return f + p.value();
}

/** @relates TaskSpace::Gravity **/
inline Vector operator+(const Vector& f, const TaskSpace::Gravity& p)
{
    return f + p.value();
}

} // end namespace

#endif // SimTK_SIMBODY_EXAMPLE_SHARED_TASK_SPACE_H_