1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
|
/* -------------------------------------------------------------------------- *
* Simbody(tm): SimTKcommon *
* -------------------------------------------------------------------------- *
* This is part of the SimTK biosimulation toolkit originating from *
* Simbios, the NIH National Center for Physics-Based Simulation of *
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody. *
* *
* Portions copyright (c) 2007-12 Stanford University and the Authors. *
* Authors: Peter Eastman *
* Contributors: *
* *
* Licensed under the Apache License, Version 2.0 (the "License"); you may *
* not use this file except in compliance with the License. You may obtain a *
* copy of the License at http://www.apache.org/licenses/LICENSE-2.0. *
* *
* Unless required by applicable law or agreed to in writing, software *
* distributed under the License is distributed on an "AS IS" BASIS, *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
* See the License for the specific language governing permissions and *
* limitations under the License. *
* -------------------------------------------------------------------------- */
#include "SimTKcommon.h"
#include <iostream>
using std::cout;
using std::endl;
using std::sqrt;
using namespace SimTK;
/**
* Given the number of values expected and found in a set of bins, verify that the distribution is correct.
*/
void verifyDistribution(int expected[], int found[], int bins) {
for (int i = 0; i < bins; ++i) {
Real dev = sqrt((Real) expected[i]);
SimTK_TEST(found[i] >= expected[i]-4*dev && found[i] <= expected[i]+4*dev)
}
}
/**
* Given a set of Reals, verify that they satisfy a uniform distribution between 0 and 1.
*/
void verifyUniformDistribution(Real min, Real max, Real value[], int length) {
int expected[10], found[10];
for (int i = 0; i < 10; ++i) {
expected[i] = length/10;
found[i] = 0;
}
for (int i = 0; i < length; ++i) {
SimTK_TEST(value[i] >= min)
SimTK_TEST(value[i] < max)
int index = (int) ((value[i]-min)*10/(max-min));
found[index]++;
}
verifyDistribution(expected, found, 10);
}
/**
* Given a set of ints, verify that they satisfy a uniform distribution between 0 and max.
*/
void verifyUniformDistribution(int min, int max, int value[], int length) {
int range = max-min;
int* expected = new int[range];
int* found = new int[range];
for (int i = 0; i < range; ++i) {
expected[i] = length/range;
found[i] = 0;
}
for (int i = 0; i < length; ++i) {
SimTK_TEST(value[i] >= min)
SimTK_TEST(value[i] < max)
found[value[i]-min]++;
}
verifyDistribution(expected, found, range);
delete[] expected;
delete[] found;
}
/**
* Given a set of values, verify that they satisfy a Gaussian distribution.
*/
void verifyGaussianDistribution(Real mean, Real stddev, Real value[], int length) {
int expected[6], found[6];
expected[0] = expected[5] = (int) (0.0228*length);
expected[1] = expected[4] = (int) (0.1587*length-expected[0]);
expected[2] = expected[3] = (int) (0.5*length-expected[1]);
for (int i = 0; i < 6; ++i)
found[i] = 0;
for (int i = 0; i < length; ++i) {
Real val = (value[i]-mean)/stddev;
if (val < -2)
found[0]++;
else if (val < -1)
found[1]++;
else if (val < 0)
found[2]++;
else if (val < 1)
found[3]++;
else if (val < 2)
found[4]++;
else
found[5]++;
}
verifyDistribution(expected, found, 6);
}
void testUniform() {
Random::Uniform rand;
SimTK_TEST(rand.getMin() == 0.0)
SimTK_TEST(rand.getMax() == 1.0)
// Try generating a bunch of random numbers, and make sure they are distributed uniformly between 0 and 1.
Real value[2001];
value[2000] = 123.4;
rand.setSeed(1);
for (int i = 0; i < 2000; ++i)
value[i] = rand.getValue();
verifyUniformDistribution(0.0, 1.0, value, 2000);
// Reset the random number generator, and make sure it produces the same values again.
rand.setSeed(1);
for (int i = 0; i < 2000; ++i)
SimTK_TEST(value[i] == rand.getValue())
// Now try asking for a whole array at a time, and verify that it still gives the same results.
Real value2[2001];
value2[2000] = 567.8;
rand.setSeed(1);
rand.fillArray(value2, 2000);
for (int i = 0; i < 2000; ++i)
SimTK_TEST(value[i] == value2[i])
// Set the seed to a different value, and verify that the results are different.
rand.setSeed(2);
rand.fillArray(value2, 2000);
for (int i = 0; i < 2000; ++i)
SimTK_TEST(value[i] != value2[i])
// Change the range and test the distribution.
rand.setMin(5.0);
rand.setMax(20.0);
SimTK_TEST(rand.getMin() == 5.0)
SimTK_TEST(rand.getMax() == 20.0)
rand.fillArray(value2, 2000);
verifyUniformDistribution(5.0, 20.0, value2, 2000);
// Try generating uniform integers.
int value3[2001];
value3[2000] = -99;
rand.setSeed(3);
for (int i = 0; i < 2000; ++i)
value3[i] = rand.getIntValue();
verifyUniformDistribution(5, 20, value3, 2000);
// Verify that if we do not explicitly set the seed, every Random object is initialized with a different seed.
Random::Uniform rand1, rand2;
rand1.fillArray(value, 2000);
rand2.fillArray(value2, 2000);
for (int i = 0; i < 2000; ++i)
SimTK_TEST(value[i] != value2[i])
// Make sure none of the above operations has overwritten the final array
// element. On i386 the 32 bit representation of the non-integer values
// might not be exact so test to a tolerance.
SimTK_TEST_EQ(value[2000], 123.4)
SimTK_TEST_EQ(value2[2000], 567.8)
SimTK_TEST(value3[2000] == -99)
}
void testGaussian() {
Random::Gaussian rand;
SimTK_TEST(rand.getMean() == 0.0)
SimTK_TEST(rand.getStdDev() == 1.0)
// Try generating a bunch of Gaussian random numbers, and check the distribution.
Real value[2001];
value[2000] = 123.4;
rand.setSeed(1);
for (int i = 0; i < 2000; ++i)
value[i] = rand.getValue();
verifyGaussianDistribution(0.0, 1.0, value, 2000);
// Try getting a whole array at a time.
Real value2[2001];
value2[2000] = 567.8;
rand.setSeed(1);
rand.fillArray(value2, 2000);
for (int i = 0; i < 2000; ++i)
SimTK_TEST(value[i] == value2[i])
// Change the parameters and test the distribution.
rand.setMean(10.0);
rand.setStdDev(7.0);
SimTK_TEST(rand.getMean() == 10.0)
SimTK_TEST(rand.getStdDev() == 7.0)
rand.fillArray(value2, 2000);
verifyGaussianDistribution(10.0, 7.0, value2, 2000);
// Make sure none of the above operations has overwritten the final array
// element. On i386 the 32 bit representation of the non-integer values
// might not be exact so test to a tolerance.
SimTK_TEST_EQ(value[2000], 123.4)
SimTK_TEST_EQ(value2[2000], 567.8)
}
int main() {
try {
testUniform();
testGaussian();
} catch(const std::exception& e) {
cout << "exception: " << e.what() << endl;
return 1;
}
cout << "Done" << endl;
return 0;
}
|