1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
|
/* -------------------------------------------------------------------------- *
* Simbody(tm) Adhoc Test: Bilateral Contact Constraints *
* -------------------------------------------------------------------------- *
* This is part of the SimTK biosimulation toolkit originating from *
* Simbios, the NIH National Center for Physics-Based Simulation of *
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody. *
* *
* Portions copyright (c) 2014 Stanford University and the Authors. *
* Authors: Michael Sherman *
* Contributors: *
* *
* Licensed under the Apache License, Version 2.0 (the "License"); you may *
* not use this file except in compliance with the License. You may obtain a *
* copy of the License at http://www.apache.org/licenses/LICENSE-2.0. *
* *
* Unless required by applicable law or agreed to in writing, software *
* distributed under the License is distributed on an "AS IS" BASIS, *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
* See the License for the specific language governing permissions and *
* limitations under the License. *
* -------------------------------------------------------------------------- */
/* This uses a variety of bilateral constraints that are intended as the
underpinnings for unilateral constraints. The most important check here is
that energy should be conserved perfectly (to integration accuracy) since
these are all non-working constraints. (Look at the total energy in the
visualizer.) Even the friction constraints are
non-working because the underlying constraints represent rolling (a.k.a.
"stiction"); sliding is imposed elsewhere by disabling the rolling constraints
and replacing them with different conditions. */
#include "Simbody.h"
using namespace SimTK;
#include <iostream>
using std::cout; using std::endl;
class ShowEnergy : public DecorationGenerator {
public:
explicit ShowEnergy
(const MultibodySystem& mbs,
const MobilizedBody::Free& brick,
const Array_<Constraint::SphereOnPlaneContact>& balls,
const Array_<Constraint::SphereOnSphereContact>& sphsph,
const Array_<Constraint::Rod>& rods)
: m_mbs(mbs), m_brick(brick), m_balls(balls), m_sphsph(sphsph),
m_rods(rods) {}
void generateDecorations(const State& state,
Array_<DecorativeGeometry>& geometry) override
{
const SimbodyMatterSubsystem& matter = m_mbs.getMatterSubsystem();
const Real TextScale = m_mbs.getDefaultLengthScale()/10; // was .1
m_mbs.realize(state, Stage::Dynamics);
const Real KE=m_mbs.calcKineticEnergy(state), E=m_mbs.calcEnergy(state);
DecorativeText energy; energy.setIsScreenText(true);
energy.setText("Energy/KE: " + String(E, "%.6f") + String(KE, "/%.6f"));
geometry.push_back(energy);
//cout << "brick q=" << m_brick.getQAsVector(state) << endl;
//cout << "brick u=" << m_brick.getUAsVector(state) << endl;
m_mbs.realize(state, Stage::Acceleration);
for (unsigned i=0; i < m_balls.size(); ++i) {
const Vec3 f_GC = m_balls[i].findForceOnSphereInG(state);
const Vec3 p_GC = m_balls[i].findContactPointInG(state);
geometry.push_back(
DecorativeLine(p_GC - f_GC, p_GC).setColor(Red));
DecorativeText sep; sep.setIsScreenText(true);
sep.setText(String(i) + ": " +
String(m_balls[i].findSeparation(state), "%.6f"));
geometry.push_back(sep);
sep.setText(" : " +
String(m_balls[i].getVelocityErrors(state)));
geometry.push_back(sep);
sep.setText(" : " +
String(m_balls[i].getAccelerationErrors(state)));
geometry.push_back(sep);
}
for (unsigned i=0; i < m_sphsph.size(); ++i) {
const Vec3 f_GC = m_sphsph[i].findForceOnSphereBInG(state);
const Transform X_GC = m_sphsph[i].findContactFrameInG(state);
geometry.push_back(
DecorativeFrame().setTransform(X_GC).setColor(Purple));
geometry.push_back(
DecorativeLine(X_GC.p() - f_GC, X_GC.p()).setColor(Red));
DecorativeText sep; sep.setIsScreenText(true);
sep.setText(String(i) + ": " +
String(m_sphsph[i].findSeparation(state), "%.6f"));
geometry.push_back(sep);
sep.setText(" : " +
String(m_sphsph[i].getVelocityErrors(state)));
geometry.push_back(sep);
sep.setText(" : " +
String(m_sphsph[i].getAccelerationErrors(state)));
geometry.push_back(sep);
//const SimbodyMatterSubsystem& matter=m_mbs.getMatterSubsystem();
//State s2 = state;
//m_mbs.realize(s2,Stage::Acceleration);
//Vector udot=s2.getUDot();
//Vec3 aerr(0);
//const Real du = 1e-6;
//for (int u=0; u < matter.getNumMobilities(); ++u) {
// s2.updU()[u] += du; m_mbs.realize(s2,Stage::Velocity);
// Vec3 verrp = m_sphsph[i].getVelocityErrors(s2);
// s2.updU()[u] -= 2*du; m_mbs.realize(s2,Stage::Velocity);
// Vec3 verrm = m_sphsph[i].getVelocityErrors(s2);
// aerr += ((verrp-verrm) / (2*du)) * udot[u];
// s2.updU()[u]=state.getU()[u];
//}
//printf("aerr =%.15g %.15g\n", aerr[0], aerr[1]);
//m_mbs.realize(s2, Stage::Acceleration);
}
for (unsigned i=0; i < m_rods.size(); ++i) {
const Constraint::Rod& rod = m_rods[i];
const Real t = rod.getRodTension(state);
const UnitVec3 d = rod.findRodOrientationInG(state); // p1->p2
const Vec3 f1_G = t*d; // force on p1
const Vec3 f2_G = -f1_G; // force on p2
const Vec3 p2 = rod.getPointOnBody2(state);
const Vec3 p2_G = rod.getMobilizedBody2().
findStationLocationInGround(state, p2);
geometry.push_back(
DecorativeLine(p2_G - f2_G, p2_G)
.setColor(Red).setLineThickness(5));
}
}
private:
const MultibodySystem& m_mbs;
const MobilizedBody::Free m_brick;
const Array_<Constraint::SphereOnPlaneContact>& m_balls;
const Array_<Constraint::SphereOnSphereContact>& m_sphsph;
const Array_<Constraint::Rod>& m_rods;
};
int main() {
// Define the system.
MultibodySystem system;
SimbodyMatterSubsystem matter(system);
GeneralForceSubsystem forces(system);
Force::Gravity gravity(forces, matter, -YAxis, 9.8/10);
//Force::GlobalDamper damp(forces, matter, 1);
// Describe mass and visualization properties for a generic body.
Real mass = 2;
Vec3 hdim(1,.5,.25);
Body::Rigid bodyInfo(MassProperties(mass, Vec3(0), UnitInertia::brick(hdim)));
bodyInfo.addDecoration(Transform(),
DecorativeBrick(hdim).setColor(Orange).setOpacity(.3));
Real pmass = .1;
Vec3 phdim(5,.5,2);
Body::Rigid platformBody(MassProperties(10*mass,
Vec3(0), UnitInertia::ellipsoid(phdim)));
platformBody.addDecoration(Transform(),
DecorativeEllipsoid(phdim).setColor(Cyan).setOpacity(.1)
.setResolution(5));
MobilizedBody::Ball platform(matter.Ground(), Vec3(0),
platformBody, phdim/2);
//MobilizedBody platform = matter.Ground();
// Create the moving (mobilized) bodies of the pendulum.
//MobilizedBody::Free brick(platform, Transform(Vec3(0)),
// bodyInfo, Transform(Vec3(0)));
MobilizedBody::Free brick(matter.Ground(), Transform(Vec3(0)),
bodyInfo, Transform(Vec3(0)));
Array_<Constraint::SphereOnPlaneContact> balls;
Array_<Constraint::SphereOnSphereContact> sphsph;
Array_<Constraint::Rod> rods;
Rotation ZtoY(-Pi/2, XAxis);
//Constraint::PointInPlaneWithStiction pt1(platform,
// Transform(ZtoY, Vec3(0,1,0)),
// brick, hdim);
//pt1.setPlaneDisplayHalfWidth(5);
//Constraint::SphereOnPlaneContact ball1(platform,
// Transform(ZtoY, Vec3(0,1,0)),
// brick, hdim, 0.5, false);
//ball1.setPlaneDisplayHalfWidth(5);
//balls.push_back(ball1);
//Constraint::SphereOnPlaneContact ball2(brick,
// Transform(Vec3(0,0,-hdim[2])),
// platform, -phdim/2, 0.5, false);
//ball2.setPlaneDisplayHalfWidth(5);
//balls.push_back(ball2);
//Constraint::SphereOnPlaneContact ball3(brick,
// Transform(Vec3(0,0,-hdim[2])),
// platform, Vec3(-2,3,-.5), .7, true);
//ball3.setPlaneDisplayHalfWidth(5);
//balls.push_back(ball3);
//MobilizedBody::Free ball(matter.Ground(), Vec3(0),
// MassProperties(1,Vec3(0),UnitInertia(1,1,1)),
// Vec3(0));
//Constraint::SphereOnSphereContact ss(platform, Vec3(-2,1,-.5), .7,
// ball, Vec3(0), 1.2, true);
//Constraint::SphereOnSphereContact bb(brick, hdim, 0.5,
// ball, Vec3(0), 1.2, true);
//sphsph.push_back(bb);
Constraint::SphereOnSphereContact ss(brick, hdim, 0.5,
platform, Vec3(-3,1,-.5), 1.2,
false);
sphsph.push_back(ss);
//Constraint::SphereOnSphereContact ss(platform, Vec3(-2,3,-.5), .7,
// brick, hdim, 0.5, false);
//Constraint::SphereOnSphereContact ss(platform, Vec3(-2,3,-.5), .7,
// brick, hdim, 0.5, false);
//Constraint::SphereOnSphereContact ss(brick, hdim, 0.5,
// matter.Ground(), Vec3(-2,3,-.5), .7,true);
Constraint::Rod rod1(brick, Vec3(0,hdim[1],hdim[2]),
platform, Vec3(0,3,-.5), 1.5*1.2);
// Spring to keep the brick near 000.
//Force::TwoPointLinearSpring(forces, platform, Vec3(0),
// brick, Vec3(0), 4, 1);
// Rod to keep the brick near 000.
//Constraint::Rod rod1(platform, Vec3(0,0,2),
// brick, -hdim, 3);
//rods.push_back(rod1);
// Try edge/edge contact.
Constraint::LineOnLineContact ll(platform,
Transform(Rotation(UnitVec3(1,1,1), XAxis, UnitVec3(-XAxis), ZAxis),
Vec3(1,1,1)),
2, // hlen
brick,
Transform(Rotation(UnitVec3(ZAxis), XAxis, Vec3(-1,-1,0), ZAxis),
Vec3(-hdim[0],-hdim[1],0)),
2, // hlen
true);
// Set up visualization at 30 fps.
Visualizer viz(system);
viz.setBackgroundType(Visualizer::SolidColor);
viz.setShowFrameRate(true);
system.addEventReporter(new Visualizer::Reporter(viz, 1./30));
// Initialize the system and acquire default state.
State state = system.realizeTopology();
brick.setQToFitTransform(state, Vec3(0,5,0));
brick.setUToFitAngularVelocity(state, Vec3(10,10,10));
//rod1.setRodLength(state, 5);
viz.report(state);
printf("Initial config. Ready to assemble.\n"); getchar();
Assembler asmb(system);
asmb.assemble(state);
viz.report(state);
printf("Assembled. Ready to initialize.\n"); getchar();
//printf("Changed ball3 from rad=%g to rad=%g\n",
// ball3.getSphereRadius(state), 1.5);
//ball3.setSphereRadius(state, 1.5);
//viz.report(state); getchar();
//asmb.assemble(state);
//viz.report(state);
//printf("Re-assembled. Ready to simulate.\n"); getchar();
// Choose integrator and simulate for 10 seconds.
RungeKuttaMersonIntegrator integ(system);
//RungeKutta3Integrator integ(system);
integ.setAccuracy(1e-8);
//integ.setConstraintTolerance(1e-3);
TimeStepper ts(system, integ);
ts.initialize(state);
viz.report(ts.getState());
printf("Initialized. Ready to simulate.\n"); getchar();
viz.addDecorationGenerator(new ShowEnergy(system,brick,balls,sphsph,rods));
ts.stepTo(100.0);
printf("# steps=%d/%d\n",
integ.getNumStepsTaken(), integ.getNumStepsAttempted());
}
|