1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
|
/* -------------------------------------------------------------------------- *
* Simbody(tm) Adhoc Test: Cable Over Bicubic Surfaces *
* -------------------------------------------------------------------------- *
* This is part of the SimTK biosimulation toolkit originating from *
* Simbios, the NIH National Center for Physics-Based Simulation of *
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody. *
* *
* Portions copyright (c) 2012 Stanford University and the Authors. *
* Authors: Michael Sherman, Andreas Scholz *
* Contributors: *
* *
* Licensed under the Apache License, Version 2.0 (the "License"); you may *
* not use this file except in compliance with the License. You may obtain a *
* copy of the License at http://www.apache.org/licenses/LICENSE-2.0. *
* *
* Unless required by applicable law or agreed to in writing, software *
* distributed under the License is distributed on an "AS IS" BASIS, *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
* See the License for the specific language governing permissions and *
* limitations under the License. *
* -------------------------------------------------------------------------- */
/* Simbody CableOverBicubicSurfaces
This example shows how to use a CableTrackerSubsystem to follow the motion of
a cable that crosses bicubic surfaces. We'll then
create a force element that generates spring forces that result from the
stretching and stretching rate of the cable. */
#include "Simbody.h"
#include <cassert>
#include <iostream>
using std::cout; using std::endl;
using namespace SimTK;
// This gets called periodically to dump out interesting things about
// the cables and the system as a whole. It also saves states so that we
// can play back at the end.
static Array_<State> saveStates;
class ShowStuff : public PeriodicEventReporter {
public:
ShowStuff(const MultibodySystem& mbs,
const CableSpring& cable1, Real interval)
: PeriodicEventReporter(interval),
mbs(mbs), cable1(cable1) {}
static void showHeading(std::ostream& o) {
printf("%8s %10s %10s %10s %10s %10s %10s %10s %10s %12s\n",
"time", "length", "rate", "integ-rate", "unitpow", "tension", "disswork",
"KE", "PE", "KE+PE-W");
}
/** This is the implementation of the EventReporter virtual. **/
void handleEvent(const State& state) const override {
const CablePath& path1 = cable1.getCablePath();
printf("%8g %10.4g %10.4g %10.4g %10.4g %10.4g %10.4g %10.4g %10.4g %12.6g CPU=%g\n",
state.getTime(),
path1.getCableLength(state),
path1.getCableLengthDot(state),
path1.getIntegratedCableLengthDot(state),
path1.calcCablePower(state, 1), // unit power
cable1.getTension(state),
cable1.getDissipatedEnergy(state),
mbs.calcKineticEnergy(state),
mbs.calcPotentialEnergy(state),
mbs.calcEnergy(state)
+ cable1.getDissipatedEnergy(state),
cpuTime());
saveStates.push_back(state);
}
private:
const MultibodySystem& mbs;
CableSpring cable1;
};
int main() {
try {
// Create the system.
MultibodySystem system;
SimbodyMatterSubsystem matter(system);
CableTrackerSubsystem cables(system);
GeneralForceSubsystem forces(system);
Force::Gravity gravity(forces, matter, -YAxis, 9.81);
//Force::GlobalDamper(forces, matter, 5);
system.setUseUniformBackground(true); // no ground plane in display
MobilizedBody Ground = matter.Ground(); // convenient abbreviation
// Read in some bones.
PolygonalMesh femur, tibia;
femur.loadVtpFile("CableOverBicubicSurfaces-femur.vtp");
tibia.loadVtpFile("CableOverBicubicSurfaces-tibia.vtp");
femur.scaleMesh(20);
tibia.scaleMesh(20);
// Create some bicubic surfaces.
const int Nx = 4, Ny = 5;
const Real xData[Nx] = { .1, 1, 2, 4 };
const Real yData[Ny] = { -3, -2, 0, 1, 3 };
const Real fData[Nx*Ny] = { 1, 2, 3, 3, 2,
1.1, 2.1, 3.1, 3.1, 2.1,
1, 2, 7, 3, 2,
1.2, 2.2, 3.2, 3.2, 2.2 };
const Vector x(Nx, xData);
const Vector y(Ny, yData);
const Matrix f(Nx,Ny, fData);
BicubicSurface rough(x, y, f, 0); // raw
BicubicSurface smooth(x, y, f, 1); // smoothed
Vector xp(Vec2(.25,3.25)), yp(Vec2(.75,5.75));
// Nice patch:
//Matrix fp(Mat22(1, 1,
// 1, 1));
//Matrix fxp(.5*Mat22(-1, 0,
// 0, -1));
//Matrix fyp(.5*Mat22(-1, 0,
// 0, -1));
//Matrix fxyp(0*Mat22(1, -1,
// -1, 1));
// One-hump patch:
Matrix fp(Mat22(1, 1,
1, 1));
Matrix fxp(Mat22(1, 1,
-1, -1));
Matrix fyp(Mat22(1, -1,
1, -1));
Matrix fxyp(0.5*Mat22(1, 3,
-3, 4));
BicubicSurface patch(xp, yp, fp, fxp, fyp, fxyp);
Rotation xm90(-Pi/2, XAxis);
Transform patchPose(xm90, Vec3(4,2,0));
// Ask the bicubic surfaces for some meshes we can use for display.
Real resolution = 31;
PolygonalMesh patchMesh = patch.createPolygonalMesh(resolution);
PolygonalMesh roughMesh = rough.createPolygonalMesh(resolution);
PolygonalMesh smoothMesh = smooth.createPolygonalMesh(resolution);
const Vec3 SmoothOrigin(-3,-3,-3);
Ground.addBodyDecoration(SmoothOrigin,
DecorativeMesh(smooth.createPolygonalMesh(0))
.setRepresentation(DecorativeGeometry::DrawWireframe));
// Not using these yet:
Ground.addBodyDecoration(Vec3(5,-5,0),
DecorativeMesh(patchMesh).setColor(Gray));
Ground.addBodyDecoration(Vec3(5,0,0),
DecorativeMesh(roughMesh).setColor(Red));
Ground.addBodyDecoration(Vec3(5,0,0),
DecorativeMesh(femur).setColor(Vec3(.8,.8,.8)));
Ground.addBodyDecoration(Vec3(5,-4,0),
DecorativeMesh(tibia).setColor(Vec3(.8,.8,.8)));
Body::Rigid someBody(MassProperties(2.0, Vec3(0,-4,0),
UnitInertia::cylinderAlongY(1,4).shiftFromCentroid(Vec3(0,4,0))));
someBody.addDecoration(Transform(Rotation(Pi,ZAxis),Vec3(0,-4,0)),
DecorativeCylinder(1,4).setColor(Yellow)
.setOpacity(.5).setResolution(4));
someBody.addDecoration(Transform(),
DecorativeMesh(femur).setColor(Vec3(.8,.8,.8)));
MobilizedBody::Free body1(Ground, Transform(Vec3(0)),
someBody, Transform(Vec3(0,0,0)));
CablePath path1(cables, Ground, Vec3(.5,-.5,0), // origin
body1, Vec3(0,0,0)); // termination
CableObstacle::Surface obstacle1(path1, Ground, SmoothOrigin,
ContactGeometry::SmoothHeightMap(smooth));
// Provide an initial guess for P and Q (in frame of "smooth").
Vec3 P1(1.5,1,3.75), Q1(1.5,-1,3.75);
obstacle1.setContactPointHints(P1, Q1);
Ground.addBodyDecoration(SmoothOrigin,
DecorativePoint(P1).setColor(Green).setScale(2));
Ground.addBodyDecoration(SmoothOrigin,
DecorativePoint(Q1).setColor(Red).setScale(2));
CableSpring cable1(forces, path1, 50., 8., 0.1);
//Force::TwoPointLinearSpring spring1(forces, body1, Vec3(0,-8,0),
// Ground, Vec3(0,0,0), 30., 12.);
Visualizer viz(system);
viz.setShowFrameNumber(true);
system.addEventReporter(new Visualizer::Reporter(viz, 1./30));
system.addEventReporter(new ShowStuff(system, cable1, 0.02));
// Initialize the system and state.
system.realizeTopology();
State state = system.getDefaultState();
//Random::Gaussian random;
//for (int i = 0; i < state.getNQ(); ++i)
// state.updQ()[i] = random.getValue();
//for (int i = 0; i < state.getNU(); ++i)
// state.updU()[i] = 0.1*random.getValue();
body1.setQToFitTranslation(state, Vec3(4,-10,-3));
body1.setQToFitRotation(state, Rotation(-Pi, ZAxis));
system.realize(state, Stage::Position);
viz.report(state);
cout << "path1 init length=" << path1.getCableLength(state) << endl;
cout << "Hit ENTER ...";
getchar();
path1.setIntegratedCableLengthDot(state, path1.getCableLength(state));
// Simulate it.
saveStates.clear(); saveStates.reserve(2000);
//RungeKutta3Integrator integ(system);
RungeKuttaMersonIntegrator integ(system);
//CPodesIntegrator integ(system);
//integ.setAllowInterpolation(false);
integ.setAccuracy(1e-3);
TimeStepper ts(system, integ);
ts.initialize(state);
ShowStuff::showHeading(cout);
const Real finalTime = 10;
const double startTime = realTime(), startCPU = cpuTime();
ts.stepTo(finalTime);
cout << "DONE with " << finalTime
<< "s simulated in " << realTime()-startTime
<< "s elapsed, " << cpuTime()-startCPU << " s CPU.\n";
while (true) {
cout << "Hit ENTER FOR REPLAY, Q to quit ...";
const char ch = getchar();
if (ch=='q' || ch=='Q') break;
for (unsigned i=0; i < saveStates.size(); ++i)
viz.report(saveStates[i]);
}
} catch (const std::exception& e) {
cout << "EXCEPTION: " << e.what() << "\n";
}
}
|