File: CableOverBicubicSurfaces.cpp

package info (click to toggle)
simbody 3.7%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 72,896 kB
  • sloc: cpp: 248,827; ansic: 18,240; sh: 29; makefile: 24
file content (245 lines) | stat: -rw-r--r-- 9,979 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
/* -------------------------------------------------------------------------- *
 *            Simbody(tm) Adhoc Test: Cable Over Bicubic Surfaces             *
 * -------------------------------------------------------------------------- *
 * This is part of the SimTK biosimulation toolkit originating from           *
 * Simbios, the NIH National Center for Physics-Based Simulation of           *
 * Biological Structures at Stanford, funded under the NIH Roadmap for        *
 * Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody.  *
 *                                                                            *
 * Portions copyright (c) 2012 Stanford University and the Authors.           *
 * Authors: Michael Sherman, Andreas Scholz                                   *
 * Contributors:                                                              *
 *                                                                            *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may    *
 * not use this file except in compliance with the License. You may obtain a  *
 * copy of the License at http://www.apache.org/licenses/LICENSE-2.0.         *
 *                                                                            *
 * Unless required by applicable law or agreed to in writing, software        *
 * distributed under the License is distributed on an "AS IS" BASIS,          *
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.   *
 * See the License for the specific language governing permissions and        *
 * limitations under the License.                                             *
 * -------------------------------------------------------------------------- */

/*                     Simbody CableOverBicubicSurfaces
This example shows how to use a CableTrackerSubsystem to follow the motion of
a cable that crosses bicubic surfaces. We'll then
create a force element that generates spring forces that result from the
stretching and stretching rate of the cable. */

#include "Simbody.h"

#include <cassert>
#include <iostream>
using std::cout; using std::endl;

using namespace SimTK;

// This gets called periodically to dump out interesting things about
// the cables and the system as a whole. It also saves states so that we
// can play back at the end.
static Array_<State> saveStates;
class ShowStuff : public PeriodicEventReporter {
public:
    ShowStuff(const MultibodySystem& mbs, 
              const CableSpring& cable1, Real interval) 
    :   PeriodicEventReporter(interval), 
        mbs(mbs), cable1(cable1) {}

    static void showHeading(std::ostream& o) {
        printf("%8s %10s %10s %10s %10s %10s %10s %10s %10s %12s\n",
            "time", "length", "rate", "integ-rate", "unitpow", "tension", "disswork",
            "KE", "PE", "KE+PE-W");
    }

    /** This is the implementation of the EventReporter virtual. **/ 
    void handleEvent(const State& state) const override {
        const CablePath& path1 = cable1.getCablePath();
        printf("%8g %10.4g %10.4g %10.4g %10.4g %10.4g %10.4g %10.4g %10.4g %12.6g CPU=%g\n",
            state.getTime(),
            path1.getCableLength(state),
            path1.getCableLengthDot(state),
            path1.getIntegratedCableLengthDot(state),
            path1.calcCablePower(state, 1), // unit power
            cable1.getTension(state),
            cable1.getDissipatedEnergy(state),
            mbs.calcKineticEnergy(state),
            mbs.calcPotentialEnergy(state),
            mbs.calcEnergy(state)
                + cable1.getDissipatedEnergy(state),
            cpuTime());
        saveStates.push_back(state);
    }
private:
    const MultibodySystem&  mbs;
    CableSpring             cable1;
};

int main() {
  try {    
    // Create the system.   
    MultibodySystem system;
    SimbodyMatterSubsystem matter(system);
    CableTrackerSubsystem cables(system);
    GeneralForceSubsystem forces(system);

    Force::Gravity gravity(forces, matter, -YAxis, 9.81);
    //Force::GlobalDamper(forces, matter, 5);

    system.setUseUniformBackground(true); // no ground plane in display
    MobilizedBody Ground = matter.Ground(); // convenient abbreviation

    // Read in some bones.
    PolygonalMesh femur, tibia;
    femur.loadVtpFile("CableOverBicubicSurfaces-femur.vtp");
    tibia.loadVtpFile("CableOverBicubicSurfaces-tibia.vtp");
    femur.scaleMesh(20);
    tibia.scaleMesh(20);

    // Create some bicubic surfaces.
    const int Nx = 4, Ny = 5;
    const Real xData[Nx] = { .1, 1, 2, 4 };
    const Real yData[Ny] = { -3, -2, 0, 1, 3 };
    const Real fData[Nx*Ny] = { 1,   2,   3,   3,   2,
                                1.1, 2.1, 3.1, 3.1, 2.1,
                                1,   2,   7,   3,   2,
                                1.2, 2.2, 3.2, 3.2, 2.2 };
    const Vector x(Nx,   xData);
    const Vector y(Ny,   yData);
    const Matrix f(Nx,Ny, fData);
    BicubicSurface rough(x, y, f, 0);       // raw
    BicubicSurface smooth(x, y, f, 1);      // smoothed

    Vector xp(Vec2(.25,3.25)), yp(Vec2(.75,5.75));
    // Nice patch:
    //Matrix fp(Mat22(1, 1,
    //                1, 1));
    //Matrix fxp(.5*Mat22(-1,  0,
    //                    0, -1));
    //Matrix fyp(.5*Mat22(-1,  0,
    //                    0,  -1));
    //Matrix fxyp(0*Mat22(1, -1,
    //                    -1, 1));
    // One-hump patch:
    Matrix fp(Mat22(1, 1,
                    1, 1));
    Matrix fxp(Mat22(1,  1,
                     -1, -1));
    Matrix fyp(Mat22(1,  -1,
                     1,  -1));
    Matrix fxyp(0.5*Mat22(1, 3,
                        -3, 4));
    BicubicSurface patch(xp, yp, fp, fxp, fyp, fxyp);
    Rotation xm90(-Pi/2, XAxis);
    Transform patchPose(xm90, Vec3(4,2,0));
    
    // Ask the bicubic surfaces for some meshes we can use for display.
    Real resolution = 31;
    PolygonalMesh patchMesh = patch.createPolygonalMesh(resolution);
    PolygonalMesh roughMesh = rough.createPolygonalMesh(resolution);
    PolygonalMesh smoothMesh = smooth.createPolygonalMesh(resolution);

    const Vec3 SmoothOrigin(-3,-3,-3);
    Ground.addBodyDecoration(SmoothOrigin,
        DecorativeMesh(smooth.createPolygonalMesh(0))
            .setRepresentation(DecorativeGeometry::DrawWireframe));

    // Not using these yet:
    Ground.addBodyDecoration(Vec3(5,-5,0),
        DecorativeMesh(patchMesh).setColor(Gray));
    Ground.addBodyDecoration(Vec3(5,0,0),
        DecorativeMesh(roughMesh).setColor(Red));
    Ground.addBodyDecoration(Vec3(5,0,0),
        DecorativeMesh(femur).setColor(Vec3(.8,.8,.8)));
    Ground.addBodyDecoration(Vec3(5,-4,0),
        DecorativeMesh(tibia).setColor(Vec3(.8,.8,.8)));


    Body::Rigid someBody(MassProperties(2.0, Vec3(0,-4,0), 
        UnitInertia::cylinderAlongY(1,4).shiftFromCentroid(Vec3(0,4,0))));

    someBody.addDecoration(Transform(Rotation(Pi,ZAxis),Vec3(0,-4,0)), 
        DecorativeCylinder(1,4).setColor(Yellow)
                            .setOpacity(.5).setResolution(4));
    someBody.addDecoration(Transform(), 
        DecorativeMesh(femur).setColor(Vec3(.8,.8,.8)));

    MobilizedBody::Free body1(Ground,    Transform(Vec3(0)), 
                              someBody,  Transform(Vec3(0,0,0)));

    CablePath path1(cables, Ground, Vec3(.5,-.5,0),   // origin
                            body1, Vec3(0,0,0));  // termination

    CableObstacle::Surface obstacle1(path1, Ground, SmoothOrigin, 
                                     ContactGeometry::SmoothHeightMap(smooth));
    // Provide an initial guess for P and Q (in frame of "smooth").
    Vec3 P1(1.5,1,3.75), Q1(1.5,-1,3.75);
    obstacle1.setContactPointHints(P1, Q1);

    Ground.addBodyDecoration(SmoothOrigin,
        DecorativePoint(P1).setColor(Green).setScale(2));
    Ground.addBodyDecoration(SmoothOrigin,
        DecorativePoint(Q1).setColor(Red).setScale(2));

    CableSpring cable1(forces, path1, 50., 8., 0.1); 

    //Force::TwoPointLinearSpring spring1(forces, body1, Vec3(0,-8,0),
    //    Ground, Vec3(0,0,0), 30., 12.);

    Visualizer viz(system);
    viz.setShowFrameNumber(true);
    system.addEventReporter(new Visualizer::Reporter(viz, 1./30));
    system.addEventReporter(new ShowStuff(system, cable1, 0.02));    
    // Initialize the system and state.
    
    system.realizeTopology();
    State state = system.getDefaultState();
    //Random::Gaussian random;
    //for (int i = 0; i < state.getNQ(); ++i)
    //    state.updQ()[i] = random.getValue();
    //for (int i = 0; i < state.getNU(); ++i)
    //    state.updU()[i] = 0.1*random.getValue(); 
    body1.setQToFitTranslation(state, Vec3(4,-10,-3));
    body1.setQToFitRotation(state, Rotation(-Pi, ZAxis));

    system.realize(state, Stage::Position);
    viz.report(state);
    cout << "path1 init length=" << path1.getCableLength(state) << endl;
    cout << "Hit ENTER ...";
    getchar();

    path1.setIntegratedCableLengthDot(state, path1.getCableLength(state));


    // Simulate it.
    saveStates.clear(); saveStates.reserve(2000);

    //RungeKutta3Integrator integ(system);
    RungeKuttaMersonIntegrator integ(system);
    //CPodesIntegrator integ(system);
    //integ.setAllowInterpolation(false);
    integ.setAccuracy(1e-3);
    TimeStepper ts(system, integ);
    ts.initialize(state);
    ShowStuff::showHeading(cout);

    const Real finalTime = 10;
    const double startTime = realTime(), startCPU = cpuTime();
    ts.stepTo(finalTime);
    cout << "DONE with " << finalTime 
         << "s simulated in " << realTime()-startTime
         << "s elapsed, " << cpuTime()-startCPU << " s CPU.\n";


    while (true) {
        cout << "Hit ENTER FOR REPLAY, Q to quit ...";
        const char ch = getchar();
        if (ch=='q' || ch=='Q') break;
        for (unsigned i=0; i < saveStates.size(); ++i)
            viz.report(saveStates[i]);
    }

  } catch (const std::exception& e) {
    cout << "EXCEPTION: " << e.what() << "\n";
  }
}