File: CoarseRNA.cpp

package info (click to toggle)
simbody 3.7%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 72,896 kB
  • sloc: cpp: 248,827; ansic: 18,240; sh: 29; makefile: 24
file content (416 lines) | stat: -rw-r--r-- 17,282 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
/* -------------------------------------------------------------------------- *
 *                           SimTK Simbody(tm)                                *
 * -------------------------------------------------------------------------- *
 * This is part of the SimTK biosimulation toolkit originating from           *
 * Simbios, the NIH National Center for Physics-Based Simulation of           *
 * Biological Structures at Stanford, funded under the NIH Roadmap for        *
 * Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody.  *
 *                                                                            *
 * Portions copyright (c) 2006-12 Stanford University and the Authors.        *
 * Authors: Michael Sherman                                                   *
 * Contributors:                                                              *
 *                                                                            *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may    *
 * not use this file except in compliance with the License. You may obtain a  *
 * copy of the License at http://www.apache.org/licenses/LICENSE-2.0.         *
 *                                                                            *
 * Unless required by applicable law or agreed to in writing, software        *
 * distributed under the License is distributed on an "AS IS" BASIS,          *
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.   *
 * See the License for the specific language governing permissions and        *
 * limitations under the License.                                             *
 * -------------------------------------------------------------------------- */

/**@file
 * A big, chunky fake RNA built of cylinders and ball joints.
 */

#include "SimTKsimbody.h"

#include <cmath>
#include <cstdio>
#include <exception>
#include <vector>
#include <ctime>

#ifdef _MSC_VER
#pragma warning(disable:4996) // don't warn about strerror, sprintf, etc.
#endif

using namespace std;
using namespace SimTK;

static const Real Deg2Rad = (Real)SimTK_DEGREE_TO_RADIAN;
static const int  GroundBodyNum = 0; // ground is always body 0

static const Real g = 9.8; // meters/s^2; apply in y direction

static const Real DuplexRadius = 3; // A
static const Real HalfHeight = 10;  // A
static const Real CylinderSlop = 1; // A

static const int  NAtoms = 20;
static const Real AtomMass = 12;    // Daltons
static const Real AtomRadius = 1;   // A

static const Real ConnectorRadius     = 1;  // A
static const Real ConnectorHalfHeight = 3;  // A
static const Real ConnectorEndSlop    = 0.2;// A
static const Real ConnectorDensity    = 10;  // Dalton/A^3

static int NSegments = 3;

class MyRNAExample : public SimbodyMatterSubsystem {
    struct PerBodyInfo {
        PerBodyInfo(MobilizedBodyIndex b, bool d) : bnum(b), isDuplex(d) { }
        MobilizedBodyIndex bnum;
        bool isDuplex;
    };
    std::vector<PerBodyInfo> bodyInfo;
    MobilizedBodyIndex end1, end2;
public:
    MyRNAExample(MultibodySystem& mbs, int nsegs, bool shouldFlop) : SimbodyMatterSubsystem(mbs)
    {
        bodyInfo.push_back(PerBodyInfo(GroundIndex, false)); // placeholder for ground
        end1 = makeChain(GroundIndex, Vec3(0), nsegs, shouldFlop);
        end2 = makeChain(GroundIndex, Vec3(20,0,0), nsegs, shouldFlop);

        if (true) {
            Constraint::Rod theConstraint2(updMobilizedBody(end1), Vec3(0, -HalfHeight,0),
                                           updMobilizedBody(end2), Vec3(0, -HalfHeight,0), 10);
        }

    }

    void decorateBody(MobilizedBodyIndex bodyNum, Visualizer& display) const {
        assert(bodyInfo[bodyNum].bnum == bodyNum);
        if (bodyInfo[bodyNum].isDuplex)
            addDuplexDecorations(bodyNum, DuplexRadius, HalfHeight, CylinderSlop, 
                                 NAtoms, AtomRadius, display);
        else 
            addConnectorDecorations(bodyNum, ConnectorRadius, ConnectorHalfHeight, 
                                    ConnectorEndSlop, display);
    }

    void decorateGlobal(Visualizer& display) const {
        // nothing
    }

private:

    MobilizedBodyIndex makeChain(MobilizedBodyIndex startBodyId, const Vec3& startOrigin, int nSegs, bool shouldFlop) {
        //MobilizedBodyIndex baseBodyIx = startBody;
        MobilizedBody baseBody = updMobilizedBody(startBodyId);
        Vec3 origin = startOrigin;
        MobilizedBody lastDup;
        for (int seg=0; seg < nSegs; ++seg) {

            MobilizedBody::Ball left1(
                baseBody, Transform(origin + Vec3(-DuplexRadius,-HalfHeight,0)),
                Body::Rigid(calcConnectorMassProps(ConnectorRadius, ConnectorHalfHeight, ConnectorDensity)),
                Transform(Vec3(0, ConnectorHalfHeight, 0)));
            left1.setDefaultRadius(1.5);
            bodyInfo.push_back(PerBodyInfo(left1, false));

            MobilizedBody::Ball left2(
                left1, Transform(Vec3(0, -ConnectorHalfHeight, 0)),
                Body::Rigid(calcConnectorMassProps(ConnectorRadius, ConnectorHalfHeight, ConnectorDensity)),
                Transform(Vec3(0, ConnectorHalfHeight, 0)));
            left2.setDefaultRadius(1.5);
            bodyInfo.push_back(PerBodyInfo(left2, false));

            MobilizedBody::Ball rt1(
                baseBody, Transform(origin + Vec3(DuplexRadius,-HalfHeight,0)),
                Body::Rigid(calcConnectorMassProps(ConnectorRadius, ConnectorHalfHeight, ConnectorDensity)),
                Transform(Vec3(0, ConnectorHalfHeight, 0)));
            rt1.setDefaultRadius(1.5);
            bodyInfo.push_back(PerBodyInfo(rt1, false));

            MobilizedBody::Ball rt2(                             
                rt1, Transform(Vec3(0, -ConnectorHalfHeight, 0)),
                Body::Rigid(calcConnectorMassProps(ConnectorRadius, ConnectorHalfHeight, ConnectorDensity)),
                Transform(Vec3(0, ConnectorHalfHeight, 0)));
            rt2.setDefaultRadius(1.5);
            bodyInfo.push_back(PerBodyInfo(rt2, false));

            MobilizedBody::Ball dup(
                rt2, Transform(Vec3(0, -ConnectorHalfHeight, 0)),
                Body::Rigid(calcDuplexMassProps(DuplexRadius, HalfHeight, NAtoms, AtomMass)),
                                Transform(Vec3(-DuplexRadius, HalfHeight, 0)));
            dup.setDefaultRadius(1.5);
            bodyInfo.push_back(PerBodyInfo(dup, true));

            if (!shouldFlop) {
                Constraint::Ball theConstraint(left2, Vec3(0, -ConnectorHalfHeight, 0),
                                               dup, Vec3(DuplexRadius, HalfHeight, 0));
                theConstraint.setDefaultRadius(1.5);
            }

            baseBody = lastDup = dup;
            origin = Vec3(0);
        }
        return lastDup;
    }

    MassProperties calcDuplexMassProps(
        Real halfHeight, Real r, int nAtoms, Real atomMass)
    {
        const Real pitch = 2*Pi/halfHeight;
        const Real trans = (2*halfHeight)/(nAtoms-1);
        const Real rot = pitch*trans;
        Inertia iner(0);
        Vec3 com(0);
        Real mass = 0;
        for (int i=0; i<nAtoms; ++i) {
            const Real h = halfHeight - i*trans;
            const Real th = i*rot;
            const Vec3 p1(-r*cos(th),h,r*sin(th)), p2(r*cos(th),h,-r*sin(th));
            mass += 2*atomMass;
            iner += Inertia(p1, atomMass) + Inertia(p2, atomMass);
            com += atomMass*p1 + atomMass*p2;
        }
        return MassProperties(mass,com/mass,iner);
    }

    MassProperties calcConnectorMassProps(Real r, Real halfHeight, Real density)
    {
        const Real volume = Pi*r*r*halfHeight;
        const Real mass = volume*density;
        const Vec3 com = Vec3(0);
        const Inertia iner = mass*UnitInertia::cylinderAlongY(r, halfHeight);

        return MassProperties(mass,com,iner);
    }

    void addDuplexDecorations(MobilizedBodyIndex bodyNum, Real r, Real halfHeight, Real slop, int nAtoms,
                              Real atomRadius, Visualizer& display) const
    {
        display.addDecoration(bodyNum, Transform(), 
            DecorativeCylinder(r+atomRadius+slop, halfHeight).setColor(Cyan).setOpacity(0.4));

        const Real pitch = 2*Pi/halfHeight;
        const Real trans = (2*halfHeight)/(nAtoms-1);
        const Real rot = pitch*trans;
        for (int i=0; i<nAtoms; ++i) {
            const Real h = halfHeight - i*trans;
            const Real th = i*rot;
            const Vec3 p1(-r*cos(th),h,r*sin(th)), p2(r*cos(th),h,-r*sin(th));
            display.addDecoration(bodyNum, Transform(Vec3(p1)), 
                DecorativeSphere(atomRadius).setColor(Red).setResolution(0.5));
            display.addDecoration(bodyNum, Transform(Vec3(p2)), 
                DecorativeSphere(atomRadius).setColor(Green).setResolution(0.5));
        }
    }

    void addConnectorDecorations(MobilizedBodyIndex bodyNum, Real r, Real halfHeight, Real endSlop,  
                                 Visualizer& display) const
    {
        display.addDecoration(bodyNum, Transform(), 
            DecorativeCylinder(r, halfHeight-endSlop).setColor(Blue));
    }
};


int main(int argc, char** argv) {
    std::vector<State> saveEm;
    saveEm.reserve(1000);

try // If anything goes wrong, an exception will be thrown.
  { int nseg = NSegments;
    int shouldFlop = 0;
    if (argc > 1) sscanf(argv[1], "%d", &nseg);
    if (argc > 2) sscanf(argv[2], "%d", &shouldFlop);

    // Create a multibody system using Simbody.
    MultibodySystem mbs;
    MyRNAExample myRNA(mbs, nseg, shouldFlop != 0);
    GeneralForceSubsystem forces(mbs);
    Force::UniformGravity ugs(forces, myRNA, Vec3(0, -g, 0), -0.8);

    const Vec3 attachPt(150, -40, -50);

    Force::TwoPointLinearSpring(forces, myRNA.Ground(), attachPt,
                                   myRNA.getMobilizedBody(MobilizedBodyIndex(myRNA.getNumBodies()-1)), Vec3(0),
                                   1000.,  // stiffness
                                   1.);    // natural length

    Force::GlobalDamper(forces, myRNA, 1000);


    State s = mbs.realizeTopology();


    //myRNA.getConstraint(ConstraintIndex(myRNA.getNConstraints()-4)).disable(s);


    //myRNA.setUseEulerAngles(s,true);
    mbs.realizeModel(s);
    mbs.realize(s, Stage::Position);

    for (ConstraintIndex cid(0); cid < myRNA.getNumConstraints(); ++cid) {
        const Constraint& c = myRNA.getConstraint(cid);
        int mp,mv,ma;
        c.getNumConstraintEquationsInUse(s, mp,mv,ma);

        cout << "CONSTRAINT " << cid 
             << " constrained bodies=" << c.getNumConstrainedBodies() 
             << " ancestor=" << c.getAncestorMobilizedBody().getMobilizedBodyIndex()
             << " constrained mobilizers/nq/nu=" << c.getNumConstrainedMobilizers() 
                                           << "/" << c.getNumConstrainedQ(s) << "/" << c.getNumConstrainedU(s)
             << " mp,mv,ma=" << mp << "," << mv << "," << ma 
             << endl;
        for (ConstrainedBodyIndex cid(0); cid < c.getNumConstrainedBodies(); ++cid) {
            cout << "  constrained body: " << c.getMobilizedBodyFromConstrainedBody(cid).getMobilizedBodyIndex(); 
            cout << endl;
        }
        for (ConstrainedMobilizerIndex cmx(0); cmx < c.getNumConstrainedMobilizers(); ++cmx) {
            cout << "  constrained mobilizer " << c.getMobilizedBodyFromConstrainedMobilizer(cmx).getMobilizedBodyIndex() 
                  << ", q(" << c.getNumConstrainedQ(s, cmx) << ")="; 
            for (MobilizerQIndex i(0); i < c.getNumConstrainedQ(s, cmx); ++i)
                cout << " " << c.getConstrainedQIndex(s, cmx, i);                  
            cout << ", u(" << c.getNumConstrainedU(s, cmx) << ")=";
            for (MobilizerUIndex i(0); i < c.getNumConstrainedU(s, cmx); ++i)
                cout << " " << c.getConstrainedUIndex(s, cmx, i);
            cout << endl;
        }
        cout << c.getSubtree();

        cout << "   d(perrdot)/du=" << c.calcPositionConstraintMatrixP(s);
        cout << "   d(perrdot)/du=" << ~c.calcPositionConstraintMatrixPt(s);

        cout << "   d(perr)/dq=" << c.calcPositionConstraintMatrixPNInv(s);
    }





    SimbodyMatterSubtree sub(myRNA);
    sub.addTerminalBody(myRNA.getMobilizedBody(MobilizedBodyIndex(7)));
    sub.addTerminalBody(myRNA.getMobilizedBody(MobilizedBodyIndex(10)));
    //sub.addTerminalBody(myRNA.getMobilizedBody(MobilizedBodyIndex(20)));
    sub.realizeTopology();
    cout << "sub.ancestor=" << sub.getAncestorMobilizedBodyIndex();
//    cout << "  sub.terminalBodies=" << sub.getTerminalBodies() << endl;
//    cout << "sub.allBodies=" << sub.getAllBodies() << endl;
    for (SubtreeBodyIndex i(0); i < (int)sub.getAllBodies().size(); ++i) {
       cout << "sub.parent[" << i << "]=" << sub.getParentSubtreeBodyIndex(i);
//       cout << "  sub.children[" << i << "]=" << sub.getChildSubtreeBodyIndexs(i) << endl;
    }
   

    printf("# quaternions in use = %d\n", myRNA.getNumQuaternionsInUse(s));
    for (MobilizedBodyIndex i(0); i<myRNA.getNumBodies(); ++i) {
        printf("body %2d: using quat? %s; quat index=%d\n",
            (int)i, myRNA.isUsingQuaternion(s,i) ? "true":"false", 
            (int)myRNA.getQuaternionPoolIndex(s,i));
    }

    // And a study using the Runge Kutta Merson integrator
    bool suppressProject = false;

    RungeKuttaMersonIntegrator myStudy(mbs);
    //RungeKuttaFeldbergIntegrator myStudy(mbs);
    //RungeKutta3Integrator myStudy(mbs);
    //CPodesIntegrator  myStudy(mbs);
    //VerletIntegrator myStudy(mbs);
    //ExplicitEulerIntegrator myStudy(mbs);

    myStudy.setAccuracy(1e-2);
    myStudy.setConstraintTolerance(1e-3); 
    myStudy.setProjectEveryStep(false);

    Visualizer display(mbs);
    display.setBackgroundColor(White);
    display.setBackgroundType(Visualizer::SolidColor);
    display.setMode(Visualizer::RealTime);

    for (MobilizedBodyIndex i(1); i<myRNA.getNumBodies(); ++i)
        myRNA.decorateBody(i, display);
    myRNA.decorateGlobal(display);

    DecorativeLine rbProto; rbProto.setColor(Orange).setLineThickness(3);
    display.addRubberBandLine(GroundIndex, attachPt,MobilizedBodyIndex(myRNA.getNumBodies()-1),Vec3(0), rbProto);
    //display.addRubberBandLine(GroundIndex, -attachPt,myRNA.getNumBodies()-1,Vec3(0), rbProto);

    const Real dt = 1./30; // output intervals

    printf("time  nextStepSize\n");

    s.updTime() = 0;
    for (int i=0; i<50; ++i)
        saveEm.push_back(s);    // delay
    display.report(s);

    myStudy.initialize(s);
    cout << "Using Integrator " << std::string(myStudy.getMethodName()) << ":\n";
    cout << "ACCURACY IN USE=" << myStudy.getAccuracyInUse() << endl;
    cout << "CTOL IN USE=" << myStudy.getConstraintToleranceInUse() << endl;
    cout << "TIMESCALE=" << mbs.getDefaultTimeScale() << endl;
    cout << "U WEIGHTS=" << s.getUWeights() << endl;
    cout << "Z WEIGHTS=" << s.getZWeights() << endl;
    cout << "1/QTOLS=" << s.getQErrWeights() << endl;
    cout << "1/UTOLS=" << s.getUErrWeights() << endl;

    saveEm.push_back(myStudy.getState());
    for (int i=0; i<50; ++i)
        saveEm.push_back(myStudy.getState());    // delay
    display.report(myStudy.getState());


    const double startReal = realTime(), startCPU = cpuTime();
    int stepNum = 0;
    for (;;) {
        const State& ss = myStudy.getState();

        mbs.realize(ss);

        if ((stepNum++%100)==0) {
            printf("%5g qerr=%10.4g uerr=%10.4g hNext=%g\n", ss.getTime(), 
                myRNA.getQErr(ss).normRMS(), myRNA.getUErr(ss).normRMS(),
                myStudy.getPredictedNextStepSize());
            printf("      E=%14.8g (pe=%10.4g ke=%10.4g)\n",
                mbs.calcEnergy(ss), mbs.calcPotentialEnergy(ss), mbs.calcKineticEnergy(ss));

            cout << "QERR=" << ss.getQErr() << endl;
            cout << "UERR=" << ss.getUErr() << endl;
        }

        //if (s.getTime() - std::floor(s.getTime()) < 0.2)
        //    display.addEphemeralDecoration( DecorativeSphere(10).setColor(Green) );

        display.report(ss);
        saveEm.push_back(ss);

        if (ss.getTime() >= 10)
            break;

        // TODO: should check for errors or have or teach RKM to throw. 
        myStudy.stepTo(ss.getTime() + dt, Infinity);
    }

    printf("CPU time=%gs, REAL time=%gs\n", cpuTime()-startCPU, realTime()-startReal);
    printf("Using Integrator %s:\n", myStudy.getMethodName());
    printf("# STEPS/ATTEMPTS = %d/%d\n", myStudy.getNumStepsTaken(), myStudy.getNumStepsAttempted());
    printf("# ERR TEST FAILS = %d\n", myStudy.getNumErrorTestFailures());
    printf("# CONVERGENCE FAILS = %d\n", myStudy.getNumConvergenceTestFailures());
    printf("# REALIZE/PROJECT = %d/%d\n", myStudy.getNumRealizations(), myStudy.getNumProjections());
    printf("# PROJECTION FAILS = %d\n", myStudy.getNumProjectionFailures());

    display.dumpStats(std::cout);

    while(true) {
        for (int i=0; i < (int)saveEm.size(); ++i) {
            display.report(saveEm[i]);
            //display.report(saveEm[i]); // half speed
        }
        getchar();
    }
  } 
catch (const exception& e)
  {
    printf("EXCEPTION THROWN: %s\n", e.what());
    exit(1);
  }
}