1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
|
/* -------------------------------------------------------------------------- *
* Simbody(tm) Adhoc test: Contact Brick Test *
* -------------------------------------------------------------------------- *
* This is part of the SimTK biosimulation toolkit originating from *
* Simbios, the NIH National Center for Physics-Based Simulation of *
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody. *
* *
* Portions copyright (c) 2014 Stanford University and the Authors. *
* Authors: Michael Sherman *
* Contributors: *
* *
* Licensed under the Apache License, Version 2.0 (the "License"); you may *
* not use this file except in compliance with the License. You may obtain a *
* copy of the License at http://www.apache.org/licenses/LICENSE-2.0. *
* *
* Unless required by applicable law or agreed to in writing, software *
* distributed under the License is distributed on an "AS IS" BASIS, *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
* See the License for the specific language governing permissions and *
* limitations under the License. *
* -------------------------------------------------------------------------- */
/* This adhoc test is for playing with Brick contact elements.
*/
#include "Simbody.h"
#include <cstdio>
#include <exception>
#include <algorithm>
#include <iostream>
#include <fstream>
using std::cout; using std::endl;
using namespace SimTK;
Array_<State> saveEm;
static const Real TimeScale = 1;
static const Real FrameRate = 60;
static const Real ReportInterval = TimeScale/FrameRate;
static const Real ForceScale = .25;
static const Real MomentScale = .5;
class ForceArrowGenerator : public DecorationGenerator {
public:
ForceArrowGenerator(const MultibodySystem& system,
const CompliantContactSubsystem& complCont)
: m_mbs(system), m_compliant(complCont) {}
virtual void generateDecorations(const State& state, Array_<DecorativeGeometry>& geometry) override {
const Vec3 frcColors[] = {Red,Orange,Cyan};
const Vec3 momColors[] = {Blue,Green,Purple};
m_mbs.realize(state, Stage::Velocity);
const SimbodyMatterSubsystem& matter = m_mbs.getMatterSubsystem();
const Real TextScale = m_mbs.getDefaultLengthScale()/10; // was .1
m_mbs.realize(state, Stage::Dynamics);
const Real KE=m_mbs.calcKineticEnergy(state), E=m_mbs.calcEnergy(state);
const Real diss=m_compliant.getDissipatedEnergy(state);
DecorativeText txt; txt.setIsScreenText(true);
txt.setText("KE/Diss/E: " + String(KE, "%.6f") + String(diss, "/%.6f")
+ String(E+diss, "/%.6f") );
geometry.push_back(txt);
int nContPts = 0;
const int ncont = m_compliant.getNumContactForces(state);
for (int i=0; i < ncont; ++i) {
const ContactForce& force = m_compliant.getContactForce(state,i);
const ContactId id = force.getContactId();
const Vec3& pt = force.getContactPoint();
const Vec3& frc = force.getForceOnSurface2()[1];
const Vec3& mom = force.getForceOnSurface2()[0];
Real frcMag = frc.norm(), momMag=mom.norm();
const UnitVec3 frcDir(frc/frcMag, true);
const UnitVec3 momDir(mom/momMag, true);
const Vec3 offs = .1*frcDir; // shift up to clear ground
int frcThickness = 2, momThickness = 2;
Real frcScale = ForceScale, momScale = ForceScale;
while (frcMag > /*10*/1000000)
frcThickness++, frcScale /= 10, frcMag /= 10;
while (momMag > /*10*/1000000)
momThickness++, momScale /= 10, momMag /= 10;
geometry.push_back(DecorativePoint(pt)
.setScale(5).setColor(Yellow));
DecorativeLine frcLine(pt, pt + std::log10(frcMag)*frcDir);
DecorativeLine momLine(pt+offs, pt+offs + std::log10(momMag)*momDir);
frcLine.setColor(Black);
momLine.setColor(Purple);
frcLine.setLineThickness(frcThickness);
momLine.setLineThickness(momThickness);
geometry.push_back(frcLine);
geometry.push_back(momLine);
ContactPatch patch;
const bool found = m_compliant.calcContactPatchDetailsById(state,id,patch);
//cout << "patch for id" << id << " found=" << found << endl;
//cout << "resultant=" << patch.getContactForce() << endl;
//cout << "num details=" << patch.getNumDetails() << endl;
for (int i=0; i < patch.getNumDetails(); ++i) {
++nContPts;
const ContactDetail& detail = patch.getContactDetail(i);
const Vec3& pt = detail.getContactPoint();
geometry.push_back(DecorativePoint(pt).setColor(Purple));
const Vec3& force = detail.getForceOnSurface2();
const Real forceMag = force.norm();
const UnitVec3 forceDir(force/forceMag, true);
DecorativeLine frcLine(pt, pt+std::log10(forceMag)*forceDir);
frcLine.setColor(Black);
geometry.push_back(frcLine);
// Make a red line that extends from the contact
// point in the direction of the slip velocity, of length 3*slipvel.
DecorativeLine slip(pt,pt+3.*detail.getSlipVelocity());
slip.setColor(Red);
geometry.push_back(slip);
}
}
txt.setText(String("Num contact points: ") + String(nContPts));
geometry.push_back(txt);
}
private:
const MultibodySystem& m_mbs;
const CompliantContactSubsystem& m_compliant;
};
class MyReporter : public PeriodicEventReporter {
public:
MyReporter(const MultibodySystem& system,
const CompliantContactSubsystem& complCont,
Real reportInterval)
: PeriodicEventReporter(reportInterval), m_system(system),
m_compliant(complCont)
{}
~MyReporter() {}
void handleEvent(const State& state) const override {
saveEm.push_back(state);
}
private:
const MultibodySystem& m_system;
const CompliantContactSubsystem& m_compliant;
};
// These are the item numbers for the entries on the Run menu.
static const int RunMenuId = 3, HelpMenuId = 7;
static const int GoItem = 1, ReplayItem=2, QuitItem=3;
// This is a periodic event handler that interrupts the simulation on a regular
// basis to poll the InputSilo for user input. If there has been some, process it.
// This one does nothing but look for the Run->Quit selection.
class UserInputHandler : public PeriodicEventHandler {
public:
UserInputHandler(Visualizer::InputSilo& silo, Real interval)
: PeriodicEventHandler(interval), m_silo(silo) {}
virtual void handleEvent(State& state, Real accuracy,
bool& shouldTerminate) const override
{
int menuId, item;
if (m_silo.takeMenuPick(menuId, item) && menuId==RunMenuId && item==QuitItem)
shouldTerminate = true;
}
private:
Visualizer::InputSilo& m_silo;
};
int main() {
try
{ // Create the system.
MultibodySystem system;
SimbodyMatterSubsystem matter(system);
GeneralForceSubsystem forces(system);
Force::Gravity gravity(forces, matter, UnitVec3(.1,-1,0), 9.81);
ContactTrackerSubsystem tracker(system);
CompliantContactSubsystem contactForces(system, tracker);
contactForces.setTrackDissipatedEnergy(true);
contactForces.setTransitionVelocity(1e-3);
const Vec3 hdim(1,2,3);
const Real fFac =.15; // to turn off friction
const Real fDis = .5; // to turn off dissipation
const Real fVis = .1; // to turn off viscous friction
const Real fK = .1*1e6; // pascals
// Halfspace floor
const Rotation R_xdown(-Pi/2,ZAxis);
matter.Ground().updBody().addDecoration(
Transform(Vec3(0,-.5,0)),
DecorativeBrick(Vec3(10,.5,20)).setColor(Green).setOpacity(.1));
matter.Ground().updBody().addContactSurface(
Transform(R_xdown, Vec3(0,0,0)),
ContactSurface(ContactGeometry::HalfSpace(),
ContactMaterial(fK*.1,fDis*.9,
fFac*.8,fFac*.7,fVis*10)));
const Real brickMass = 10;
Body::Rigid brickBody(MassProperties(brickMass, Vec3(0),
UnitInertia::brick(hdim)));
brickBody.addDecoration(Transform(),
DecorativeBrick(hdim).setColor(Cyan).setOpacity(.3));
const int surfx = brickBody.addContactSurface(Transform(),
ContactSurface(ContactGeometry::Brick(hdim),
ContactMaterial(fK,fDis,
fFac*.8,fFac*.7,fVis))
);
//brickBody.addContactSurface(Transform(),
// ContactSurface(ContactGeometry::Ellipsoid(hdim),
// ContactMaterial(fK*.1,fDis*.9,
// .1*fFac*.8,.1*fFac*.7,fVis*1))
// );
const ContactSurface& surf = brickBody.getContactSurface(surfx);
const ContactGeometry& cg = surf.getShape();
const ContactGeometry::Brick& cgbrick = ContactGeometry::Brick::getAs(cg);
cout << "cgbrick.hdim=" << cgbrick.getHalfLengths() << endl;
const Geo::Box& box = cgbrick.getGeoBox();
cout << "box.hdim=" << box.getHalfLengths() << endl;
// Vertices
for (int i=0; i<8; ++i) {
const Vec3 vpos = box.getVertexPos(i);
const UnitVec3 vn = box.getVertexNormal(i);
brickBody.addDecoration
(DecorativePoint(vpos).setColor(Orange));
brickBody.addDecoration
(DecorativeText(String(i)).setTransform(vpos).setColor(White)
.setScale(.5));
brickBody.addDecoration
(DecorativeLine(vpos, vpos + 0.5*vn).setColor(Orange));
printf("vertex %d:\n", i);
int e[3],ew[3],f[3],fw[3];
box.getVertexEdges(i,e,ew);
box.getVertexFaces(i,f,fw);
for (int ex=0; ex<3; ++ex) {
int ev[2]; box.getEdgeVertices(e[ex], ev);
printf(" e%2d(%d) ev=%d\n", e[ex], ew[ex], ev[ew[ex]]);
}
for (int fx=0; fx<3; ++fx) {
int fv[4]; box.getFaceVertices(f[fx], fv);
printf(" f%2d(%d) fv=%d\n", f[fx], fw[fx], fv[fw[fx]]);
}
}
// Edges
for (int i=0; i<12; ++i) {
const UnitVec3 n = box.getEdgeNormal(i);
const UnitVec3 d = box.getEdgeDirection(i);
const Vec3 ctr = box.getEdgeCenter(i);
const Real len = .75;
brickBody.addDecoration
(DecorativePoint(ctr).setColor(Green).setScale(2));
brickBody.addDecoration
(DecorativeText(String(i)).setTransform(ctr+len*n)
.setColor(Green).setScale(.3));
brickBody.addDecoration
(DecorativeLine(ctr, ctr + len*n).setColor(Green));
brickBody.addDecoration
(DecorativeLine(ctr, ctr + len*d).setColor(Green));
printf("edge %d:\n", i);
int f[2],fw[2];
box.getEdgeFaces(i,f,fw);
for (int fx=0; fx<2; ++fx) {
int fe[4]; box.getFaceEdges(f[fx], fe);
printf(" f%2d(%d) fe=%d\n", f[fx], fw[fx], fe[fw[fx]]);
}
}
// Faces
for (int i=0; i<6; ++i) {
int vertices[4]; box.getFaceVertices(i,vertices);
const UnitVec3 n = box.getFaceNormal(i);
const Vec3 ctr = box.getFaceCenter(i);
brickBody.addDecoration
(DecorativePoint(ctr).setColor(Magenta).setScale(3));
brickBody.addDecoration
(Transform(Rotation(n,ZAxis,Vec3(0,1,0),YAxis),ctr),
DecorativeText(String(i)).setColor(Magenta)
.setScale(.75).setFaceCamera(false));
brickBody.addDecoration
(DecorativeLine(ctr, ctr + 1.*n).setColor(Magenta));
}
MobilizedBody::Free brick(matter.Ground(), Transform(Vec3(0,3,0)),
brickBody, Transform(Vec3(0)));
Visualizer viz(system);
viz.addDecorationGenerator(new ForceArrowGenerator(system,contactForces));
viz.setShowShadows(true);
viz.setShowSimTime(true);
viz.setDesiredFrameRate(FrameRate);
viz.setShowFrameRate(true);
viz.setBackgroundType(Visualizer::SolidColor);
viz.setBackgroundColor(White*.9);
Visualizer::InputSilo* silo = new Visualizer::InputSilo();
viz.addInputListener(silo);
Array_<std::pair<String,int> > runMenuItems;
runMenuItems.push_back(std::make_pair("Go", GoItem));
runMenuItems.push_back(std::make_pair("Replay", ReplayItem));
runMenuItems.push_back(std::make_pair("Quit", QuitItem));
viz.addMenu("Run", RunMenuId, runMenuItems);
Array_<std::pair<String,int> > helpMenuItems;
helpMenuItems.push_back(std::make_pair("TBD - Sorry!", 1));
viz.addMenu("Help", HelpMenuId, helpMenuItems);
system.addEventReporter(new MyReporter(system,contactForces,ReportInterval));
system.addEventReporter(new Visualizer::Reporter(viz, ReportInterval));
// Check for a Run->Quit menu pick every 1/4 second.
system.addEventHandler(new UserInputHandler(*silo, .25));
// Initialize the system and state.
system.realizeTopology();
State state = system.getDefaultState();
brick.setQToFitRotation(state, Rotation(SpaceRotationSequence,
.1, ZAxis, .05, XAxis));
brick.setUToFitLinearVelocity(state, Vec3(2,0,0));
saveEm.reserve(10000);
viz.report(state);
printf("Default state\n");
cout << "t=" << state.getTime()
<< " q=" << brick.getQAsVector(state)
<< " u=" << brick.getUAsVector(state)
<< endl;
cout << "\nChoose 'Go' from Run menu to simulate:\n";
int menuId, item;
do { silo->waitForMenuPick(menuId, item);
if (menuId != RunMenuId || item != GoItem)
cout << "\aDude ... follow instructions!\n";
} while (menuId != RunMenuId || item != GoItem);
// Simulate it.
// The system as parameterized is very stiff (mostly due to friction)
// and thus runs best with CPodes which is extremely stable for
// stiff problems. To get reasonable performance out of the explicit
// integrators (like the RKs) you'll have to run at a very loose
// accuracy like 0.1, or reduce the friction coefficients and
// maybe the stiffnesses.
//SemiExplicitEuler2Integrator integ(system);
//CPodesIntegrator integ(system,CPodes::BDF,CPodes::Newton);
RungeKuttaMersonIntegrator integ(system);
//RungeKutta3Integrator integ(system);
//VerletIntegrator integ(system);
//integ.setMaximumStepSize(1e-0001);
//integ.setAccuracy(1e-3); // minimum for CPodes
integ.setAccuracy(1e-5);
//integ.setAccuracy(.01);
TimeStepper ts(system, integ);
ts.initialize(state);
double cpuStart = cpuTime();
double realStart = realTime();
ts.stepTo(20.0);
const double timeInSec = realTime() - realStart;
const int evals = integ.getNumRealizations();
cout << "Done -- took " << integ.getNumStepsTaken() << " steps in " <<
timeInSec << "s elapsed for " << ts.getTime() << "s sim (avg step="
<< (1000*ts.getTime())/integ.getNumStepsTaken() << "ms) "
<< (1000*ts.getTime())/evals << "ms/eval\n";
cout << " CPU time was " << cpuTime() - cpuStart << "s\n";
printf("Using Integrator %s at accuracy %g:\n",
integ.getMethodName(), integ.getAccuracyInUse());
printf("# STEPS/ATTEMPTS = %d/%d\n", integ.getNumStepsTaken(), integ.getNumStepsAttempted());
printf("# ERR TEST FAILS = %d\n", integ.getNumErrorTestFailures());
printf("# REALIZE/PROJECT = %d/%d\n", integ.getNumRealizations(), integ.getNumProjections());
viz.dumpStats(std::cout);
// Add as slider to control playback speed.
viz.addSlider("Speed", 1, 0, 4, 1);
viz.setMode(Visualizer::PassThrough);
silo->clear(); // forget earlier input
double speed = 1; // will change if slider moves
while(true) {
cout << "Choose Run/Replay to see that again ...\n";
int menuId, item;
silo->waitForMenuPick(menuId, item);
if (menuId != RunMenuId) {
cout << "\aUse the Run menu!\n";
continue;
}
if (item == QuitItem)
break;
if (item != ReplayItem) {
cout << "\aHuh? Try again.\n";
continue;
}
for (double i=0; i < (int)saveEm.size(); i += speed ) {
int slider; Real newValue;
if (silo->takeSliderMove(slider,newValue)) {
speed = newValue;
}
viz.report(saveEm[(int)i]);
}
}
} catch (const std::exception& e) {
std::printf("EXCEPTION THROWN: %s\n", e.what());
exit(1);
} catch (...) {
std::printf("UNKNOWN EXCEPTION THROWN\n");
exit(1);
}
return 0;
}
|