File: ContactBrickTest.cpp

package info (click to toggle)
simbody 3.7%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 72,896 kB
  • sloc: cpp: 248,827; ansic: 18,240; sh: 29; makefile: 24
file content (437 lines) | stat: -rw-r--r-- 17,630 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
/* -------------------------------------------------------------------------- *
 *                Simbody(tm) Adhoc test: Contact Brick Test                  *
 * -------------------------------------------------------------------------- *
 * This is part of the SimTK biosimulation toolkit originating from           *
 * Simbios, the NIH National Center for Physics-Based Simulation of           *
 * Biological Structures at Stanford, funded under the NIH Roadmap for        *
 * Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody.  *
 *                                                                            *
 * Portions copyright (c) 2014 Stanford University and the Authors.           *
 * Authors: Michael Sherman                                                   *
 * Contributors:                                                              *
 *                                                                            *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may    *
 * not use this file except in compliance with the License. You may obtain a  *
 * copy of the License at http://www.apache.org/licenses/LICENSE-2.0.         *
 *                                                                            *
 * Unless required by applicable law or agreed to in writing, software        *
 * distributed under the License is distributed on an "AS IS" BASIS,          *
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.   *
 * See the License for the specific language governing permissions and        *
 * limitations under the License.                                             *
 * -------------------------------------------------------------------------- */

/* This adhoc test is for playing with Brick contact elements.
*/

#include "Simbody.h"

#include <cstdio>
#include <exception>
#include <algorithm>
#include <iostream>
#include <fstream>
using std::cout; using std::endl;

using namespace SimTK;

Array_<State> saveEm;

static const Real TimeScale = 1;
static const Real FrameRate = 60;
static const Real ReportInterval = TimeScale/FrameRate;
static const Real ForceScale = .25;
static const Real MomentScale = .5;


class ForceArrowGenerator : public DecorationGenerator {
public:
    ForceArrowGenerator(const MultibodySystem& system,
                        const CompliantContactSubsystem& complCont) 
    :   m_mbs(system), m_compliant(complCont) {}

    virtual void generateDecorations(const State& state, Array_<DecorativeGeometry>& geometry) override {
        const Vec3 frcColors[] = {Red,Orange,Cyan};
        const Vec3 momColors[] = {Blue,Green,Purple};
        m_mbs.realize(state, Stage::Velocity);
        const SimbodyMatterSubsystem& matter = m_mbs.getMatterSubsystem();
        const Real TextScale = m_mbs.getDefaultLengthScale()/10; // was .1
        m_mbs.realize(state, Stage::Dynamics);
        const Real KE=m_mbs.calcKineticEnergy(state), E=m_mbs.calcEnergy(state);
        const Real diss=m_compliant.getDissipatedEnergy(state);
        DecorativeText txt; txt.setIsScreenText(true);
        txt.setText("KE/Diss/E: " + String(KE, "%.6f") + String(diss, "/%.6f")
                    + String(E+diss, "/%.6f") );
        geometry.push_back(txt);

        int nContPts = 0;
        const int ncont = m_compliant.getNumContactForces(state);
        for (int i=0; i < ncont; ++i) {
            const ContactForce& force = m_compliant.getContactForce(state,i);
            const ContactId     id    = force.getContactId();
            const Vec3&         pt    = force.getContactPoint();
            const Vec3& frc = force.getForceOnSurface2()[1];
            const Vec3& mom = force.getForceOnSurface2()[0];
            Real  frcMag = frc.norm(), momMag=mom.norm();
            const UnitVec3 frcDir(frc/frcMag, true);
            const UnitVec3 momDir(mom/momMag, true);
            const Vec3 offs = .1*frcDir; // shift up to clear ground
            int frcThickness = 2, momThickness = 2;
            Real frcScale = ForceScale, momScale = ForceScale;
            while (frcMag > /*10*/1000000)
                frcThickness++, frcScale /= 10, frcMag /= 10;
            while (momMag > /*10*/1000000)
                momThickness++, momScale /= 10, momMag /= 10;
            geometry.push_back(DecorativePoint(pt)
                               .setScale(5).setColor(Yellow));
            DecorativeLine frcLine(pt,      pt + std::log10(frcMag)*frcDir);
            DecorativeLine momLine(pt+offs, pt+offs + std::log10(momMag)*momDir);
            frcLine.setColor(Black);
            momLine.setColor(Purple);
            frcLine.setLineThickness(frcThickness);
            momLine.setLineThickness(momThickness);
            geometry.push_back(frcLine);
            geometry.push_back(momLine);

            ContactPatch patch;
            const bool found = m_compliant.calcContactPatchDetailsById(state,id,patch);
            //cout << "patch for id" << id << " found=" << found << endl;
            //cout << "resultant=" << patch.getContactForce() << endl;
            //cout << "num details=" << patch.getNumDetails() << endl;
            for (int i=0; i < patch.getNumDetails(); ++i) {
                ++nContPts;
                const ContactDetail& detail = patch.getContactDetail(i);
                const Vec3& pt = detail.getContactPoint();
                geometry.push_back(DecorativePoint(pt).setColor(Purple));

                const Vec3& force = detail.getForceOnSurface2();
                const Real forceMag = force.norm();
                const UnitVec3 forceDir(force/forceMag, true);
                DecorativeLine frcLine(pt, pt+std::log10(forceMag)*forceDir);
                frcLine.setColor(Black);
                geometry.push_back(frcLine);

                // Make a red line that extends from the contact
                // point in the direction of the slip velocity, of length 3*slipvel.
                DecorativeLine slip(pt,pt+3.*detail.getSlipVelocity());
                slip.setColor(Red);
                geometry.push_back(slip);
            }
        }
        txt.setText(String("Num contact points: ") + String(nContPts));
        geometry.push_back(txt);

    }
private:
    const MultibodySystem&              m_mbs;
    const CompliantContactSubsystem&    m_compliant;
};

class MyReporter : public PeriodicEventReporter {
public:
    MyReporter(const MultibodySystem& system, 
               const CompliantContactSubsystem& complCont,
               Real reportInterval)
    :   PeriodicEventReporter(reportInterval), m_system(system),
        m_compliant(complCont)
    {}

    ~MyReporter() {}

    void handleEvent(const State& state) const override {
        saveEm.push_back(state);
    }
private:
    const MultibodySystem&           m_system;
    const CompliantContactSubsystem& m_compliant;
};

// These are the item numbers for the entries on the Run menu.
static const int RunMenuId = 3, HelpMenuId = 7;
static const int GoItem = 1, ReplayItem=2, QuitItem=3;

// This is a periodic event handler that interrupts the simulation on a regular
// basis to poll the InputSilo for user input. If there has been some, process it.
// This one does nothing but look for the Run->Quit selection.
class UserInputHandler : public PeriodicEventHandler {
public:
    UserInputHandler(Visualizer::InputSilo& silo, Real interval) 
    :   PeriodicEventHandler(interval), m_silo(silo) {}

    virtual void handleEvent(State& state, Real accuracy, 
                             bool& shouldTerminate) const override 
    {
        int menuId, item;
        if (m_silo.takeMenuPick(menuId, item) && menuId==RunMenuId && item==QuitItem)
            shouldTerminate = true;
    }

private:
    Visualizer::InputSilo& m_silo;
};

int main() {
  try
  { // Create the system.
    
    MultibodySystem         system;
    SimbodyMatterSubsystem  matter(system);
    GeneralForceSubsystem   forces(system);
    Force::Gravity          gravity(forces, matter, UnitVec3(.1,-1,0), 9.81);

    ContactTrackerSubsystem  tracker(system);
    CompliantContactSubsystem contactForces(system, tracker);
    contactForces.setTrackDissipatedEnergy(true);
    contactForces.setTransitionVelocity(1e-3);

    const Vec3 hdim(1,2,3);

    const Real fFac =.15; // to turn off friction
    const Real fDis = .5; // to turn off dissipation
    const Real fVis =  .1; // to turn off viscous friction
    const Real fK = .1*1e6; // pascals

    // Halfspace floor
    const Rotation R_xdown(-Pi/2,ZAxis);
    matter.Ground().updBody().addDecoration(
        Transform(Vec3(0,-.5,0)),
        DecorativeBrick(Vec3(10,.5,20)).setColor(Green).setOpacity(.1));
    matter.Ground().updBody().addContactSurface(
        Transform(R_xdown, Vec3(0,0,0)),
        ContactSurface(ContactGeometry::HalfSpace(),
                       ContactMaterial(fK*.1,fDis*.9,
                           fFac*.8,fFac*.7,fVis*10)));

    const Real brickMass = 10;
    Body::Rigid brickBody(MassProperties(brickMass, Vec3(0), 
                            UnitInertia::brick(hdim)));
    brickBody.addDecoration(Transform(), 
                            DecorativeBrick(hdim).setColor(Cyan).setOpacity(.3));
    const int surfx = brickBody.addContactSurface(Transform(),
        ContactSurface(ContactGeometry::Brick(hdim),
                       ContactMaterial(fK,fDis,
                                       fFac*.8,fFac*.7,fVis))
                       );
    //brickBody.addContactSurface(Transform(),
    //    ContactSurface(ContactGeometry::Ellipsoid(hdim),
    //                   ContactMaterial(fK*.1,fDis*.9,
    //                                   .1*fFac*.8,.1*fFac*.7,fVis*1))
    //                   );
    const ContactSurface& surf = brickBody.getContactSurface(surfx);
    const ContactGeometry& cg = surf.getShape();
    const ContactGeometry::Brick& cgbrick = ContactGeometry::Brick::getAs(cg);
    cout << "cgbrick.hdim=" << cgbrick.getHalfLengths() << endl;
    const Geo::Box& box = cgbrick.getGeoBox();
    cout << "box.hdim=" << box.getHalfLengths() << endl;

    // Vertices
    for (int i=0; i<8; ++i) {
        const Vec3 vpos = box.getVertexPos(i);
        const UnitVec3 vn = box.getVertexNormal(i);
        brickBody.addDecoration
            (DecorativePoint(vpos).setColor(Orange));
        brickBody.addDecoration
            (DecorativeText(String(i)).setTransform(vpos).setColor(White)
             .setScale(.5));
        brickBody.addDecoration
           (DecorativeLine(vpos, vpos + 0.5*vn).setColor(Orange));

        printf("vertex %d:\n", i);
        int e[3],ew[3],f[3],fw[3];
        box.getVertexEdges(i,e,ew);
        box.getVertexFaces(i,f,fw);
        for (int ex=0; ex<3; ++ex) {
            int ev[2]; box.getEdgeVertices(e[ex], ev);
            printf("  e%2d(%d) ev=%d\n", e[ex], ew[ex], ev[ew[ex]]);
        }
        for (int fx=0; fx<3; ++fx) {
            int fv[4]; box.getFaceVertices(f[fx], fv);
            printf("  f%2d(%d) fv=%d\n", f[fx], fw[fx], fv[fw[fx]]);
        }
    }

    // Edges
    for (int i=0; i<12; ++i) {
        const UnitVec3 n = box.getEdgeNormal(i);
        const UnitVec3 d = box.getEdgeDirection(i);
        const Vec3 ctr = box.getEdgeCenter(i);
        const Real len = .75;
        brickBody.addDecoration
           (DecorativePoint(ctr).setColor(Green).setScale(2));
        brickBody.addDecoration
            (DecorativeText(String(i)).setTransform(ctr+len*n)
             .setColor(Green).setScale(.3));
        brickBody.addDecoration
           (DecorativeLine(ctr, ctr + len*n).setColor(Green));
        brickBody.addDecoration
           (DecorativeLine(ctr, ctr + len*d).setColor(Green));

        printf("edge %d:\n", i);
        int f[2],fw[2];
        box.getEdgeFaces(i,f,fw);
        for (int fx=0; fx<2; ++fx) {
            int fe[4]; box.getFaceEdges(f[fx], fe);
            printf("  f%2d(%d) fe=%d\n", f[fx], fw[fx], fe[fw[fx]]);
        }
    }

    // Faces
    for (int i=0; i<6; ++i) {
        int vertices[4]; box.getFaceVertices(i,vertices);
        const UnitVec3 n = box.getFaceNormal(i);
        const Vec3 ctr = box.getFaceCenter(i);
        brickBody.addDecoration
           (DecorativePoint(ctr).setColor(Magenta).setScale(3));
        brickBody.addDecoration
           (Transform(Rotation(n,ZAxis,Vec3(0,1,0),YAxis),ctr),
            DecorativeText(String(i)).setColor(Magenta)
             .setScale(.75).setFaceCamera(false));
        brickBody.addDecoration
           (DecorativeLine(ctr, ctr + 1.*n).setColor(Magenta));
    }

    MobilizedBody::Free brick(matter.Ground(), Transform(Vec3(0,3,0)),
        brickBody, Transform(Vec3(0)));

    Visualizer viz(system);
    viz.addDecorationGenerator(new ForceArrowGenerator(system,contactForces));
    viz.setShowShadows(true);
    viz.setShowSimTime(true);
    viz.setDesiredFrameRate(FrameRate);
    viz.setShowFrameRate(true);
    viz.setBackgroundType(Visualizer::SolidColor);
    viz.setBackgroundColor(White*.9);

    Visualizer::InputSilo* silo = new Visualizer::InputSilo();
    viz.addInputListener(silo);
    Array_<std::pair<String,int> > runMenuItems;
    runMenuItems.push_back(std::make_pair("Go", GoItem));
    runMenuItems.push_back(std::make_pair("Replay", ReplayItem));
    runMenuItems.push_back(std::make_pair("Quit", QuitItem));
    viz.addMenu("Run", RunMenuId, runMenuItems);

    Array_<std::pair<String,int> > helpMenuItems;
    helpMenuItems.push_back(std::make_pair("TBD - Sorry!", 1));
    viz.addMenu("Help", HelpMenuId, helpMenuItems);

    system.addEventReporter(new MyReporter(system,contactForces,ReportInterval));
    system.addEventReporter(new Visualizer::Reporter(viz, ReportInterval));

    // Check for a Run->Quit menu pick every 1/4 second.
    system.addEventHandler(new UserInputHandler(*silo, .25));

    // Initialize the system and state.
    
    system.realizeTopology();
    State state = system.getDefaultState();

    brick.setQToFitRotation(state, Rotation(SpaceRotationSequence, 
                                            .1, ZAxis, .05, XAxis));
    brick.setUToFitLinearVelocity(state, Vec3(2,0,0));

    saveEm.reserve(10000);

    viz.report(state);
    printf("Default state\n");
    cout << "t=" << state.getTime() 
         << " q=" << brick.getQAsVector(state)  
         << " u=" << brick.getUAsVector(state)  
         << endl;

    cout << "\nChoose 'Go' from Run menu to simulate:\n";
    int menuId, item;
    do { silo->waitForMenuPick(menuId, item);
         if (menuId != RunMenuId || item != GoItem) 
             cout << "\aDude ... follow instructions!\n";
    } while (menuId != RunMenuId || item != GoItem);

   
    // Simulate it.

    // The system as parameterized is very stiff (mostly due to friction)
    // and thus runs best with CPodes which is extremely stable for
    // stiff problems. To get reasonable performance out of the explicit
    // integrators (like the RKs) you'll have to run at a very loose
    // accuracy like 0.1, or reduce the friction coefficients and
    // maybe the stiffnesses.

    //SemiExplicitEuler2Integrator integ(system);
    //CPodesIntegrator integ(system,CPodes::BDF,CPodes::Newton);
    RungeKuttaMersonIntegrator integ(system);
    //RungeKutta3Integrator integ(system);
    //VerletIntegrator integ(system);
    //integ.setMaximumStepSize(1e-0001);
    //integ.setAccuracy(1e-3); // minimum for CPodes
    integ.setAccuracy(1e-5);
    //integ.setAccuracy(.01);
    TimeStepper ts(system, integ);


    ts.initialize(state);
    double cpuStart = cpuTime();
    double realStart = realTime();

    ts.stepTo(20.0);

    const double timeInSec = realTime() - realStart;
    const int evals = integ.getNumRealizations();
    cout << "Done -- took " << integ.getNumStepsTaken() << " steps in " <<
        timeInSec << "s elapsed for " << ts.getTime() << "s sim (avg step=" 
        << (1000*ts.getTime())/integ.getNumStepsTaken() << "ms) " 
        << (1000*ts.getTime())/evals << "ms/eval\n";
    cout << "  CPU time was " << cpuTime() - cpuStart << "s\n";

    printf("Using Integrator %s at accuracy %g:\n", 
        integ.getMethodName(), integ.getAccuracyInUse());
    printf("# STEPS/ATTEMPTS = %d/%d\n", integ.getNumStepsTaken(), integ.getNumStepsAttempted());
    printf("# ERR TEST FAILS = %d\n", integ.getNumErrorTestFailures());
    printf("# REALIZE/PROJECT = %d/%d\n", integ.getNumRealizations(), integ.getNumProjections());

    viz.dumpStats(std::cout);

    // Add as slider to control playback speed.
    viz.addSlider("Speed", 1, 0, 4, 1);
    viz.setMode(Visualizer::PassThrough);

    silo->clear(); // forget earlier input
    double speed = 1; // will change if slider moves
    while(true) {
        cout << "Choose Run/Replay to see that again ...\n";

        int menuId, item;
        silo->waitForMenuPick(menuId, item);


        if (menuId != RunMenuId) {
            cout << "\aUse the Run menu!\n";
            continue;
        }

        if (item == QuitItem)
            break;
        if (item != ReplayItem) {
            cout << "\aHuh? Try again.\n";
            continue;
        }

        for (double i=0; i < (int)saveEm.size(); i += speed ) {
            int slider; Real newValue;
            if (silo->takeSliderMove(slider,newValue)) {
                speed = newValue;
            }
            viz.report(saveEm[(int)i]);
        }
    }

  } catch (const std::exception& e) {
    std::printf("EXCEPTION THROWN: %s\n", e.what());
    exit(1);

  } catch (...) {
    std::printf("UNKNOWN EXCEPTION THROWN\n");
    exit(1);
  }

    return 0;
}