1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
|
/* -------------------------------------------------------------------------- *
* Simbody(tm): Free Water Test *
* -------------------------------------------------------------------------- *
* This is part of the SimTK biosimulation toolkit originating from *
* Simbios, the NIH National Center for Physics-Based Simulation of *
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody. *
* *
* Portions copyright (c) 2009-12 Stanford University and the Authors. *
* Authors: Michael Sherman *
* Contributors: *
* *
* Licensed under the Apache License, Version 2.0 (the "License"); you may *
* not use this file except in compliance with the License. You may obtain a *
* copy of the License at http://www.apache.org/licenses/LICENSE-2.0. *
* *
* Unless required by applicable law or agreed to in writing, software *
* distributed under the License is distributed on an "AS IS" BASIS, *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
* See the License for the specific language governing permissions and *
* limitations under the License. *
* -------------------------------------------------------------------------- */
/**@file
* This is an outer block for simulating ??? in various ways with Simbody.
* This is about testing Simbody, *not* studying ???!
*/
#include "SimTKsimbody.h"
#include <string>
#include <iostream>
#include <exception>
using std::cout;
using std::cin;
using std::endl;
using namespace SimTK;
static const Real Deg2Rad = (Real)SimTK_DEGREE_TO_RADIAN,
Rad2Deg = (Real)SimTK_RADIAN_TO_DEGREE;
static Real g = 9.8;
static Real m = 1;
int main(int argc, char** argv) {
static const Transform GroundFrame;
static const Rotation ZalongY(UnitVec3(XAxis), XAxis, UnitVec3(YAxis), ZAxis);
static const Rotation ZalongX(UnitVec3(XAxis), ZAxis, UnitVec3(YAxis), YAxis);
static const Rotation YalongZ(UnitVec3(ZAxis), XAxis, UnitVec3(XAxis), YAxis);
static const Vec3 TestLoc(1,0,0);
try { // If anything goes wrong, an exception will be thrown.
// CREATE MULTIBODY SYSTEM AND ITS SUBSYSTEMS
MultibodySystem mbs;
SimbodyMatterSubsystem matter(mbs);
GeneralForceSubsystem forces(mbs);
DecorationSubsystem viz(mbs);
//Force::UniformGravity gravity(forces, matter, Vec3(0, -g, 0));
// ADD BODIES AND THEIR MOBILIZERS
Body::Rigid oxygen = Body::Rigid(MassProperties(m, Vec3(0), Inertia(0)));
oxygen.addDecoration(DecorativeSphere(.1).setColor(Red).setOpacity(.3));
Body::Rigid hydrogen = Body::Rigid(MassProperties(m, Vec3(0), Inertia(0)));
hydrogen.addDecoration(DecorativeSphere(.05).setColor(Green).setOpacity(.3));
MobilizedBody::Cartesian
masslessFrame(matter.Ground(), Transform(ZalongY, Vec3(0)),
MassProperties(0,Vec3(0),Inertia(0)), Transform());
MobilizedBody::Pin
H1(masslessFrame, Transform(), hydrogen, Transform());
MobilizedBody::Pin
O(H1, ZalongY, oxygen, Transform(Vec3(0,1,0)));
MobilizedBody::Universal
H2(O, Transform(YalongZ), hydrogen, Transform(Vec3(0,0,1)));
Force::MobilityLinearSpring(forces, H2, 1, 2, 60*Deg2Rad); // harmonic bend
//MobilizedBody::SphericalCoords
// H2(matter.Ground(), Transform(ZUp, TestLoc),
// particle, Transform(),
// 0*Deg2Rad, false, // azimuth offset, negated
// 0, false, // zenith offset, negated
// ZAxis, true); // translation axis, negated
//anAtom.setDefaultRadius(.1);
//anAtom.setDefaultAngles(Vec2(0, 30*Deg2Rad));
//viz.addRubberBandLine(matter.Ground(), TestLoc,
// anAtom, Vec3(0),
// DecorativeLine().setColor(Orange).setLineThickness(4));
//Force::MobilityLinearSpring(forces, anAtom, 1, 2, 45*Deg2Rad); // harmonic bend
//Force::MobilityLinearSpring(forces, anAtom, 2, 20, .5); // harmonic stretch
//Force::MobilityLinearDamper(forces, anAtom, 0, .1); // harmonic bend
//Force::MobilityLinearDamper(forces, anAtom, 1, .1); // harmonic bend
//Force::MobilityLinearDamper(forces, anAtom, 2, .1); // harmonic stretch
State s = mbs.realizeTopology(); // returns a reference to the the default state
mbs.realizeModel(s); // define appropriate states for this System
mbs.realize(s, Stage::Instance); // instantiate constraints if any
Visualizer display(mbs);
display.setBackgroundColor(White);
display.setBackgroundType(Visualizer::SolidColor);
mbs.realize(s, Stage::Velocity);
display.report(s);
cout << "q=" << s.getQ() << endl;
cout << "u=" << s.getU() << endl;
char c;
//cout << "Default configuration shown. Ready?\n"; cin >> c;
O.setOneQ(s, 0, 30*Deg2Rad);
//H2.setOneQ(s, 0, 30*Deg2Rad);
H2.setOneQ(s, 0, 30*Deg2Rad);
H2.setOneQ(s, 1, 50*Deg2Rad);
s.updU() = Vector(Vec7(0,0,0,1,1,1,0));
//anAtom.setQToFitRotation(s, Rotation(-.9*Pi/2,YAxis));
//while (true) {
// Real x;
// cout << "Torsion (deg)? "; cin >> x; if (x==1234) break;
// Vec2 a = anAtom.getAngles(s); a[0]=x*Deg2Rad; anAtom.setAngles(s, a);
// display.report(s);
// cout << "Bend (deg)? "; cin >> x; if (x==1234) break;
// a = anAtom.getAngles(s); a[1]=x*Deg2Rad; anAtom.setAngles(s, a);
// display.report(s);
// cout << "Radius? "; cin >> x; if (x==1234) break;
// anAtom.setRadius(s, x);
// display.report(s);
//}
//anAtom.setUToFitAngularVelocity(s, Vec3(.1,.2,.3));
//anAtom.setAngle(s, 45*Deg2Rad);
//anAtom.setTranslation(s, Vec2(.4, .1));
mbs.realize(s, Stage::Dynamics);
mbs.realize(s, Stage::Acceleration);
cout << "q=" << s.getQ() << endl;
cout << "u=" << s.getU() << endl;
cout << "qdot=" << s.getQDot() << endl;
cout << "udot=" << s.getUDot() << endl;
cout << "qdotdot=" << s.getQDotDot() << endl;
display.report(s);
cout << "Initialized configuration shown. Ready? ";
cin >> c;
RungeKuttaMersonIntegrator myStudy(mbs);
myStudy.setAccuracy(1e-4);
const Real dt = .02; // output intervals
const Real finalTime = 20;
myStudy.setFinalTime(finalTime);
// Peforms assembly if constraints are violated.
myStudy.initialize(s);
cout << "Using Integrator " << std::string(myStudy.getMethodName()) << ":\n";
cout << "ACCURACY IN USE=" << myStudy.getAccuracyInUse() << endl;
cout << "CTOL IN USE=" << myStudy.getConstraintToleranceInUse() << endl;
cout << "TIMESCALE=" << mbs.getDefaultTimeScale() << endl;
cout << "U WEIGHTS=" << s.getUWeights() << endl;
cout << "Z WEIGHTS=" << s.getZWeights() << endl;
cout << "1/QTOLS=" << s.getQErrWeights() << endl;
cout << "1/UTOLS=" << s.getUErrWeights() << endl;
Integrator::SuccessfulStepStatus status;
int nextReport = 0;
while ((status=myStudy.stepTo(nextReport*dt))
!= Integrator::EndOfSimulation)
{
const State& s = myStudy.getState();
mbs.realize(s);
printf("%5g %10.4g %10.4g %10.4g %10.4g E=%10.8g h%3d=%g %s%s\n", s.getTime(),
H1.getAngle(s), O.getAngle(s), H2.getOneQ(s,0), H2.getOneQ(s,1),
mbs.calcEnergy(s), myStudy.getNumStepsTaken(),
myStudy.getPreviousStepSizeTaken(),
Integrator::getSuccessfulStepStatusString(status).c_str(),
myStudy.isStateInterpolated()?" (INTERP)":"");
display.report(s);
if (status == Integrator::ReachedReportTime)
++nextReport;
}
printf("Using Integrator %s:\n", myStudy.getMethodName());
printf("# STEPS/ATTEMPTS = %d/%d\n", myStudy.getNumStepsTaken(), myStudy.getNumStepsAttempted());
printf("# ERR TEST FAILS = %d\n", myStudy.getNumErrorTestFailures());
printf("# REALIZE/PROJECT = %d/%d\n", myStudy.getNumRealizations(), myStudy.getNumProjections());
}
catch (const std::exception& e) {
printf("EXCEPTION THROWN: %s\n", e.what());
exit(1);
}
catch (...) {
printf("UNKNOWN EXCEPTION THROWN\n");
exit(1);
}
}
|