1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
|
/* -------------------------------------------------------------------------- *
* Simbody(tm) Example: Cable Path *
* -------------------------------------------------------------------------- *
* This is part of the SimTK biosimulation toolkit originating from *
* Simbios, the NIH National Center for Physics-Based Simulation of *
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody. *
* *
* Portions copyright (c) 2012 Stanford University and the Authors. *
* Authors: Michael Sherman *
* Contributors: *
* *
* Licensed under the Apache License, Version 2.0 (the "License"); you may *
* not use this file except in compliance with the License. You may obtain a *
* copy of the License at http://www.apache.org/licenses/LICENSE-2.0. *
* *
* Unless required by applicable law or agreed to in writing, software *
* distributed under the License is distributed on an "AS IS" BASIS, *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
* See the License for the specific language governing permissions and *
* limitations under the License. *
* -------------------------------------------------------------------------- */
/* Simbody ExampleCablePath
This example shows how to use a CableTrackerSubsystem to follow the motion of
a cable that connects two bodies and passes around obstacles. We'll then
create a force element that generates spring forces that result from the
stretching and stretching rate of the cable. */
#include "Simbody.h"
#include <cassert>
#include <iostream>
using std::cout; using std::endl;
using namespace SimTK;
// This gets called periodically to dump out interesting things about
// the cables and the system as a whole. It also saves states so that we
// can play back at the end.
static Array_<State> saveStates;
class ShowStuff : public PeriodicEventReporter {
public:
ShowStuff(const MultibodySystem& mbs,
const CableSpring& cable1, Real interval)
: PeriodicEventReporter(interval),
mbs(mbs), cable1(cable1) {}
static void showHeading(std::ostream& o) {
printf("%8s %10s %10s %10s %10s %10s %10s %10s %10s %12s\n",
"time", "length", "rate", "integ-rate", "unitpow", "tension", "disswork",
"KE", "PE", "KE+PE-W");
}
/** This is the implementation of the EventReporter virtual. **/
void handleEvent(const State& state) const override {
const CablePath& path1 = cable1.getCablePath();
printf("%8g %10.4g %10.4g %10.4g %10.4g %10.4g %10.4g %10.4g %10.4g %12.6g CPU=%g\n",
state.getTime(),
path1.getCableLength(state),
path1.getCableLengthDot(state),
path1.getIntegratedCableLengthDot(state),
path1.calcCablePower(state, 1), // unit power
cable1.getTension(state),
cable1.getDissipatedEnergy(state),
mbs.calcKineticEnergy(state),
mbs.calcPotentialEnergy(state),
mbs.calcEnergy(state)
+ cable1.getDissipatedEnergy(state),
cpuTime());
saveStates.push_back(state);
}
private:
const MultibodySystem& mbs;
CableSpring cable1;
};
int main() {
try {
// Create the system.
MultibodySystem system;
SimbodyMatterSubsystem matter(system);
CableTrackerSubsystem cables(system);
GeneralForceSubsystem forces(system);
system.setUseUniformBackground(true); // no ground plane in display
Force::UniformGravity gravity(forces, matter, Vec3(0, -9.8, 0));
//Force::GlobalDamper(forces, matter, 5);
Body::Rigid someBody(MassProperties(1.0, Vec3(0), Inertia(1)));
const Real Rad = 1.5;
someBody.addDecoration(Transform(),
DecorativeSphere(Rad).setOpacity(.75).setResolution(4));
Body::Rigid biggerBody(MassProperties(1.0, Vec3(0), Inertia(1)));
const Real BiggerRad = .5;
biggerBody.addDecoration(Transform(),
DecorativeSphere(BiggerRad).setOpacity(.75).setResolution(4));
const Vec3 radii(2,1.5,1.7);
Body::Rigid ellipsoidBody(MassProperties(1.0, Vec3(0),
UnitInertia::ellipsoid(radii)));
//ellipsoidBody.addDecoration(Transform(),
// DecorativeEllipsoid(radii).setOpacity(.9).setResolution(4)
// .setColor(Orange));
const Real CylRad = .25, HalfLen = .5;
Body::Rigid cylinderBody(MassProperties(1.0, Vec3(0),
1.*UnitInertia::cylinderAlongX(Rad,HalfLen)));
cylinderBody.addDecoration(Rotation(-Pi/2,ZAxis),
DecorativeCylinder(CylRad,HalfLen).setOpacity(.75)
.setResolution(4).setColor(Orange));
Body::Rigid fancyBody = biggerBody; // NOT USING ELLIPSOID
MobilizedBody Ground = matter.Ground();
MobilizedBody::Free body1(Ground, Transform(Vec3(0)),
ellipsoidBody, Transform(Vec3(0)));
CablePath path1(cables, Ground, Vec3(-5,0,-.5),
Ground, Vec3(5,0,-.5));
CablePath path2(cables, Ground, Vec3(-5,0,.5),
Ground, Vec3(5,0,.5));
CableSpring cable1(forces, path1, 15000., 10, 0.1);
CableSpring cable2(forces, path2, 15000., 10, 0.1);
CableObstacle::Surface theBall1(path1, body1, Vec3(0),
ContactGeometry::Ellipsoid(radii));
//ContactGeometry::Sphere(Rad));
theBall1.setContactPointHints(Vec3(-.5,-1.5,-.5),Vec3(.5,-1.5,-.5));
CableObstacle::Surface theBall2(path2, body1, Vec3(0),
ContactGeometry::Ellipsoid(radii));
//ContactGeometry::Sphere(Rad));
theBall2.setContactPointHints(Vec3(-.5,-1.5,.5),Vec3(.5,-1.5,.5));
Visualizer viz(system);
viz.setShowFrameNumber(true);
system.addEventReporter(new Visualizer::Reporter(viz, 0.1*1./30));
system.addEventReporter(new ShowStuff(system, cable1, 0.1*0.1));
// Initialize the system and state.
system.realizeTopology();
State state = system.getDefaultState();
body1.setQToFitTranslation(state, Vec3(0,.9,0));
body1.setUToFitAngularVelocity(state, 0*.25*Vec3(1,4,1));
system.realize(state, Stage::Position);
viz.report(state);
cout << "path1 init length=" << path1.getCableLength(state) << endl;
cout << "Hit ENTER ...";
getchar();
path1.setIntegratedCableLengthDot(state, path1.getCableLength(state));
// Simulate it.
saveStates.clear(); saveStates.reserve(2000);
RungeKuttaMersonIntegrator integ(system);
//CPodesIntegrator integ(system);
integ.setAccuracy(1e-3);
TimeStepper ts(system, integ);
ts.initialize(state);
ShowStuff::showHeading(cout);
const Real finalTime = 5;
const double startTime = realTime(), startCPU = cpuTime();
ts.stepTo(finalTime);
cout << "DONE with " << finalTime
<< "s simulated in " << realTime()-startTime
<< "s elapsed, " << cpuTime()-startCPU << "s CPU.\n";
while (true) {
cout << "Hit ENTER FOR REPLAY, Q to quit ...";
const char ch = getchar();
if (ch=='q' || ch=='Q') break;
for (unsigned i=0; i < saveStates.size(); ++i)
viz.report(saveStates[i]);
}
} catch (const std::exception& e) {
cout << "EXCEPTION: " << e.what() << "\n";
}
}
|