File: LockUnlockConstraint.cpp

package info (click to toggle)
simbody 3.7%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 72,896 kB
  • sloc: cpp: 248,827; ansic: 18,240; sh: 29; makefile: 24
file content (473 lines) | stat: -rw-r--r-- 18,815 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
/* -------------------------------------------------------------------------- *
 *                               Simbody(tm)                                  *
 * -------------------------------------------------------------------------- *
 * This is part of the SimTK biosimulation toolkit originating from           *
 * Simbios, the NIH National Center for Physics-Based Simulation of           *
 * Biological Structures at Stanford, funded under the NIH Roadmap for        *
 * Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody.  *
 *                                                                            *
 * Portions copyright (c) 2009-12 Stanford University and the Authors.        *
 * Authors: Michael Sherman                                                   *
 * Contributors:                                                              *
 *                                                                            *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may    *
 * not use this file except in compliance with the License. You may obtain a  *
 * copy of the License at http://www.apache.org/licenses/LICENSE-2.0.         *
 *                                                                            *
 * Unless required by applicable law or agreed to in writing, software        *
 * distributed under the License is distributed on an "AS IS" BASIS,          *
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.   *
 * See the License for the specific language governing permissions and        *
 * limitations under the License.                                             *
 * -------------------------------------------------------------------------- */

/**@file
 * This is an outer block for simulating ??? in various ways with Simbody.
 * This is about testing Simbody, *not* studying ???!
 */

#include "Simbody.h"

#include <string>
#include <iostream>
#include <exception>

using std::cout;
using std::endl;

using namespace SimTK;

const Real ReportInterval=0.033;
const Real RunTime=20;

class ShowLocking : public DecorationGenerator {
public:
    ShowLocking(const MobilizedBody& mobod, 
        const Constraint::ConstantSpeed& lock)
        : m_mobod(mobod), m_lock(lock)
    {
    }
    void generateDecorations(const State& state, 
                             Array_<DecorativeGeometry>& geometry) override
    {
        if (!m_lock.isDisabled(state)) {
            const Transform& X_BM = m_mobod.getDefaultOutboardFrame();
            geometry.push_back(DecorativeSphere(.5)
                .setTransform(X_BM)
                .setColor(Red).setOpacity(.25)
                .setBodyId(m_mobod.getMobilizedBodyIndex()));
            geometry.push_back(DecorativeText("LOCKED")
                .setTransform(X_BM+Vec3(.5,0,0))
                .setBodyId(m_mobod.getMobilizedBodyIndex()));
        }
    }
private:
    const MobilizedBody&                    m_mobod;
    const Constraint::ConstantSpeed&        m_lock;
};

class StateSaver : public PeriodicEventReporter {
public:
    StateSaver(const MultibodySystem&           system,
               const Constraint::ConstantSpeed& lock,
               const Integrator&                integ,
               Real reportInterval)
    :   PeriodicEventReporter(reportInterval), 
        m_system(system), m_lock(lock), m_integ(integ) 
    {   m_states.reserve(2000); }

    ~StateSaver() {}

    void clear() {m_states.clear();}
    int getNumSavedStates() const {return m_states.size();}
    const State& getState(int n) const {return m_states[n];}

    void handleEvent(const State& s) const override {
        const SimbodyMatterSubsystem& matter=m_system.getMatterSubsystem();
        const SpatialVec PG = matter.calcSystemMomentumAboutGroundOrigin(s);

        const bool isLocked = !m_lock.isDisabled(s);

        printf("%3d: %5g mom=%g,%g E=%g %s", m_integ.getNumStepsTaken(),
            s.getTime(),
            PG[0].norm(), PG[1].norm(), m_system.calcEnergy(s),
            isLocked?"LOCKED":"FREE");

        if (isLocked) {
            m_system.realize(s, Stage::Acceleration);
            printf(" lambda=%g", m_lock.getMultiplier(s));
        }
        cout << " Triggers=" << s.getEventTriggers() << endl;

        m_states.push_back(s);
    }
private:
    const MultibodySystem&              m_system;
    const Constraint::ConstantSpeed&    m_lock;
    const Integrator&                   m_integ;
    mutable Array_<State,int>           m_states;
};

class LockOn: public TriggeredEventHandler {
public:
    LockOn(const MultibodySystem& system,
        const MobilizedBody& mobod, Real lockangle, // must be 1dof
        const Constraint::ConstantSpeed& lock,
        Real low, Real high) 
    :   TriggeredEventHandler(Stage::Position), 
        m_mbs(system), m_mobod(mobod), m_lockangle(lockangle),
        m_lock(lock), m_low(low), m_high(high)
    { 
        //getTriggerInfo().setTriggerOnRisingSignTransition(false);
    }

    const Array_<Real>& getOnTimes() const {return m_onTimes;}

    Real getValue(const State& state) const override {
        if (!m_lock.isDisabled(state)) 
            return 0; // already locked
        const Real qdist = m_mobod.getOneQ(state, 0) - m_lockangle;
        return qdist;
    }

    void handleEvent
       (State& s, Real accuracy, bool& shouldTerminate) const override 
    {
        const SimbodyMatterSubsystem& matter = m_mbs.getMatterSubsystem();
        assert(m_lock.isDisabled(s));

        const Vector uin = s.getU();
        cout << "BEFORE u=" << uin << endl;
        cout << "before uerr=" << s.getUErr() << endl;

        // This is a ground-connected system -- system "center of mass" doesn't
        // really mean anything since ground's mass is infinite.
        SpatialVec PG = matter.calcSystemMomentumAboutGroundOrigin(s);
        SpatialVec PC = matter.calcSystemCentralMomentum(s);

        printf("Locking: BEFORE q=%.15g u=%.15g\n",
            m_mobod.getOneQ(s,0), m_mobod.getOneU(s,0));
        printf("  %5g G mom=%g,%g C mom=%g,%g E=%g\n", s.getTime(),
            PG[0].norm(), PG[1].norm(), PC[0].norm(), PC[1].norm(), m_mbs.calcEnergy(s));

        const Real CoefRest = 0.0, MinVel=.05;

        const UIndex ux = m_mobod.getFirstUIndex(s);
        const Real saveQ = m_mobod.getOneQ(s,0);

        m_lock.enable(s);
        m_mbs.realize(s, Stage::Dynamics);

        // We're using Poisson's definition of the coefficient of 
        // restitution, relating impulses, rather than Newton's, 
        // relating velocities, since Newton's can produce non-physical 
        // results for a multibody system. For Poisson, calculate the impulse
        // that would bring the velocity to zero, multiply by the coefficient
        // of restitution to calculate the rest of the impulse, then apply
        // both impulses to produce changes in velocity. In most cases this
        // will produce the same rebound velocity as Newton, but not always.

        Vector desiredDeltaV; // in constraint space
        Vector myDeltaV(1); // just one scalar for this constraint
        myDeltaV[0] = -uin[ux]; // dump the current velocity first
        m_lock.setMyPartInConstraintSpaceVector(s, myDeltaV, desiredDeltaV);

        Vector lambda, f, deltaU;


        cout << "USING POISSON COEF " << CoefRest << endl;

        Vector lambda0; // impulse that gets this velocity to zero
        matter.solveForConstraintImpulses(s, desiredDeltaV, lambda0);

        // This is the total impulse we want, in constraint space.
        lambda = (1+CoefRest)*lambda0;
        // Convert constraint impulse to generalized impulse.
        matter.multiplyByGTranspose(s,lambda,f);
        // Convert generalized impulse to generalized speed change.
        matter.multiplyByMInv(s,f,deltaU);
        // If the new speed is slow enough, we'll declare that it "stuck" and
        // drive it to exactly zero instead (using lambda0 instead of lambda).
        Real achievedU = uin[ux]+deltaU[ux];
        if (CoefRest > 0 && std::abs(achievedU) < MinVel) {
            cout << "  rebound " << achievedU 
                 << " too slow; drive to zero instead\n";
            cout << "  deltaU was=" << deltaU << endl;
            lambda = lambda0; f /= 1+CoefRest; deltaU /= 1+CoefRest;
            cout << "  new deltaU=" << deltaU << endl;
        }

        // Now update all the generalized speeds.
        s.updU() = uin + deltaU;
        cout << "lambda=" << lambda << endl;
        cout << "f=" << f << endl;
        cout << "du=" << deltaU << endl;       

        cout << "AFTER u=" << s.getU() << endl;

        // If this leaves us rebounding then don't turn on the constraint.
        if (std::abs(s.getU()[ux]) > SignificantReal) {
            printf("REBOUND vel=%g -- not locking.\n", s.getU()[1]);
            m_lock.disable(s);
            // Move q a small distance in the direction of u so that the
            // witness function will be non-zero and we'll consider an 
            // immediate reverse as a new event (transitions away from zero
            // are not events).
            m_mobod.setOneQ(s,0,m_lockangle+sign(s.getU()[ux])*SignificantReal); 

            m_mbs.realize(s, Stage::Acceleration);
            PG = matter.calcSystemMomentumAboutGroundOrigin(s);
            PC = matter.calcSystemCentralMomentum(s);
            printf("  %5g G mom=%g,%g C mom=%g,%g E=%g\n", s.getTime(),
                PG[0].norm(), PG[1].norm(), PC[0].norm(), PC[1].norm(), 
                m_mbs.calcEnergy(s));
            cout << "  uerr=" << s.getUErr() << endl;
            return;
        }

        // Tidy up the q to be exactly zero when we lock to avoid
        // accidental retriggering fo this event. We'll put this back
        // if we decide below not to hold the lock.
        m_mobod.setOneQ(s,0,m_lockangle);

        // Can we really hold the lock?
        m_mbs.realize(s, Stage::Acceleration);
        const Real lockForce = m_lock.getMultiplier(s);

        if (lockForce < m_low || lockForce > m_high) {
            m_lock.disable(s); // oops can't lock
            s.updU() = uin;
            m_mobod.setOneQ(s,0, saveQ); 
            printf("CAN'T LOCK: force would have been %g\n", lockForce);
            return;
        }

        printf("LOCKED: reaction force is now %g\n", lockForce);

        m_onTimes.push_back(s.getTime());

        printf("  after q=%.15g\n", m_mobod.getOneQ(s,0));

        PG = matter.calcSystemMomentumAboutGroundOrigin(s);
        PC = matter.calcSystemCentralMomentum(s);
        printf("  %5g G mom=%g,%g C mom=%g,%g E=%g\n", s.getTime(),
            PG[0].norm(), PG[1].norm(), PC[0].norm(), PC[1].norm(), m_mbs.calcEnergy(s));
        cout << "  after uerr=" << s.getUErr() << endl;
    }

private:
    const MultibodySystem&                  m_mbs; 
    const MobilizedBody&                    m_mobod;
    const Real                              m_lockangle;
    const Constraint::ConstantSpeed&        m_lock;
    const Real                              m_low, m_high;

    mutable Array_<Real> m_onTimes;
};

class LockOff: public TriggeredEventHandler {
public:
    LockOff(const MultibodySystem& system,
        MobilizedBody& mobod, Real lockangle, 
        Constraint::ConstantSpeed& lock,
        Real low, Real high) 
    :   TriggeredEventHandler(Stage::Acceleration), 
        m_system(system), m_mobod(mobod), m_lockangle(lockangle), m_lock(lock), 
        m_low(low), m_high(high)
    { 
        getTriggerInfo().setTriggerOnRisingSignTransition(false);
    }

    const Array_<Real>& getOffTimes() const {return m_offTimes;}

    Real getValue(const State& state) const override {
        if (m_lock.isDisabled(state)) return 0;
        const Real f = m_lock.getMultiplier(state);
        const Real mid = (m_high+m_low)/2;
        return f > mid ? m_high - f : f - m_low;
    }

    void handleEvent
       (State& s, Real accuracy, bool& shouldTerminate) const override 
    {
        assert(!m_lock.isDisabled(s));

        m_system.realize(s, Stage::Acceleration);
        printf("\nUNLOCK: disabling at t=%g q=%g lambda=%g",
            s.getTime(), s.getQ()[1], m_lock.getMultiplier(s));
        cout << " Triggers=" << s.getEventTriggers() << "\n\n";

        m_mobod.setOneQ(s, 0, m_lockangle); // avoid retriggering lock

        m_lock.disable(s);

        m_offTimes.push_back(s.getTime());
    }

private:
    const MultibodySystem&                  m_system; 
    const MobilizedBody&                    m_mobod;
    const Real                              m_lockangle;
    const Constraint::ConstantSpeed&        m_lock;
    const Real                              m_low;
    const Real                              m_high;

    mutable Array_<Real> m_offTimes;
};

static const Real Deg2Rad = (Real)SimTK_DEGREE_TO_RADIAN,
                  Rad2Deg = (Real)SimTK_RADIAN_TO_DEGREE;



static Real g = 9.8;

int main(int argc, char** argv) {
    static const Transform GroundFrame;
    static const Rotation ZUp(UnitVec3(XAxis), XAxis, UnitVec3(YAxis), ZAxis);
    static const Vec3 TestLoc(1,0,0);

  try { // If anything goes wrong, an exception will be thrown.

        // CREATE MULTIBODY SYSTEM AND ITS SUBSYSTEMS
    MultibodySystem             mbs;

    SimbodyMatterSubsystem      matter(mbs);
    GeneralForceSubsystem       forces(mbs);
    Force::Gravity              gravity(forces, matter, Vec3(0, -g, 0));

        // ADD BODIES AND THEIR MOBILIZERS
    const Vec3 thighHDim(.5,2,.25); 
    const Real thighVol=8*thighHDim[0]*thighHDim[1]*thighHDim[2];
    const Vec3 calfHDim(.25,2,.125); 
    const Real calfVol=8*calfHDim[0]*calfHDim[1]*calfHDim[2];
    const Real density = 1000; // water
    const Real thighMass = density*thighVol, calfMass = density*calfVol;
    Body::Rigid thighBody = 
        Body::Rigid(MassProperties(10*thighMass, Vec3(0), 
                        10*thighMass*UnitInertia::brick(thighHDim)));
    thighBody.addDecoration(Transform(), DecorativeBrick(thighHDim)
                                             .setColor(Red).setOpacity(.3));
    Body::Rigid calfBody = 
        Body::Rigid(MassProperties(calfMass, Vec3(0), 
                        calfMass*UnitInertia::brick(calfHDim)));
    calfBody.addDecoration(Transform(), DecorativeBrick(calfHDim)
                                            .setColor(Blue).setOpacity(.3));
    Body::Rigid footBody = 
        Body::Rigid(MassProperties(10*calfMass, Vec3(0), 
                        10*calfMass*UnitInertia::brick(calfHDim)));
    footBody.addDecoration(Transform(), DecorativeBrick(calfHDim)
                                            .setColor(Black).setOpacity(.3));
    MobilizedBody::Pin thigh(matter.Ground(), Vec3(0),
                             thighBody, Vec3(0,thighHDim[1],0));
    MobilizedBody::Pin calf(thigh, Vec3(0,-thighHDim[1],0),
                             calfBody, Vec3(0,calfHDim[1],0));
    MobilizedBody::Pin foot(calf, Vec3(0,-calfHDim[1],0),
                             footBody, Vec3(0,calfHDim[1],0));
    //Constraint::PrescribedMotion pres(matter, 
    //    new Function::Constant(Pi/4,1), foot, MobilizerQIndex(0));
    Constraint::PrescribedMotion pres(matter, 
       new Function::Sinusoid(Pi/4,2*Pi,-Pi/4), foot, MobilizerQIndex(0));

    Constraint::ConstantSpeed lock(calf,0);
    lock.setDisabledByDefault(true);

    Visualizer viz(mbs);
    viz.addDecorationGenerator(new ShowLocking(calf,lock));
    mbs.addEventReporter(new Visualizer::Reporter(viz, ReportInterval));

    //ExplicitEulerIntegrator integ(mbs);
    //CPodesIntegrator integ(mbs,CPodes::BDF,CPodes::Newton);
    //RungeKuttaFeldbergIntegrator integ(mbs);
    //RungeKuttaMersonIntegrator integ(mbs);
    RungeKutta3Integrator integ(mbs);
    //VerletIntegrator integ(mbs);
    integ.setAccuracy(1e-3);
    //integ.setAllowInterpolation(false);

    StateSaver* stateSaver = new StateSaver(mbs,lock,integ,ReportInterval);
    mbs.addEventReporter(stateSaver);

    const Real low=-110000*4, high=110000*4;
    const Real lockAngle = 0;
    LockOn* lockOn = new LockOn(mbs,calf,lockAngle,lock,low,high);
    mbs.addEventHandler(lockOn);

    LockOff* lockOff = new LockOff(mbs,calf,lockAngle,lock,low,high);
    mbs.addEventHandler(lockOff);
  
    State s = mbs.realizeTopology(); // returns a reference to the the default state
    mbs.realizeModel(s); // define appropriate states for this System
    mbs.realize(s, Stage::Instance); // instantiate constraints if any

    thigh.setAngle(s, 20*Deg2Rad);
    calf.setAngle(s, 90*Deg2Rad);
    //calf.setRate(s, -10);

    mbs.realize(s, Stage::Velocity);
    viz.report(s);

    mbs.realize(s, Stage::Acceleration);


    cout << "q=" << s.getQ() << endl;
    cout << "u=" << s.getU() << endl;
    cout << "qerr=" << s.getQErr() << endl;
    cout << "uerr=" << s.getUErr() << endl;
    cout << "udoterr=" << s.getUDotErr() << endl;
    cout << "mults=" << s.getMultipliers() << endl;
    cout << "qdot=" << s.getQDot() << endl;
    cout << "udot=" << s.getUDot() << endl;
    cout << "qdotdot=" << s.getQDotDot() << endl;
    viz.report(s);

    cout << "Initial configuration shown. Next? ";
    getchar();

    Assembler(mbs).assemble(s);
    viz.report(s);
    cout << "Assembled configuration shown. Ready? ";
    getchar();
    
    // Simulate it.
    const double start = realTime();

    // TODO: misses some transitions if interpolating
    //integ.setAllowInterpolation(false);
    TimeStepper ts(mbs, integ);
    ts.initialize(s);
    ts.stepTo(RunTime);

    const double timeInSec = realTime()-start;
    const int evals = integ.getNumRealizations();
    cout << "Done -- took " << integ.getNumStepsTaken() << " steps in " <<
        timeInSec << "s for " << ts.getTime() << "s sim (avg step=" 
        << (1000*ts.getTime())/integ.getNumStepsTaken() << "ms) " 
        << (1000*ts.getTime())/evals << "ms/eval\n";
    cout << "On times: " << lockOn->getOnTimes() << endl;
    cout << "Off times: " << lockOff->getOffTimes() << endl;

    printf("Used Integrator %s at accuracy %g:\n", 
        integ.getMethodName(), integ.getAccuracyInUse());
    printf("# STEPS/ATTEMPTS = %d/%d\n", integ.getNumStepsTaken(), integ.getNumStepsAttempted());
    printf("# ERR TEST FAILS = %d\n", integ.getNumErrorTestFailures());
    printf("# REALIZE/PROJECT = %d/%d\n", integ.getNumRealizations(), integ.getNumProjections());

    while(true) {
        for (int i=0; i < stateSaver->getNumSavedStates(); ++i) {
            viz.report(stateSaver->getState(i));
        }
        getchar();
    }

  } 
  catch (const std::exception& e) {
    printf("EXCEPTION THROWN: %s\n", e.what());
    exit(1);
  }
  catch (...) {
    printf("UNKNOWN EXCEPTION THROWN\n");
    exit(1);
  }

}