1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
|
/* -------------------------------------------------------------------------- *
* Simbody(tm) Adhoc test: Moving Muscle Point Moment Arm *
* -------------------------------------------------------------------------- *
* This is part of the SimTK biosimulation toolkit originating from *
* Simbios, the NIH National Center for Physics-Based Simulation of *
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody. *
* *
* Portions copyright (c) 2013 Stanford University and the Authors. *
* Authors: Michael Sherman *
* Contributors: *
* *
* Licensed under the Apache License, Version 2.0 (the "License"); you may *
* not use this file except in compliance with the License. You may obtain a *
* copy of the License at http://www.apache.org/licenses/LICENSE-2.0. *
* *
* Unless required by applicable law or agreed to in writing, software *
* distributed under the License is distributed on an "AS IS" BASIS, *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
* See the License for the specific language governing permissions and *
* limitations under the License. *
* -------------------------------------------------------------------------- */
#include "Simbody.h"
#include <iostream>
using namespace SimTK;
using std::cout; using std::endl;
// Uncomment this to use an explicit rack-and-pinion mechanism rather than
// the moving muscle point.
#define USE_RACK
/*
In biomechanics muscle forces are modeled as acting on the system via
frictionless cables anchored at an "origin point" on one bone and following a
curved path over obstacles to a final anchor at an "insertion point" on another
bone. The cables have uniform tension and apply forces to the end points and
the obstacles over which they pass.
Because it can be very expensive to calculate the actual path, obstacle
surfaces are often replaced by simplified representations involving "via points"
(frictionless eyelets fixed to bones), or "moving muscle points" (MMPs). An MMP
is a via point that moves around on its body's surface, with its location P(q)
given in its body's local frame as a smooth kinematic function of a designated
generalized coordinate q. The function P(q) is typically a vector-valued spline
fit through point locations measured at sampled coordinate values taken on a
cadaver or a more complex computational model.
For information on how we calculate moment arm in OpenSim using Simbody's
tools, see the paper
Sherman MA, Seth A, Delp SL. What is moment arm? Calculating muscle
effectiveness in biomechanical models using generalized coordinates. Proc.
ASME IDETC/CIE Conference, Paper DETC2013-13633, Aug 2013, Portland, Oregon.
http://doi.org/10.1115/DETC2013-13633
This paper discusses problems with MMPs. The method demonstrated below addresses
those problems allowing meaningful moment arms to be calculate in models with
MMPs.
We would like to ensure that the moment arm and dynamics we calculate using the
reduced model with MMPs is the same as we would have gotten with the more
complex model, assuming that P(q) is the same in both models. (Reaction forces
will unavoidably differ, but accelerations should be the same.) One way to do
that is to calculate moment arm by perturbation r(theta)=dL/dtheta where L is
the length of the muscle path. We would like to be able to obtain the same value
for r(theta) with an instantaneous calculation r(theta)=tau_theta/s where s
is the tension in the muscle path and tau_theta is the generalized torque
produced about theta by that tension. The two values are equivalent if all
constraints in the model are workless. For an MMP, there must be a workless
constraint that accounts for its motion. In the real system, that will be
produced by the mechanical contacts and tendons that form the joint. In the MMP
model we don't have that mechanical system present but would like to treat it as
though motion were caused by an equivalent "gearbox" driven by q.
In this example, we will build a simplified knee-like mechanism in which the
gearbox is explicitly present, and then attempt to get the same moment arm from
a simplified model in which only P(q) is known. The mechanism looks like this:
/ femur
.I/ I=insertion point fixed on femur
M . / M=muscle path of interest (dots)
. @ q
P---<--===-->--- rack
. |
. | tibia
.O O=origin point fixed on tibia (fixed to Ground)
|
||| Ground
We have built a rack mechanism to replace the patella for determining where
point P is located as a function of q. Specifically, given a pitch we can find
P=(Px,Py,Pz)=(P0x + pitch*q, P0y, P0z) and dP/dq=(pitch,0,0). The muscle path
length L=|P-O|+|I-P|.
*/
/* This muscle uses a via point fixed to the rack body. */
class MuscleVP : public Force::Custom::Implementation {
public:
MuscleVP(const SimbodyMatterSubsystem& matter,
const MobilizedBody& A, const Vec3& origin,
const MobilizedBody& V, const Vec3& via,
const MobilizedBody& B, const Vec3& insertion,
Real stiffness, Real zeroLength)
: m_matter(matter), m_A(A), m_ptA(origin), m_V(V), m_ptV(via),
m_B(B), m_ptB(insertion), m_k(stiffness), m_zero(zeroLength),
m_tension(NaN)
{
}
Real calcLength(const State& state) const {
// End points and via point in Ground.
const Vec3 ptA = m_A.findStationLocationInGround(state, m_ptA);
const Vec3 ptB = m_B.findStationLocationInGround(state, m_ptB);
const Vec3 ptV = m_V.findStationLocationInGround(state, m_ptV);
const Vec3 A2V(ptV - ptA), B2V(ptV - ptB);
const Real Alen = A2V.norm(), Blen = B2V.norm();
const Real len = Alen + Blen;
return len;
}
Real calcTension(const State& state) const {
const Real len = calcLength(state);
if (len <= m_zero) return 0;
return m_k*(len-m_zero);
}
// Set to NaN to enable k*x tension instead. Don't forget to invalidate
// the state.
void setTension(Real tension) {m_tension=tension;}
Real getTension() const { return m_tension; }
// Calculate the muscle forces and accumulate into bodyForces array.
// (We aren't going to generate any particle or mobility forces.)
void calcForce(const State& state,
Vector_<SpatialVec>& bodyForces,
Vector_<Vec3>& particleForces,
Vector& mobilityForces) const override
{
// End points and via point in Ground.
const Vec3 ptA = m_A.findStationLocationInGround(state, m_ptA);
const Vec3 ptB = m_B.findStationLocationInGround(state, m_ptB);
const Vec3 ptV = m_V.findStationLocationInGround(state, m_ptV);
const Vec3 A2V(ptV - ptA), B2V(ptV - ptB);
const Real Alen = A2V.norm(), Blen = B2V.norm();
const Real len = Alen + Blen;
const UnitVec3 uA2V(A2V / Alen, true), uB2V(B2V / Blen, true);
const Real tension = isNaN(m_tension)
? ((len>m_zero) ? m_k * (len - m_zero) : Real(0))
: m_tension;
const Vec3 fA = tension*uA2V;
const Vec3 fB = tension*uB2V;
m_A.applyForceToBodyPoint(state, m_ptA, fA, bodyForces);
m_B.applyForceToBodyPoint(state, m_ptB, fB, bodyForces);
m_V.applyForceToBodyPoint(state, m_ptV, -(fA + fB), bodyForces);
}
Real calcPotentialEnergy(const State&) const override { return 0; }
private:
const SimbodyMatterSubsystem& m_matter;
const MobilizedBody m_A, m_V, m_B;
const Vec3 m_ptA, m_ptV, m_ptB;
const Real m_k, m_zero;
Real m_tension; // NaN to calculate as k*x
};
/* This muscle uses a differentiable function
P(q)_A=P0_A + (pitch, 0, 0)*q
to determine the location of a moving muscle point on the origin body A;
there is no rack body. */
class MuscleMMP : public Force::Custom::Implementation {
public:
MuscleMMP(const SimbodyMatterSubsystem& matter,
const MobilizedBody& A, const Vec3& origin,
const MobilizedBody& B, const Vec3& insertion,
const Vec3& P0_A, Real pitch,
Real stiffness, Real zeroLength)
: m_matter(matter), m_A(A), m_ptA(origin), m_B(B), m_ptB(insertion),
m_P0(P0_A), m_pitch(pitch),
m_k(stiffness), m_zero(zeroLength), m_tension(NaN)
{
}
// Calculate P(q), in A frame.
Vec3 calcP(const State& state) const {
const Real q = m_B.getOneQ(state, MobilizerQIndex(0));
return m_P0 + Vec3(m_pitch*q, 0, 0);
}
// Calculate dP/dq.
Vec3 calcdPdq(const State& state) const {
return Vec3(m_pitch, 0, 0);
}
void calcPathPoints(const State& state, Array_<Vec3>& pts_G) const {
// End points and moving muscle point in Ground.
const Vec3 ptA = m_A.findStationLocationInGround(state, m_ptA);
const Vec3 ptP = m_A.findStationLocationInGround(state, calcP(state));
const Vec3 ptB = m_B.findStationLocationInGround(state, m_ptB);
pts_G.clear();
pts_G.push_back(ptA); pts_G.push_back(ptP); pts_G.push_back(ptB);
}
Real calcLength(const State& state) const {
// End points and via point in Ground.
const Vec3 ptA = m_A.findStationLocationInGround(state, m_ptA);
const Vec3 ptP = m_A.findStationLocationInGround(state, calcP(state));
const Vec3 ptB = m_B.findStationLocationInGround(state, m_ptB);
const Vec3 A2P(ptP - ptA), B2P(ptP - ptB);
const Real Alen = A2P.norm(), Blen = B2P.norm();
const Real len = Alen + Blen;
return len;
}
Real calcTension(const State& state) const {
const Real len = calcLength(state);
if (len <= m_zero) return 0;
return m_k*(len - m_zero);
}
// Set to NaN to enable k*x tension instead. Don't forget to invalidate
// the state.
void setTension(Real tension) { m_tension = tension; }
Real getTension() const { return m_tension; }
// Calculate the muscle forces and accumulate into bodyForces Vector, plus
// a correction force that is added to the mobilityForces Vector.
void calcForce(const State& state,
Vector_<SpatialVec>& bodyForces,
Vector_<Vec3>& particleForces,
Vector& mobilityForces) const override
{
// End points and via point in Ground.
const Vec3 ptA = m_A.findStationLocationInGround(state, m_ptA);
const Vec3 ptB = m_B.findStationLocationInGround(state, m_ptB);
const Vec3 ptP_A = calcP(state);
const Vec3 ptP = m_A.findStationLocationInGround(state, ptP_A);
const Vec3 A2P(ptP - ptA), B2P(ptP - ptB);
const Real Alen = A2P.norm(), Blen = B2P.norm();
const Real len = Alen + Blen;
const UnitVec3 uA2P(A2P / Alen, true), uB2P(B2P / Blen, true);
const Real tension = isNaN(m_tension)
? ((len>m_zero) ? m_k * (len - m_zero) : Real(0))
: m_tension;
const Vec3 fA = tension*uA2P;
const Vec3 fB = tension*uB2P;
const Vec3 fP = -(fA + fB);
const Real f = ~calcdPdq(state)*fP;
m_A.applyForceToBodyPoint(state, m_ptA, fA, bodyForces);
m_B.applyForceToBodyPoint(state, m_ptB, fB, bodyForces);
m_A.applyForceToBodyPoint(state, ptP_A, fP, bodyForces);
m_B.applyOneMobilityForce(state, MobilizerQIndex(0), f, mobilityForces);
}
Real calcPotentialEnergy(const State&) const override { return 0; }
private:
const SimbodyMatterSubsystem& m_matter;
const MobilizedBody m_A, m_V, m_B;
const Vec3 m_ptA, m_ptB, m_P0;
const Real m_pitch, m_k, m_zero;
Real m_tension;
};
class DrawPath : public DecorationGenerator {
public:
explicit DrawPath(const MuscleMMP& muscle)
: m_muscle(muscle) {}
void generateDecorations(const State& state,
Array_<DecorativeGeometry>& geometry) override{
Array_<Vec3> path;
m_muscle.calcPathPoints(state, path);
for (unsigned i = 1; i < path.size(); ++i) {
geometry.push_back(DecorativeLine(path[i - 1], path[i])
.setColor(Red).setLineThickness(3));
if (i + 1 < path.size())
geometry.push_back(DecorativePoint(path[i]).setColor(Cyan));
}
}
private:
const MuscleMMP& m_muscle;
};
//==============================================================================
// MAIN
//==============================================================================
int main() {
try {
// Create the system.
// ------------------
MultibodySystem system;
SimbodyMatterSubsystem matter(system);
GeneralForceSubsystem forces(system);
// Add gravity as a force element.
Force::Gravity gravity(forces, matter, -YAxis, 9.8);
// Create body specifications.
// ---------------------------
Vec3 tibiaSz(.07, 1., .05), femurSz(.1, 1., .05), rackSz(1, .02, .02);
Vec3 origin_T(-tibiaSz[0] / 2, -tibiaSz[1] / 6, 0);
Vec3 insertion_F(-femurSz[0] / 2, 0.9*femurSz[1] / 2, 0);
Vec3 mmp_R(-rackSz[0]/2, 0, 0);
// This is where mmp is in the tibia frame when q=0.
Real rackHtInTibia = 0.9*tibiaSz[1]/2;
Vec3 P0_A(-rackSz[0]/2, rackHtInTibia, 0);
Body::Rigid tibiaBody(MassProperties(1, Vec3(0),
UnitInertia::brick(tibiaSz / 2.)));
tibiaBody.addDecoration(DecorativeBrick(tibiaSz / 2.).setColor(Green));
tibiaBody.addDecoration(DecorativePoint(origin_T));
Body::Rigid femurBody(MassProperties(1, Vec3(0),
UnitInertia::brick(femurSz / 2.)));
femurBody.addDecoration(DecorativeBrick(femurSz / 2.).setColor(Blue));
femurBody.addDecoration(DecorativePoint(insertion_F));
Body::Rigid rackBody(MassProperties(.01, Vec3(0),
UnitInertia::brick(rackSz/2.)));
rackBody.addDecoration(DecorativeBrick(rackSz / 2.).setColor(Red));
// Create mobilized bodies.
// ------------------------
MobilizedBody::Weld tibia(
matter.Ground(), Vec3(0),
tibiaBody, Vec3(0, -tibiaSz[1] / 2, 0));
MobilizedBody::Pin femur(
tibia, Vec3(0, tibiaSz[1] / 2, 0),
femurBody, Vec3(0, -femurSz[1] / 2, 0));
// Visualize.
// ----------
Visualizer viz(system);
const Real pitch = .3; // m/radian
#ifdef USE_RACK
MobilizedBody::Slider rack(
tibia, Vec3(0, rackHtInTibia, 0),
rackBody, Vec3(0));
// Add rack & pinion constraint.
Array_<MobilizedBodyIndex> mobods(2);
Array_<MobilizerQIndex> coords(2);
mobods[0] = femur; coords[0] = MobilizerQIndex(0);
mobods[1] = rack; coords[1] = MobilizerQIndex(0);
Constraint::CoordinateCoupler(matter,
new Function::Linear(Vector(Vec3(-pitch,1,0))),
mobods, coords);
MuscleVP* mmp = new MuscleVP(matter, tibia, origin_T, rack, mmp_R,
femur, insertion_F, 100., 2.75);
viz.addRubberBandLine(tibia, origin_T, rack, mmp_R,
DecorativeLine().setColor(Red));
viz.addRubberBandLine(femur, insertion_F, rack, mmp_R,
DecorativeLine().setColor(Red));
#else
MuscleMMP* mmp = new MuscleMMP(matter, tibia, origin_T, femur, insertion_F,
P0_A, pitch, 100., 2.75);
viz.addDecorationGenerator(new DrawPath(*mmp));
#endif
Force::Custom muscle(forces, mmp);
// Add some damping.
// -----------------
//Force::MobilityLinearDamper(forces, femur, MobilizerQIndex(0), 1.);
// Report at the framerate (real-time).
system.addEventReporter(new Visualizer::Reporter(viz, 1. / 30));
// Initialize the system and state.
// --------------------------------
State state = system.realizeTopology();
femur.lockAt(state, -Pi/4);
system.projectQ(state, 1e-10);
// Calculate moment arm by dL/dq.
system.realize(state);
Real q0 = femur.getAngle(state);
Real L0 = mmp->calcLength(state);
femur.lockAt(state, q0 + 1e-6);
system.projectQ(state, 1e-10);
Real q1 = femur.getAngle(state);
Real L1 = mmp->calcLength(state);
Real r = (L1 - L0) / (q1-q0);
printf("q1-q0=%g, L1-L0=%g, r=%g\n",
q1 - q0, L1 - L0, r);
femur.unlock(state);
printf("Assembled:\n");
viz.report(state);
getchar();
//----------------------------
// CALCULATE COUPLING MATRIX C
//----------------------------
state.updU() = 0;
femur.lockAt(state, 1., Motion::Velocity);
system.realize(state, Stage::Velocity);
cout << "before project u=" << state.getU() << endl;
system.projectU(state, 1e-10);
cout << "after project u=" << state.getU()
<< " uerr=" << state.getUErr() << endl;
const Vector C(state.getU());
femur.unlock(state);
state.updU() = 0;
Vector_<SpatialVec> bodyForces;
Vector_<Vec3> particleForces;
Vector mobilityForces;
mmp->setTension(1); // override k*x spring force with unit tension
state.invalidateAllCacheAtOrAbove(Stage::Velocity);
system.realize(state, Stage::Velocity);
muscle.calcForceContribution(state, bodyForces, particleForces,
mobilityForces);
mmp->setTension(NaN); // back to k*x spring
cout << "bodyForces=" << bodyForces << endl;
cout << "mobilityForces=" << mobilityForces << endl;
Vector equivForces;
matter.multiplyBySystemJacobianTranspose(state, bodyForces, equivForces);
equivForces += mobilityForces;
cout << "tension=1 --> equivForces=" << equivForces << endl;
Real r2 = ~C*equivForces;
printf("gen force r=%g\n", r2);
getchar();
// Simulate.
// ---------
RungeKuttaMersonIntegrator integ(system);
TimeStepper ts(system, integ);
ts.initialize(state);
ts.stepTo(5.0);
} catch (const std::exception& e) {
std::cout << "Exception: " << e.what() << std::endl;
return 1;
}
return 0;
};
|