File: ParallelIpoptTest.cpp

package info (click to toggle)
simbody 3.7%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 72,896 kB
  • sloc: cpp: 248,827; ansic: 18,240; sh: 29; makefile: 24
file content (231 lines) | stat: -rw-r--r-- 8,138 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
/* -------------------------------------------------------------------------- *
*                        Simbody(tm): SimTKmath                              *
* -------------------------------------------------------------------------- *
* This is part of the SimTK biosimulation toolkit originating from           *
* Simbios, the NIH National Center for Physics-Based Simulation of           *
* Biological Structures at Stanford, funded under the NIH Roadmap for        *
* Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody.  *
*                                                                            *
* Portions copyright (c) 2006-12 Stanford University and the Authors.        *
* Authors: Jack Middleton                                                    *
* Contributors:                                                              *
*                                                                            *
* Licensed under the Apache License, Version 2.0 (the "License"); you may    *
* not use this file except in compliance with the License. You may obtain a  *
* copy of the License at http://www.apache.org/licenses/LICENSE-2.0.         *
*                                                                            *
* Unless required by applicable law or agreed to in writing, software        *
* distributed under the License is distributed on an "AS IS" BASIS,          *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.   *
* See the License for the specific language governing permissions and        *
* limitations under the License.                                             *
* -------------------------------------------------------------------------- */

/*This test is the parallelized version of IpoptTest in the regression suit.
* Multiple instances of Ipopt are executed concurrently on different threads
* to verfy for Ipopt thread-safety. If Ipopt is not thread-safe, there will 
* be a segmentation fault.*/

#include "SimTKmath.h"

#include <iostream>
#include <future>
#include <vector>
using std::cout;
using std::endl;
using std::future;
using std::vector;
using SimTK::Vector;
using SimTK::Matrix;
using SimTK::Real;
using SimTK::Optimizer;
using SimTK::OptimizerSystem;


static int  NUMBER_OF_PARAMETERS = 4;
static int  NUMBER_OF_EQUALITY_CONSTRAINTS = 1;
static int  NUMBER_OF_INEQUALITY_CONSTRAINTS = 1;
static int  NUMBER_OF_THREADS = 10;
/*
* Adapted from Ipopt's hs071 example problem
*
*     min   x1*x4*(x1 + x2 + x3)  +  x3
*     s.t.  x1*x2*x3*x4                   >=  25
*           x1**2 + x2**2 + x3**2 + x4**2  =  40
*           1 <=  x1,x2,x3,x4  <= 5
*
*     Starting point:
*        x = (1, 5, 5, 1)
*
*     Optimal solution:
*        x = (1.00000000, 4.74299963, 3.82114998, 1.37940829)
*
*/

class ProblemSystem : public OptimizerSystem {
public:


    int objectiveFunc(const Vector &coefficients, bool new_coefficients, Real& f) const override {
        const Real *x;

        x = &coefficients[0];

        f = x[0] * x[3] * (x[0] + x[1] + x[2]) + x[2];
        return(0);
    }

    int gradientFunc(const Vector &coefficients, bool new_coefficients, Vector &gradient) const override {
        const Real *x;

        x = &coefficients[0];

        gradient[0] = x[0] * x[3] + x[3] * (x[0] + x[1] + x[2]);
        gradient[1] = x[0] * x[3];
        gradient[2] = x[0] * x[3] + 1;
        gradient[3] = x[0] * (x[0] + x[1] + x[2]);

        return(0);

    }
    int constraintFunc(const Vector &coefficients, bool new_coefficients, Vector &constraints)  const override {
        const Real *x;

        x = &coefficients[0];
        constraints[0] = x[0] * x[0] + x[1] * x[1] + x[2] * x[2] + x[3] * x[3] - 40.0;
        constraints[1] = x[0] * x[1] * x[2] * x[3] - 25.0;

        return(0);
    }

    int constraintJacobian(const Vector& coefficients, bool new_coefficients, Matrix& jac)  const override {
        //  int constraintJacobian( const Vector& coefficients, const bool new_coefficients, Vector& jac)  const{
        const Real *x;

        x = &coefficients[0];

        jac(0, 0) = 2 * x[0];
        jac(0, 1) = 2 * x[1];
        jac(0, 2) = 2 * x[2];
        jac(0, 3) = 2 * x[3];
        jac(1, 0) = x[1] * x[2] * x[3];
        jac(1, 1) = x[0] * x[2] * x[3];
        jac(1, 2) = x[0] * x[1] * x[3];
        jac(1, 3) = x[0] * x[1] * x[2];

        return(0);
    }

    /*   ProblemSystem() : OptimizerSystem( NUMBER_OF_PARAMETERS, NUMBER_OF_CONSTRAINTS ) {} */

    ProblemSystem(const int numParams, const int numEqualityConstraints, const int numInequalityConstraints) :
        OptimizerSystem(numParams)
    {
        setNumEqualityConstraints(numEqualityConstraints);
        setNumInequalityConstraints(numInequalityConstraints);
    }

};

struct OptimizationResult {
    Real f;
    Vector results;
    bool success;
};

void printResults(const OptimizationResult& optimizationResults) {
    printf("IpoptTest.cpp: f = %f params = ", optimizationResults.f);
    for (int i = 0; i < NUMBER_OF_PARAMETERS; i++) {
        printf(" %f", optimizationResults.results[i]);
    }
    printf("\n");
}

int printError(const OptimizationResult& optimizationResults) {

    int returnValue = 0;
    static const Real TOL = 1e-4;
    Real expected[] = { 1.00000000, 4.74299963, 3.82114998, 1.37940829 };
    for (int i = 0; i < NUMBER_OF_PARAMETERS; i++) {
        if (optimizationResults.results[i] > expected[i] + TOL
            || optimizationResults.results[i] < expected[i] - TOL) {
            printf(" IpoptTest.cpp: error results[%d] = %f  expected=%f \n", i,
                optimizationResults.results[i], expected[i]);
            returnValue = 1;
        }
    }
    return returnValue;
}

int main() {

    int i;
    int returnValue = 0;
    /* create the system to be optimized */
    ProblemSystem sys(NUMBER_OF_PARAMETERS, NUMBER_OF_EQUALITY_CONSTRAINTS, NUMBER_OF_INEQUALITY_CONSTRAINTS);

    Vector results(NUMBER_OF_PARAMETERS);
    Vector lower_bounds(NUMBER_OF_PARAMETERS);
    Vector upper_bounds(NUMBER_OF_PARAMETERS);

    /* set initial conditions */
    results[0] = 1.0;
    results[1] = 5.0;
    results[2] = 5.0;
    results[3] = 1.0;

    /* set bounds */
    for (i = 0; i<NUMBER_OF_PARAMETERS; i++) {
        lower_bounds[i] = 1.0;
        upper_bounds[i] = 5.0;
    }

    sys.setParameterLimits(lower_bounds, upper_bounds);

    //using future to easily collect the results of the optimizations
    vector<future<OptimizationResult>> futures;

    /* compute multiple optimizations. 
    use an internal copy of opt as Optimizer cannot be 
    shared across threads.*/
    auto func([&sys](const Vector& startingValues) {
        OptimizationResult optimizationResult;
        optimizationResult.success = true;
        try {
            Optimizer opt(sys);
            opt.setConvergenceTolerance(1e-4);
            opt.setDiagnosticsLevel(0);
            opt.setLimitedMemoryHistory(500); // works well for our small systems
            opt.setAdvancedBoolOption("warm_start", true);
            opt.setAdvancedRealOption("obj_scaling_factor", 1);
            opt.setAdvancedRealOption("nlp_scaling_max_gradient", 1);
            optimizationResult.results = startingValues;
            optimizationResult.f = opt.optimize(optimizationResult.results);
        }
        catch (const std::exception& e) {
            std::cout << e.what() << std::endl;
            optimizationResult.success = false; // failure
            printf("IpoptTest.cpp: Caught exception \n");
        }
        return optimizationResult;
    });

    //launch threads
    for (int iThread(0); iThread < NUMBER_OF_THREADS; ++iThread) {
        futures.emplace_back(
            std::async(std::launch::async, func, results));
    }
 
    //collect optimization results
    cout << "Printing the result of " << NUMBER_OF_THREADS 
        << " concurrent optimizations.\n";
    for (auto& f : futures) {
        f.wait();
        auto ans(f.get());
        returnValue |= (!ans.success);
        printResults(ans);
        returnValue |= printError(ans);
    }

    return(returnValue);
}