1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
|
/**
This is a stripped down version of the collision playground example to illustrate the
behavior of the collision detection system and a few geometry dependent odities.
I have removed the ground plane and collision cliques for the purposes of this
example.
try the following:
1)all spheres: collisions are detected forces are drawn but not applied. No collision interaction;
2)all cubes(size 0.4-0.5): Collisions are detected but notice that the moving cube "cuts" into the stationary one
before collision is detected. No forces are generated at this stage. Collisions seem to occur
on a spherical boundary within the cube. This is similar to the contact playground example.
*/
#include "SimTKsimbody.h"
#include <cstdio>
#include <exception>
#include <algorithm>
#include <iostream>
#include <fstream>
#include <string.h>
using std::cout; using std::endl;
using namespace SimTK;
Array_<State> saveEm;
static const Real TimeScale = 0.21;
static const Real FrameRate = 30;
static const Real ReportInterval = TimeScale/FrameRate;
static const Real ForceScale = .25;
static const Real MomentScale = .5;
class ForceArrowGenerator : public DecorationGenerator {
public:
ForceArrowGenerator(const MultibodySystem& system,
const CompliantContactSubsystem& complCont)
: m_system(system), m_compliant(complCont) {}
virtual void generateDecorations(const State& state, Array_<DecorativeGeometry>& geometry) override {
const Vec3 frcColors[] = {Red,Orange,Cyan};
const Vec3 momColors[] = {Blue,Green,Purple};
m_system.realize(state, Stage::Velocity);
const int ncont = m_compliant.getNumContactForces(state);
for (int i=0; i < ncont; ++i) {
const ContactForce& force = m_compliant.getContactForce(state,i);
const ContactId id = force.getContactId();
const Vec3& frc = force.getForceOnSurface2()[1];
const Vec3& mom = force.getForceOnSurface2()[0];
Real frcMag = frc.norm(), momMag=mom.norm();
int frcThickness = 1, momThickness = 1;
Real frcScale = ForceScale, momScale = ForceScale;
while (frcMag > 10)
frcThickness++, frcScale /= 10, frcMag /= 10;
while (momMag > 10)
momThickness++, momScale /= 10, momMag /= 10;
DecorativeLine frcLine(force.getContactPoint(),
force.getContactPoint() + frcScale*frc);
DecorativeLine momLine(force.getContactPoint(),
force.getContactPoint() + momScale*mom);
frcLine.setColor(frcColors[id%3]);
momLine.setColor(momColors[id%3]);
frcLine.setLineThickness(2*frcThickness);
momLine.setLineThickness(2*momThickness);
geometry.push_back(frcLine);
geometry.push_back(momLine);
ContactPatch patch;
const bool found = m_compliant.calcContactPatchDetailsById(state,id,patch);
//cout << "patch for id" << id << " found=" << found << endl;
//cout << "resultant=" << patch.getContactForce() << endl;
//cout << "num details=" << patch.getNumDetails() << endl;
for (int i=0; i < patch.getNumDetails(); ++i) {
const ContactDetail& detail = patch.getContactDetail(i);
const Real peakPressure = detail.getPeakPressure();
// Make a black line from the element's contact point in the normal
// direction, with length proportional to log(peak pressure)
// on that element.
DecorativeLine normal(detail.getContactPoint(),
detail.getContactPoint()+ std::log10(peakPressure)
* detail.getContactNormal());
normal.setColor(Black);
geometry.push_back(normal);
// Make a red line that extends from the contact
// point in the direction of the slip velocity, of length 3*slipvel.
DecorativeLine slip(detail.getContactPoint(),
detail.getContactPoint()+3*detail.getSlipVelocity());
slip.setColor(Red);
geometry.push_back(slip);
}
}
}
private:
const MultibodySystem& m_system;
const CompliantContactSubsystem& m_compliant;
};
class MyReporter : public PeriodicEventReporter {
public:
MyReporter(const MultibodySystem& system,
const CompliantContactSubsystem& complCont,
Real reportInterval)
: PeriodicEventReporter(reportInterval), m_system(system),
m_compliant(complCont)
{}
~MyReporter() {}
void handleEvent(const State& state) const override {
m_system.realize(state, Stage::Dynamics);
/* cout << state.getTime() << ": E = " << m_system.calcEnergy(state)
<< " Ediss=" << m_compliant.getDissipatedEnergy(state)
<< " E+Ediss=" << m_system.calcEnergy(state)
+m_compliant.getDissipatedEnergy(state)
<< endl;*/
const int ncont = m_compliant.getNumContactForces(state);
if(ncont>0)
{
cout << "Num contacts: " << m_compliant.getNumContactForces(state) << endl;
for (int i=0; i < ncont; ++i) {
const ContactForce& force = m_compliant.getContactForce(state,i);
cout << force;
}
}
saveEm.push_back(state);
}
private:
const MultibodySystem& m_system;
const CompliantContactSubsystem& m_compliant;
};
// These are the item numbers for the entries on the Run menu.
static const int RunMenuId = 3, HelpMenuId = 7;
static const int GoItem = 1, ReplayItem=2, QuitItem=3;
// This is a periodic event handler that interrupts the simulation on a regular
// basis to poll the InputSilo for user input. If there has been some, process it.
// This one does nothing but look for the Run->Quit selection.
class UserInputHandler : public PeriodicEventHandler {
public:
UserInputHandler(Visualizer::InputSilo& silo, Real interval)
: PeriodicEventHandler(interval), m_silo(silo) {}
virtual void handleEvent(State& state, Real accuracy,
bool& shouldTerminate) const override
{
int menuId, item;
if (m_silo.takeMenuPick(menuId, item) && menuId==RunMenuId && item==QuitItem)
shouldTerminate = true;
}
private:
Visualizer::InputSilo& m_silo;
};
int main() {
try
{ // Create the system.
MultibodySystem system;
SimbodyMatterSubsystem matter(system);
GeneralForceSubsystem forces(system);
/// uncoment gravity to get some sort of collision interaction
/// for cylinder mesh
// Force::UniformGravity gravity(forces, matter,Vec3(0,0.001,0), 2);
ContactTrackerSubsystem tracker(system);
//GeneralContactSubsystem contactsys(system);
CompliantContactSubsystem contactForces(system, tracker);
contactForces.setTrackDissipatedEnergy(true);
for(SubsystemIndex i(0); i<system.getNumSubsystems(); ++i)
{
fprintf(stderr,"subsytem name %d %s\n", (int)i,
system.getSubsystem((SubsystemIndex)i).getName().c_str());
}
const Real rad = .4;
PolygonalMesh pyramidMesh1,pyramidMesh2;
/// load cylinder forces drawn, but interaction depends on gravity???
const Real fFac =1; // to turn off friction
const Real fDis = .5*0.2; // to turn off dissipation
const Real fVis = .1*.1; // to turn off viscous friction
const Real fK = 100*1e6; // pascals
Body::Rigid pendulumBody3(MassProperties(100.0, Vec3(0), 100*Inertia(1)));
PolygonalMesh body3contact = PolygonalMesh::createSphereMesh(rad, 2);
ContactGeometry::TriangleMesh geo3(body3contact);
const DecorativeMesh mesh3(geo3.createPolygonalMesh());
pendulumBody3.addDecoration(Transform(),
DecorativeMesh(mesh3).setOpacity(.2));
pendulumBody3.addDecoration(Transform(),
DecorativeMesh(mesh3).setColor(Gray)
.setRepresentation(DecorativeGeometry::DrawWireframe)
.setOpacity(.1));
ContactSurface s1(geo3,
ContactMaterial(fK*.1,fDis*.9,fFac*.8,fFac*.7,fVis*10));
s1.setThickness(1);
s1.setShape(geo3);
//ContactGeometry::Sphere geo3(rad);
pendulumBody3.addContactSurface(Transform(),s1);
/*
std::ifstream meshFile1,meshFile2;
meshFile1.open("cyl3.obj");
pyramidMesh1.loadObjFile(meshFile1); meshFile1.close();
*/
pyramidMesh1 = PolygonalMesh::createSphereMesh(rad, 2);
ContactGeometry::TriangleMesh pyramid1(pyramidMesh1);
DecorativeMesh showPyramid1(pyramid1.createPolygonalMesh());
const Real ballMass = 200;
Body::Rigid ballBody(MassProperties(ballMass, Vec3(0),
ballMass*UnitInertia::sphere(1)));
ballBody.addDecoration(Transform(),
showPyramid1.setColor(Cyan).setOpacity(.2));
ballBody.addDecoration(Transform(),
showPyramid1.setColor(Gray)
.setRepresentation(DecorativeGeometry::DrawWireframe));
ContactSurface s2(pyramid1,
ContactMaterial(fK*.1,fDis*.9,
.1*fFac*.8,.1*fFac*.7,fVis*1));
s2.setThickness(1);
s2.setShape(pyramid1);
ballBody.addContactSurface(Transform(),/*ContactSurface(ContactGeometry::Sphere(rad),ContactMaterial(fK*.1,fDis*.9,
.1*fFac*.8,.1*fFac*.7,fVis*1))*/ s2/*.joinClique(clique1)*/);
/* Body::Rigid d(MassProperties(1.0, Vec3(0),Inertia(1)));
MobilizedBody::Pin dud(matter.Ground(),Transform(),d,Transform());
*/
MobilizedBody::Free ball(matter.Ground(), Transform(Vec3(-2,-2,0)),
ballBody, Transform(Vec3(0)));
MobilizedBody::Free ball1(matter.Ground(), Transform(Vec3(0,0,0)),
ballBody, Transform(Vec3(0)));
/*
MobilizedBody::Free ball2(matter.Ground(), Transform(Vec3(-4,0,0)),
ballBody, Transform(Vec3(0)));
*/
MobilizedBody::Free ball3(matter.Ground(), Transform(Vec3(-1,-2,0)),
ballBody, Transform(Vec3(0)));
MobilizedBody::Pin pendulum3(matter.Ground(), Transform(Vec3(-2,0,0)),
pendulumBody3, Transform(Vec3(0, 2, 0)));
ball.updBody();
ball1.updBody();
Visualizer viz(system);
viz.addDecorationGenerator(new ForceArrowGenerator(system,contactForces));
viz.setMode(Visualizer::RealTime);
viz.setDesiredBufferLengthInSec(1);
viz.setDesiredFrameRate(FrameRate);
viz.setGroundHeight(-3);
viz.setShowShadows(true);
viz.setBackgroundType(Visualizer::SolidColor);
Visualizer::InputSilo* silo = new Visualizer::InputSilo();
viz.addInputListener(silo);
Array_<std::pair<String,int> > runMenuItems;
runMenuItems.push_back(std::make_pair("Go", GoItem));
runMenuItems.push_back(std::make_pair("Replay", ReplayItem));
runMenuItems.push_back(std::make_pair("Quit", QuitItem));
viz.addMenu("Run", RunMenuId, runMenuItems);
Array_<std::pair<String,int> > helpMenuItems;
helpMenuItems.push_back(std::make_pair("TBD - Sorry!", 1));
viz.addMenu("Help", HelpMenuId, helpMenuItems);
system.addEventReporter(new MyReporter(system,contactForces,ReportInterval));
system.addEventReporter(new Visualizer::Reporter(viz, ReportInterval));
// Check for a Run->Quit menu pick every 1/4 second.
system.addEventHandler(new UserInputHandler(*silo, .25));
// system.addEventHandler(new TriggeredEventHandler(Stage::Model));
// Initialize the system and state.
system.realizeTopology();
State state = system.getDefaultState();
/*
ball.setQToFitTransform(state, Transform(Rotation(Pi/2,XAxis),
Vec3(0,-1.8,0)));
*/
//pendulum.setOneQ(state, 0, -Pi/12);
pendulum3.setOneQ(state, 0, -Pi/2);
pendulum3.setOneU(state, 0, Pi/4);
// ball.setOneU(state, 1, 0.1);
viz.report(state);
matter.updAllParticleVelocities(state);
printf("Default state\n");
/* cout << "t=" << state.getTime()
<< " q=" << pendulum.getQAsVector(state) << pendulum2.getQAsVector(state)
<< " u=" << pendulum.getUAsVector(state) << pendulum2.getUAsVector(state)
<< endl;
*/
cout << "\nChoose 'Go' from Run menu to simulate:\n";
int menuId, item;
do { silo->waitForMenuPick(menuId, item);
if (menuId != RunMenuId || item != GoItem)
cout << "\aDude ... follow instructions!\n";
} while (menuId != RunMenuId || item != GoItem);
// Simulate it.
// The system as parameterized is very stiff (mostly due to friction)
// and thus runs best with CPodes which is extremely stable for
// stiff problems. To get reasonable performance out of the explicit
// integrators (like the RKs) you'll have to run at a very loose
// accuracy like 0.1, or reduce the friction coefficients and
// maybe the stiffnesses.
//ExplicitEulerIntegrator integ(system);
CPodesIntegrator integ(system,CPodes::BDF,CPodes::Newton);
//RungeKuttaFeldbergIntegrator integ(system);
//RungeKuttaMersonIntegrator integ(system);
//RungeKutta3Integrator integ(system);
//VerletIntegrator integ(system);
//integ.setMaximumStepSize(1e-1);
//integ.setAllowInterpolation(false);
integ.setAccuracy(1e-3); // minimum for CPodes
//integ.setAccuracy(.1);
TimeStepper ts(system, integ);
ts.initialize(state);
double cpuStart = cpuTime();
double realStart = realTime();
ts.stepTo(2000.0);
const double timeInSec = realTime() - realStart;
const int evals = integ.getNumRealizations();
/* cout << "Done -- took " << integ.getNumStepsTaken() << " steps in " <<
timeInSec << "s elapsed for " << ts.getTime() << "s sim (avg step="
<< (1000*ts.getTime())/integ.getNumStepsTaken() << "ms) "
<< (1000*ts.getTime())/evals << "ms/eval\n";
cout << " CPU time was " << cpuTime() - cpuStart << "s\n";
printf("Using Integrator %s at accuracy %g:\n",
integ.getMethodName(), integ.getAccuracyInUse());
printf("# STEPS/ATTEMPTS = %d/%d\n", integ.getNumStepsTaken(), integ.getNumStepsAttempted());
printf("# ERR TEST FAILS = %d\n", integ.getNumErrorTestFailures());
printf("# REALIZE/PROJECT = %d/%d\n", integ.getNumRealizations(), integ.getNumProjections());
*/
viz.dumpStats(std::cout);
// Add as slider to control playback speed.
viz.addSlider("Speed", 1, 0, 4, 1);
viz.setMode(Visualizer::PassThrough);
silo->clear(); // forget earlier input
double speed = 1; // will change if slider moves
while(true) {
cout << "Choose Run/Replay to see that again ...\n";
int menuId, item;
silo->waitForMenuPick(menuId, item);
if (menuId != RunMenuId) {
cout << "\aUse the Run menu!\n";
continue;
}
if (item == QuitItem)
break;
if (item != ReplayItem) {
cout << "\aHuh? Try again.\n";
continue;
}
for (double i=0; i < (int)saveEm.size(); i += speed ) {
int slider; Real newValue;
if (silo->takeSliderMove(slider,newValue)) {
speed = newValue;
}
viz.report(saveEm[(int)i]);
}
}
} catch (const std::exception& e) {
std::printf("EXCEPTION THROWN: %s\n", e.what());
exit(1);
} catch (...) {
std::printf("UNKNOWN EXCEPTION THROWN\n");
exit(1);
}
return 0;
}
|