1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
|
/* -------------------------------------------------------------------------- *
* Simbody(tm) *
* -------------------------------------------------------------------------- *
* This is part of the SimTK biosimulation toolkit originating from *
* Simbios, the NIH National Center for Physics-Based Simulation of *
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody. *
* *
* Portions copyright (c) 2006-12 Stanford University and the Authors. *
* Authors: Michael Sherman *
* Contributors: *
* *
* Licensed under the Apache License, Version 2.0 (the "License"); you may *
* not use this file except in compliance with the License. You may obtain a *
* copy of the License at http://www.apache.org/licenses/LICENSE-2.0. *
* *
* Unless required by applicable law or agreed to in writing, software *
* distributed under the License is distributed on an "AS IS" BASIS, *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
* See the License for the specific language governing permissions and *
* limitations under the License. *
* -------------------------------------------------------------------------- */
#include "SimTKsimbody.h"
#include <cmath>
#include <cstdio>
#include <exception>
#include <vector>
using namespace std;
using namespace SimTK;
static const Real Deg2Rad = (Real)SimTK_DEGREE_TO_RADIAN,
Rad2Deg = (Real)SimTK_RADIAN_TO_DEGREE;
static const Transform GroundFrame;
static const Real m = 5; // kg
static const Real g = 9.8; // meters/s^2; apply in y direction
static const Real d = 0.5; // meters
int main(int argc, char** argv) {
try { // If anything goes wrong, an exception will be thrown.
MultibodySystem mbs; mbs.setUseUniformBackground(true);
GeneralForceSubsystem forces(mbs);
SimbodyMatterSubsystem pend(mbs);
DecorationSubsystem viz(mbs);
Force::UniformGravity gravity(forces, pend, Vec3(0, -g, 0));
MobilizedBody::Ball connector(pend.Ground(),
Transform(1*Vec3(0, 0, 0)),
MassProperties(1, Vec3(0,0,0), Inertia(10,20,30)),
Transform(1*Vec3(0, .5, 0)));
connector.setDefaultRadius(0.05); // for the artwork
//connector.setDefaultRotation( Rotation(Pi/4, Vec3(0,0,1) );
const Real m1 = 5;
const Real m2 = 1;
const Real radiusRatio = std::pow(m2/m1, 1./3.);
const Vec3 weight1Location(0, 0, -d/2); // in local frame of swinging body
const Vec3 weight2Location(0, 0, d/2); // in local frame of swinging body
const Vec3 COM = (m1*weight1Location+m2*weight2Location)/(m1+m2);
const MassProperties swingerMassProps
(m1+m2, COM, 1*Inertia(1,1,1) + m1*UnitInertia::pointMassAt(weight1Location)
+ m2*UnitInertia::pointMassAt(weight2Location));
MobilizedBody::Screw swinger(connector,
Transform( Rotation( 0*.7, Vec3(9,8,7) ),
1*Vec3(0,-.5,0)),
swingerMassProps,
Transform( Rotation(0*1.3, Vec3(0,0,1) ),
COM+0*Vec3(0,0,3)), // inboard joint location
0.3); // pitch
// Add a blue sphere around the weight.
viz.addBodyFixedDecoration(swinger, weight1Location,
DecorativeSphere(d/8).setColor(Blue).setOpacity(.2));
viz.addBodyFixedDecoration(swinger, weight2Location,
DecorativeSphere(radiusRatio*d/8).setColor(Green).setOpacity(.2));
viz.addRubberBandLine(GroundIndex, Vec3(0),
swinger, Vec3(0),
DecorativeLine().setColor(Blue).setLineThickness(10)
.setRepresentation(DecorativeGeometry::DrawPoints));
//forces.addMobilityConstantForce(swinger, 0, 10);
Force::ConstantTorque(forces, swinger, Vec3(0,0,10));
//forces.addConstantForce(swinger, Vec3(0), Vec3(0,10,0));
//forces.addConstantForce(swinger, Vec3(0,0,0), Vec3(10,10,0)); // z should do nothing
//forces.addMobilityConstantForce(swinger, 1, 10);
// forces.addMobilityConstantForce(swinger, 2, 60-1.2);
State s = mbs.realizeTopology(); // define appropriate states for this System
pend.setUseEulerAngles(s, true);
mbs.realizeModel(s);
mbs.realize(s);
// Create a study using the Runge Kutta Merson integrator
RungeKuttaMersonIntegrator myStudy(mbs);
myStudy.setAccuracy(1e-6);
// This will pick up decorative geometry from
// each subsystem that generates any, including of course the
// DecorationSubsystem, but not limited to it.
Visualizer display(mbs);
const Real expectedPeriod = 2*Pi*std::sqrt(d/g);
printf("Expected period: %g seconds\n", expectedPeriod);
const Real dt = 1./30; // output intervals
const Real finalTime = 1*expectedPeriod;
for (Real startAngle = 10; startAngle <= 90; startAngle += 10) {
s = mbs.getDefaultState();
connector.setQToFitRotation(s, Rotation(Pi/4, Vec3(1,1,1)) );
printf("time theta energy *************\n");
swinger.setQToFitTransform(s, Transform( Rotation( BodyRotationSequence, 0*Pi/2, XAxis, 0*Pi/2, YAxis ), Vec3(0,0,0) ));
swinger.setUToFitVelocity(s, SpatialVec(0*Vec3(1.1,1.2,1.3),Vec3(0,0,-1)));
s.updTime() = 0;
myStudy.initialize(s);
cout << "MassProperties in B=" << swinger.expressMassPropertiesInAnotherBodyFrame(myStudy.getState(),swinger);
cout << "MassProperties in G=" << swinger.expressMassPropertiesInGroundFrame(myStudy.getState());
cout << "Spatial Inertia =" << swinger.calcBodySpatialInertiaMatrixInGround(myStudy.getState());
int stepNum = 0;
for (;;) {
// Should check for errors and other interesting status returns.
myStudy.stepTo(myStudy.getTime() + dt);
const State& s = myStudy.getState(); // s is now the integrator's internal state
if ((stepNum++%10)==0) {
// This is so we can calculate potential energy (although logically
// one should be able to do that at Stage::Position).
mbs.realize(s, Stage::Dynamics);
cout << s.getTime() << ": E=" << mbs.calcEnergy(s)
<< " connector q=" << connector.getQ(s)
<< ": swinger q=" << swinger.getQ(s) << endl;
// This is so we can look at the UDots.
mbs.realize(s, Stage::Acceleration);
cout << "q =" << pend.getQ(s) << endl;
cout << "u =" << pend.getU(s) << endl;
cout << "ud=" << pend.getUDot(s) << endl;
cout << "Connector V=" << connector.getMobilizerVelocity(s) << endl;
cout << "Swinger V=" << swinger.getMobilizerVelocity(s) << endl;
const Rotation& R_MbM = swinger.getMobilizerTransform(s).R();
Vec4 aaMb = R_MbM.convertRotationToAngleAxis();
cout << "angle=" << aaMb[0] << endl;
cout << "axisMb=" << aaMb.drop1(0) << endl;
cout << "axisMb=" << ~R_MbM*aaMb.drop1(0) << endl;
}
display.report(s);
if (s.getTime() >= finalTime)
break;
}
}
}
catch (const exception& e) {
printf("EXCEPTION THROWN: %s\n", e.what());
exit(1);
}
}
|