File: PendulumExample.cpp

package info (click to toggle)
simbody 3.7%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 72,896 kB
  • sloc: cpp: 248,827; ansic: 18,240; sh: 29; makefile: 24
file content (179 lines) | stat: -rw-r--r-- 8,155 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
/* -------------------------------------------------------------------------- *
 *                               Simbody(tm)                                  *
 * -------------------------------------------------------------------------- *
 * This is part of the SimTK biosimulation toolkit originating from           *
 * Simbios, the NIH National Center for Physics-Based Simulation of           *
 * Biological Structures at Stanford, funded under the NIH Roadmap for        *
 * Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody.  *
 *                                                                            *
 * Portions copyright (c) 2006-12 Stanford University and the Authors.        *
 * Authors: Michael Sherman                                                   *
 * Contributors:                                                              *
 *                                                                            *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may    *
 * not use this file except in compliance with the License. You may obtain a  *
 * copy of the License at http://www.apache.org/licenses/LICENSE-2.0.         *
 *                                                                            *
 * Unless required by applicable law or agreed to in writing, software        *
 * distributed under the License is distributed on an "AS IS" BASIS,          *
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.   *
 * See the License for the specific language governing permissions and        *
 * limitations under the License.                                             *
 * -------------------------------------------------------------------------- */

#include "SimTKsimbody.h"

#include <cmath>
#include <cstdio>
#include <exception>
#include <vector>

using namespace std;
using namespace SimTK;

static const Real Deg2Rad = (Real)SimTK_DEGREE_TO_RADIAN,
                  Rad2Deg = (Real)SimTK_RADIAN_TO_DEGREE;

static const Transform GroundFrame;

static const Real m = 5;   // kg
static const Real g = 9.8; // meters/s^2; apply in y direction
static const Real d = 0.5; // meters

int main(int argc, char** argv) {
try { // If anything goes wrong, an exception will be thrown.

    MultibodySystem         mbs; mbs.setUseUniformBackground(true);
    GeneralForceSubsystem    forces(mbs);
    SimbodyMatterSubsystem  pend(mbs);
    DecorationSubsystem     viz(mbs);
    Force::UniformGravity gravity(forces, pend, Vec3(0, -g, 0));

    MobilizedBody::Ball connector(pend.Ground(), 
                                    Transform(1*Vec3(0, 0, 0)),
                                  MassProperties(1, Vec3(0,0,0), Inertia(10,20,30)),
                                    Transform(1*Vec3(0, .5, 0)));

    connector.setDefaultRadius(0.05); // for the artwork

    //connector.setDefaultRotation( Rotation(Pi/4, Vec3(0,0,1) );
 
    const Real m1 = 5;
    const Real m2 = 1;
    const Real radiusRatio = std::pow(m2/m1, 1./3.);
    const Vec3 weight1Location(0, 0, -d/2); // in local frame of swinging body
    const Vec3 weight2Location(0, 0,  d/2); // in local frame of swinging body
    const Vec3 COM = (m1*weight1Location+m2*weight2Location)/(m1+m2);

    const MassProperties swingerMassProps
        (m1+m2, COM, 1*Inertia(1,1,1) + m1*UnitInertia::pointMassAt(weight1Location)
                                      + m2*UnitInertia::pointMassAt(weight2Location));
    MobilizedBody::Screw swinger(connector, 
                                    Transform( Rotation( 0*.7, Vec3(9,8,7) ),
                                              1*Vec3(0,-.5,0)),
                                 swingerMassProps,
                                    Transform( Rotation(0*1.3, Vec3(0,0,1) ),
                                              COM+0*Vec3(0,0,3)),    // inboard joint location
                                 0.3); // pitch

    // Add a blue sphere around the weight.
    viz.addBodyFixedDecoration(swinger, weight1Location, 
          DecorativeSphere(d/8).setColor(Blue).setOpacity(.2));
    viz.addBodyFixedDecoration(swinger, weight2Location, 
          DecorativeSphere(radiusRatio*d/8).setColor(Green).setOpacity(.2));
    viz.addRubberBandLine(GroundIndex, Vec3(0),
                          swinger, Vec3(0),
                          DecorativeLine().setColor(Blue).setLineThickness(10)
                                          .setRepresentation(DecorativeGeometry::DrawPoints));

    //forces.addMobilityConstantForce(swinger, 0, 10);
    Force::ConstantTorque(forces, swinger, Vec3(0,0,10));
    //forces.addConstantForce(swinger, Vec3(0), Vec3(0,10,0));
    //forces.addConstantForce(swinger, Vec3(0,0,0), Vec3(10,10,0)); // z should do nothing
    //forces.addMobilityConstantForce(swinger, 1, 10);
   // forces.addMobilityConstantForce(swinger, 2, 60-1.2);

    State s = mbs.realizeTopology(); // define appropriate states for this System


    pend.setUseEulerAngles(s, true);
    mbs.realizeModel(s);

    mbs.realize(s);

    // Create a study using the Runge Kutta Merson integrator
    RungeKuttaMersonIntegrator myStudy(mbs);
    myStudy.setAccuracy(1e-6);

    // This will pick up decorative geometry from
    // each subsystem that generates any, including of course the 
    // DecorationSubsystem, but not limited to it.
    Visualizer display(mbs);


    const Real expectedPeriod = 2*Pi*std::sqrt(d/g);
    printf("Expected period: %g seconds\n", expectedPeriod);

    const Real dt = 1./30; // output intervals
    const Real finalTime = 1*expectedPeriod;

    for (Real startAngle = 10; startAngle <= 90; startAngle += 10) {
        s = mbs.getDefaultState();
        connector.setQToFitRotation(s, Rotation(Pi/4, Vec3(1,1,1)) );

        printf("time  theta      energy           *************\n");

        swinger.setQToFitTransform(s, Transform( Rotation( BodyRotationSequence, 0*Pi/2, XAxis, 0*Pi/2, YAxis ), Vec3(0,0,0) ));
        swinger.setUToFitVelocity(s, SpatialVec(0*Vec3(1.1,1.2,1.3),Vec3(0,0,-1)));

        s.updTime() = 0;
        myStudy.initialize(s);

        cout << "MassProperties in B=" << swinger.expressMassPropertiesInAnotherBodyFrame(myStudy.getState(),swinger);
        cout << "MassProperties in G=" << swinger.expressMassPropertiesInGroundFrame(myStudy.getState());
        cout << "Spatial Inertia    =" << swinger.calcBodySpatialInertiaMatrixInGround(myStudy.getState());

        int stepNum = 0;
        for (;;) {
            // Should check for errors and other interesting status returns.
            myStudy.stepTo(myStudy.getTime() + dt);
            const State& s = myStudy.getState(); // s is now the integrator's internal state

            if ((stepNum++%10)==0) {
                // This is so we can calculate potential energy (although logically
                // one should be able to do that at Stage::Position).
                mbs.realize(s, Stage::Dynamics);

                cout << s.getTime() << ": E=" << mbs.calcEnergy(s) 
                     << " connector q=" << connector.getQ(s) 
                     << ": swinger q=" << swinger.getQ(s) << endl;

                // This is so we can look at the UDots.
                mbs.realize(s, Stage::Acceleration);

                cout << "q =" << pend.getQ(s) << endl;
                cout << "u =" << pend.getU(s) << endl;
                cout << "ud=" << pend.getUDot(s) << endl;

                cout << "Connector V=" << connector.getMobilizerVelocity(s) << endl;
                cout << "Swinger V=" << swinger.getMobilizerVelocity(s) << endl;

                const Rotation& R_MbM = swinger.getMobilizerTransform(s).R();
                Vec4 aaMb = R_MbM.convertRotationToAngleAxis();
                cout << "angle=" << aaMb[0] << endl;
                cout << "axisMb=" << aaMb.drop1(0) << endl;
                cout << "axisMb=" << ~R_MbM*aaMb.drop1(0) << endl;
            }

            display.report(s);
            if (s.getTime() >= finalTime)
                break;
        }
    }
} 
catch (const exception& e) {
    printf("EXCEPTION THROWN: %s\n", e.what());
    exit(1);
}
}