1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
|
/* -------------------------------------------------------------------------- *
* Simbody(tm) - Rattleback using ellipsoid mobilizer *
* -------------------------------------------------------------------------- *
* This is part of the SimTK biosimulation toolkit originating from *
* Simbios, the NIH National Center for Physics-Based Simulation of *
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody. *
* *
* Portions copyright (c) 2009-13 Stanford University and the Authors. *
* Authors: Ajay Seth *
* Contributors: Michael Sherman *
* *
* Licensed under the Apache License, Version 2.0 (the "License"); you may *
* not use this file except in compliance with the License. You may obtain a *
* copy of the License at http://www.apache.org/licenses/LICENSE-2.0. *
* *
* Unless required by applicable law or agreed to in writing, software *
* distributed under the License is distributed on an "AS IS" BASIS, *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
* See the License for the specific language governing permissions and *
* limitations under the License. *
* -------------------------------------------------------------------------- */
/////// TODO TODO TODO ////////
// This test is currently broken because it is using the wrong kind of
// "no slip" constraint. It should be using an ellipsoid-on-halfplane
// rolling constraint but we don't have one yet.
// Thomas Uchida says he'll write one ...
/////// TODO TODO TODO ////////
#define USE_BAD_CONSTRAINTS // won't conserve energy if these are enabled
/* This program attempts to implement a rattleback (which has an ellipsoid
shape) using Simbody's Ellipsoid mobilizer (3 rotational dofs) rather than
contact constraints. A massless base plate is used to provide two sliding
dofs along the ground plane, for a total of 5 dofs (can't lift off). For
rolling, there must be 2 dofs removed by "no slip" constraint equations.
By construction the contact point between the ellipsoid and ground occurs at
a fixed point in the base plate frame; you can see that in the animation. */
#include "Simbody.h"
#include <iostream>
using namespace SimTK;
// A periodic reporter to dump out the energy and momentum.
// The total energy should be conserved throughout the simulation.
class EnergyReporter : public PeriodicEventReporter {
public:
EnergyReporter(const MultibodySystem& system,
const MobilizedBody& body, Real interval)
: PeriodicEventReporter(interval), system(system), body(body) {}
void handleEvent(const State& state) const override {
system.realize(state, Stage::Dynamics);
Real energy = system.calcEnergy(state);
SpatialVec momentum = system.getMatterSubsystem()
.calcSystemMomentumAboutGroundOrigin(state);
std::cout << state.getTime() << " \tEnergy = " << energy
<< " \tAngMom: " << momentum[0].norm()
<< " \tLinMom: " << momentum[1].norm() << std::endl;
}
private:
const MultibodySystem& system;
const MobilizedBody& body;
};
//==============================================================================
// MAIN
//==============================================================================
int main() {
MultibodySystem system;
SimbodyMatterSubsystem matter(system);
matter.setShowDefaultGeometry(false);
GeneralForceSubsystem forces(system);
Force::Gravity gravity(forces, matter, -YAxis, 9.80665);
Visualizer viz(system);
MobilizedBody& Ground = matter.updGround(); // short name for Ground
// Calculate the mass properties for a half-ellipsoid. a1,b1,c1 are the
// radii (semi-axis lengths) of the full ellipsoid in x,y,z resp.
// Body origin is still center of full ellipsoid (0,0,0) but the COM moves
// lower in y which affects the xx and zz inertias. Note that Simbody
// requires the inertias to be given about the body origin, *not* COM.
// Unit inertia about the body origin is the same as for a full ellipsoid,
// but will be weighted by half as much mass.
// TODO: is this right?
Real m1 = 1.0, a1 = 0.25, b1 = 0.083333333333333, c1 = 0.083333333333333;
Real comShiftY = (3./8.)*b1; // Because it's a half ellipsoid.
Body::Rigid halfEllipsoid(MassProperties(m1, Vec3(0, -comShiftY, 0),
UnitInertia::ellipsoid(Vec3(a1,b1,c1))));
// Add some artwork -- don't have a half-ellipsoid unfortunately.
halfEllipsoid.addDecoration(Transform(),
DecorativeEllipsoid(Vec3(a1,b1,c1)).setColor(Red).setResolution(10));
// Now define a rectangular solid that we'll weld to the rattleback to
// give it asymmetrical mass properties.
Real m2 = 2.0, a2 = 2.0*a1, b2 = 0.02, c2 = 0.05;
const Vec3 barHalfDims = Vec3(a2,b2,c2)/2;
Body::Rigid barBody(MassProperties(m2, Vec3(0),
UnitInertia::brick(barHalfDims)));
barBody.addDecoration(Transform(), DecorativeBrick(barHalfDims)
.setColor(Blue).setOpacity(1.));
// Create a massless x-z base to provide the two slipping dofs.
MobilizedBody::Slider xdir(Ground, Transform(),
Body::Massless(), Transform());
const Rotation x2z(-Pi/2, YAxis); // rotate so +x moves to +z
MobilizedBody::Slider base(xdir, x2z, Body::Massless(), x2z);
base.addBodyDecoration(Transform(), DecorativeBrick(Vec3(0.25, 0.001, 0.25))
.setColor(Orange).setOpacity(0.50));
// Use a reverse mobilizer so that the contact point remains in a fixed
// location of the base body.
MobilizedBody::Ellipsoid rattle(base, Rotation(Pi/2, XAxis),
halfEllipsoid, Rotation(Pi/2, XAxis),
Vec3(a1,b1,c1), // ellipsoid half-radii
MobilizedBody::Reverse);
// Weld the bar to the ellipsoid at a 45 degree angle to produce lopsided
// inertia properties.
MobilizedBody::Weld bar(rattle, Transform(Rotation(45*Pi/180, YAxis),
Vec3(0,-b2/2.1,0)),
barBody, Transform());
// Finally, the rattle cannot just slide on the surface of the ground, it
// must roll.
#ifdef USE_BAD_CONSTRAINTS
// TODO: (sherm 20130620) these are the wrong constraints because they
// ignore the acceleration term caused by the contact point moving on the
// ellipsoid's surface. The correct constraint has to cognizant of the
// ellipsoid geometry at the contact point. Use of these constraints fails
// to conserve energy.
viz.addDecoration(Ground, Vec3(0),
DecorativeText("TODO: BROKEN -- USING INVALID NOSLIP CONSTRAINTS")
.setIsScreenText(true));
Constraint::NoSlip1D contactPointXdir(base, Vec3(0), UnitVec3(1,0,0),
matter.updGround(), rattle);
Constraint::NoSlip1D contactPointZdir(base, Vec3(0), UnitVec3(0,0,1),
matter.updGround(), rattle);
#endif
// Draw a cute green box to rattle around in.
Ground.addBodyDecoration(Vec3(0, 0*1e-5, 0), // floor
DecorativeBrick(Vec3(.5, .00001, .5)).setColor(Green).setOpacity(.1));
Ground.addBodyDecoration(Vec3(0.5, 0.25, 0), // right wall
DecorativeBrick(Vec3(1e-5, .25, .5)).setColor(Green).setOpacity(.25));
Ground.addBodyDecoration(Vec3(-.5, .25, 0), // left
DecorativeBrick(Vec3(1e-5, .25, .5)).setColor(Green).setOpacity(.25));
Ground.addBodyDecoration(Vec3(0, .25, -.5), // back
DecorativeBrick(Vec3(.5, .25, 1e-5)).setColor(Green).setOpacity(.25));
Ground.addBodyDecoration(Vec3(0, .25, .5), // front
DecorativeBrick(Vec3(.5, .25, 1e-5)).setColor(Green).setOpacity(.1));
// Output a visualization frame every 1/30 of a second, and output
// energy information every 1/4 second.
system.addEventReporter(new Visualizer::Reporter(viz, 1./30));
system.addEventReporter(new EnergyReporter(system, rattle, 1./4));
// We're done building the system. Create it and obtain a copy of the
// default state.
State state = system.realizeTopology();
// Start this off at an angle so it will do something.
// Caution -- this joint is reversed.
rattle.setQToFitRotation(state, ~Rotation(10*Pi/180., YAxis));
//rattle.setUToFitAngularVelocity(state, Vec3(0, -0.5*Pi, 1.0*Pi));
// Set up simulation.
RungeKuttaMersonIntegrator integ(system);
integ.setAccuracy(1e-5);
TimeStepper ts(system, integ);
ts.initialize(state);
// Simulate.
ts.stepTo(50);
}
|