File: SBPendulum1.cpp

package info (click to toggle)
simbody 3.7%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 72,896 kB
  • sloc: cpp: 248,827; ansic: 18,240; sh: 29; makefile: 24
file content (402 lines) | stat: -rw-r--r-- 15,933 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
/* -------------------------------------------------------------------------- *
 *                               Simbody(tm)                                  *
 * -------------------------------------------------------------------------- *
 * This is part of the SimTK biosimulation toolkit originating from           *
 * Simbios, the NIH National Center for Physics-Based Simulation of           *
 * Biological Structures at Stanford, funded under the NIH Roadmap for        *
 * Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody.  *
 *                                                                            *
 * Portions copyright (c) 2006-12 Stanford University and the Authors.        *
 * Authors: Michael Sherman                                                   *
 * Contributors:                                                              *
 *                                                                            *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may    *
 * not use this file except in compliance with the License. You may obtain a  *
 * copy of the License at http://www.apache.org/licenses/LICENSE-2.0.         *
 *                                                                            *
 * Unless required by applicable law or agreed to in writing, software        *
 * distributed under the License is distributed on an "AS IS" BASIS,          *
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.   *
 * See the License for the specific language governing permissions and        *
 * limitations under the License.                                             *
 * -------------------------------------------------------------------------- */

/**@file
 * A one-body pendulum, to test proper frame alignment and basic
 * functioning of Simbody.
 */

/* Sketch:
 *
 *     |           \           | g
 *     *--          *--        v
 *    / G          / Jb
 *
 *
 *   |           |
 *   *==---------*==---------W
 *  / J         / B         weight
 *   <--- L/2 ---|--- L/2 --->
 *
 *
 * The pendulum is a massless rod with origin frame
 * B, joint attachment frame J, and a point mass W.
 * The rod length is L, with the joint and mass
 * located in opposite directions along the B
 * frame X axis.
 *
 * There is a frame Jb on GroundIndex which will connect
 * to J via a torsion joint around their mutual z axis.
 * Gravity is in the -y direction of the GroundIndex frame.
 * Note that Jb may not be aligned with G, and J may
 * differ from B so the reference configuration may 
 * involve twisting the pendulum around somewhat.
 */

#include "SimTKsimbody.h"

#include <string>
#include <iostream>
#include <exception>
#include <cmath>
using std::cout;
using std::endl;

using namespace SimTK;

static const Real RadiansPerDegree = Pi/180;

void stateTest() {
  try {
    State s;
    s.setNumSubsystems(1);
    s.advanceSubsystemToStage(SubsystemIndex(0), Stage::Topology);
    s.advanceSystemToStage(Stage::Topology);

    Vector v3(3), v2(2);
    int q1 = s.allocateQ(SubsystemIndex(0), v3);
    int q2 = s.allocateQ(SubsystemIndex(0), v2);

    printf("q1,2=%d,%d\n", q1, q2);
    cout << s;

    DiscreteVariableIndex dv = s.allocateDiscreteVariable(SubsystemIndex(0), Stage::Dynamics, new Value<int>(5));

    s.advanceSubsystemToStage(SubsystemIndex(0), Stage::Model);
        //long dv2 = s.allocateDiscreteVariable(SubsystemIndex(0), Stage::Position, new Value<int>(5));

    Value<int>::updDowncast(s.updDiscreteVariable(SubsystemIndex(0), dv)) = 71;
    cout << s.getDiscreteVariable(SubsystemIndex(0), dv) << endl;

    s.advanceSystemToStage(Stage::Model);

    cout << s;

  }
  catch(const std::exception& e) {
      printf("*** STATE TEST EXCEPTION\n%s\n***\n", e.what());
  }

}

extern "C" void SimTK_version_SimTKlapack(int*,int*,int*);
extern "C" void SimTK_about_SimTKlapack(const char*, int, char*);

int main() {
    stateTest();
    //exit(0);

    int major,minor,build;
    char out[100];
    const char* keylist[] = { "version", "library", "type", "debug", "authors", "copyright", "svn_revision", 0 };

    //SimTK_version_SimTKlapack(&major,&minor,&build);
    //std::printf("==> SimTKlapack library version: %d.%d.%d\n", major, minor, build);
    //std::printf("    SimTK_about_SimTKlapack():\n");
    //for (const char** p = keylist; *p; ++p) {
    //    SimTK_about_SimTKlapack(*p, 100, out);
    //    std::printf("      about(%s)='%s'\n", *p, out);
    //}

    SimTK_version_SimTKcommon(&major,&minor,&build);
    std::printf("==> SimTKcommon library version: %d.%d.%d\n", major, minor, build);
    std::printf("    SimTK_about_SimTKcommon():\n");
    for (const char** p = keylist; *p; ++p) {
        SimTK_about_SimTKcommon(*p, 100, out);
        std::printf("      about(%s)='%s'\n", *p, out);
    }

    SimTK_version_simbody(&major,&minor,&build);
    std::printf("==> simbody library version: %d.%d.%d\n", major, minor, build);
    std::printf("    SimTK_about_simbody():\n");
    for (const char** p = keylist; *p; ++p) {
        SimTK_about_simbody(*p, 100, out);
        std::printf("      about(%s)='%s'\n", *p, out);
    }


try {
    MultibodySystem mbs;
    SimbodyMatterSubsystem pend(mbs);
    GeneralForceSubsystem springs(mbs);
    HuntCrossleyContact contact(mbs);

    Real L = 1.; 
    Real m = 3.;
    Real g = 9.8;
    Transform groundFrame;
    Transform baseFrame;

    Transform jointFrame(Vec3(-L/2,0,0));
    MassProperties mprops(m, Vec3(L/2,0,0), Inertia(Vec3(L/2,0,0), m)+Inertia(1e-6,1e-6,1e-6));
    cout << "mprops about body frame: " << mprops.getMass() << ", " 
        << mprops.getMassCenter() << ", " << mprops.getUnitInertia() << endl;

    Vec3 gravity(0.,-g,0.);
    Force::UniformGravity gravityForces(springs, pend, gravity);
    cout << "period should be " << 2*std::acos(-1.)*std::sqrt(L/g) << " seconds." << endl;

    MobilizedBody::Free aPendulum(pend.Ground(), Transform(), // ground, at origin
                                  Body::Rigid(mprops), jointFrame);

    const Real ballMass = 10;
    const Real ballRadius = 2;
    const MassProperties ballMProps(ballMass, Vec3(0), ballMass*UnitInertia::sphere(ballRadius));
    const Vec3 ballPos = Vec3(-3,5,0);

    MobilizedBody::Cartesian aBall(pend.Ground(), Transform(ballPos),
                                   Body::Rigid(ballMProps), Transform());

    MobilizedBody::Cartesian aBall2(pend.Ground(), Transform(ballPos+Vec3(0.1,10,0)),
                                    Body::Rigid(ballMProps), Transform());

    Constraint::Ball ballConstraint(pend.Ground(), Transform().p(),
                                    aPendulum, jointFrame.p());

    const Vec3 attachPt(1.5, 1, 0);
    Force::TwoPointLinearSpring(springs, pend.Ground(), attachPt, 
        aPendulum, Vec3(L/2,0,0), 
        100, 1);

    const Real k = 1000, c = 0.0;
    contact.addHalfSpace(GroundIndex, UnitVec3(0,1,0), 0, k, c); // h,k,c
    contact.addHalfSpace(GroundIndex, UnitVec3(1,0,0), -10, k, c); // h,k,c
    contact.addHalfSpace(GroundIndex, UnitVec3(-1,0,0), -10, k, c); // h,k,c

    contact.addSphere(aBall, Vec3(0), ballRadius, k, c); // r,k,c
    contact.addSphere(aBall2, Vec3(0), ballRadius, k, c); // r,k,c

    State s = mbs.realizeTopology();
    cout << "mbs State as built: " << s;

    Visualizer viz(mbs);
    viz.setBackgroundType(Visualizer::SolidColor);

    viz.addDecoration(GroundIndex, Transform(), DecorativeBrick(Vec3(20,.1,20)).setColor(1.5*Gray).setOpacity(.3));
    viz.addDecoration(GroundIndex, Transform(Vec3(-10,0,0)), DecorativeBrick(Vec3(.1,20,20)).setColor(Yellow).setOpacity(1));
    viz.addDecoration(GroundIndex, Transform(Vec3(10,0,0)), DecorativeBrick(Vec3(.1,20,20)).setColor(Yellow).setOpacity(1));

    DecorativeSphere bouncer(ballRadius);
    viz.addDecoration(aBall, Transform(), bouncer.setColor(Orange));
    viz.addDecoration(aBall2, Transform(), bouncer.setColor(Blue));

    DecorativeLine rbProto; rbProto.setColor(Orange).setLineThickness(3);
    viz.addRubberBandLine(GroundIndex, attachPt, aPendulum, Vec3(L/2,0,0), rbProto);

    DecorativeSphere sphere(0.25);
    sphere.setRepresentation(DecorativeGeometry::DrawPoints);
    sphere.setResolution(2);
    viz.addDecoration(GroundIndex, Transform(Vec3(1,2,3)), sphere);
    sphere.setScale(0.5); sphere.setResolution(1);
    viz.addDecoration(aPendulum, Transform(Vec3(0.1,0.2,0.3)), sphere);
    Quaternion qqq; qqq.setQuaternionFromAngleAxis(Pi/4, UnitVec3(1,0,0));
    viz.addDecoration(aPendulum, Transform(Rotation(qqq), Vec3(0,1,0)), DecorativeBrick(Vec3(.5,.1,.25)));
    DecorativeCylinder cyl(0.1); cyl.setOpacity(0.3);
    viz.addDecoration(aPendulum, Transform(Vec3(-1,0,0)), 
        DecorativeCylinder(0.1).setOpacity(0.3));

    viz.addDecoration(aPendulum, Transform(Vec3(3, 0, 0)), DecorativeSphere().setColor(Black));
    viz.addDecoration(aPendulum, Transform(Vec3(3, 0.5, 0)), DecorativeSphere().setColor(Gray));
    viz.addDecoration(aPendulum, Transform(Vec3(3, 1, 0)), DecorativeSphere().setColor(White));
    viz.addDecoration(aPendulum, Transform(Vec3(3, 1.5, 0)), DecorativeSphere().setColor(Red));
    viz.addDecoration(aPendulum, Transform(Vec3(3, 2, 0)), DecorativeSphere().setColor(Green));
    viz.addDecoration(aPendulum, Transform(Vec3(3, 2.5, 0)), DecorativeSphere().setColor(Blue));
    viz.addDecoration(aPendulum, Transform(Vec3(3, 3, 0)), DecorativeSphere().setColor(Yellow));
    viz.addDecoration(aPendulum, Transform(Vec3(3, 3.5, 0)), DecorativeSphere().setColor(Orange));
    viz.addDecoration(aPendulum, Transform(Vec3(3, 4, 0)), DecorativeSphere().setColor(Magenta));
    viz.addDecoration(aPendulum, Transform(Vec3(3, 4.5, 0)), DecorativeSphere().setColor(Cyan));
    viz.addDecoration(aPendulum, Transform(Vec3(3, 5, 0)), DecorativeSphere().setColor(Purple));


    viz.report(s);

    // set Modeling stuff (s)
    pend.setUseEulerAngles(s, false); // this is the default
    //pend.setUseEulerAngles(s, true);
    mbs.realizeModel(s);
    cout << "mbs State as modeled: " << s;

    printf("GLOBAL ny=%d q:y(%d,%d) u:y(%d,%d) z:y(%d,%d)\n",
        (int)s.getNY(), (int)s.getQStart(), (int)s.getNQ(), 
        (int)s.getUStart(), (int)s.getNU(), (int)s.getZStart(), (int)s.getNZ());

    mbs.realize(s, Stage::Instance);
    printf("  nyerr=%d qerr:yerr(%d,%d) uerr:yerr(%d,%d)\n",
        (int)s.getNYErr(), (int)s.getQErrStart(), (int)s.getNQErr(),
        (int)s.getUErrStart(), (int)s.getNUErr());
    printf("  nudoterr=%d\n", s.getNUDotErr());
    for (SubsystemIndex i(0); i<s.getNumSubsystems(); ++i) {
        printf("Subsys %d: q:y(%d,%d) u:y(%d,%d) z:y(%d,%d)\n",
            (int)i,(int)s.getQStart()+(int)s.getQStart(i),(int)s.getNQ(i),
              (int)s.getUStart()+(int)s.getUStart(i),(int)s.getNU(i),
              (int)s.getZStart()+(int)s.getZStart(i),(int)s.getNZ(i));
        printf("  qerr:yerr(%d,%d) uerr:yerr(%d,%d) uderr(%d,%d)\n",
            (int)s.getQErrStart()+(int)s.getQErrStart(i),(int)s.getNQErr(i),
            (int)s.getUErrStart()+(int)s.getUErrStart(i),(int)s.getNUErr(i),
            (int)s.getUDotErrStart(i),(int)s.getNUDotErr(i));
    }


    //pend.setJointQ(s,1,0,0);
   // pend.setJointQ(s,1,3,-1.1);
   // pend.setJointQ(s,1,4,-2.2);
   // pend.setJointQ(s,1,5,-3.3);

    mbs.realize(s, Stage::Position);

    Transform bodyConfig = aPendulum.getBodyTransform(s);
    cout << "q=" << s.getQ() << endl;
    cout << "body frame: " << bodyConfig;

    Vector dummy; ProjectResults results;
    mbs.projectQ(s, dummy, ProjectOptions().setRequiredAccuracy(1e-3),
                 results);

    cout << "-------> STATE after realize(Position):" << s;
    cout << "<------- STATE after realize(Position)." << endl;

    cout << "after assembly body frame: " << aPendulum.getBodyTransform(s); 

    Vector_<SpatialVec> dEdR(pend.getNumBodies());
    dEdR[0] = 0;
    for (int i=1; i < pend.getNumBodies(); ++i)
        dEdR[i] = SpatialVec(Vec3(0), Vec3(0.,2.,0.));
    Vector dEdQ;
    pend.multiplyBySystemJacobianTranspose(s, dEdR, dEdQ);
    cout << "dEdR=" << dEdR << endl;
    cout << "dEdQ=" << dEdQ << endl;

    pend.getMobilizedBody(MobilizedBodyIndex(1)).setOneU(s,0,10.);

    Vector_<SpatialVec> bodyForces(pend.getNumBodies());
    Vector_<Vec3>       particleForces(pend.getNumParticles());
    Vector              mobilityForces(pend.getNumMobilities());

    bodyForces.setToZero();
    particleForces.setToZero();
    mobilityForces.setToZero();

    pend.addInMobilityForce(s, aPendulum, MobilizerUIndex(0), 147, mobilityForces);

    mbs.realize(s, Stage::Velocity);
    SpatialVec bodyVel = aPendulum.getBodyVelocity(s);
    cout << "body vel: " << bodyVel << endl;

    cout << "wXwXr=" << bodyVel[0] % (bodyVel[0] % Vec3(2.5,0,0)) << endl;


    cout << "after applying gravity, body forces=" << bodyForces << endl;
    cout << "   joint forces=" << mobilityForces << endl;

    mbs.realize(s, Stage::Dynamics);
    Vector equivT;
    pend.calcTreeEquivalentMobilityForces(s, bodyForces, equivT);
    cout << "body forces -> equiv joint forces=" << equivT << endl;

    mbs.realize(s, Stage::Acceleration);

    SpatialVec bodyAcc = aPendulum.getBodyAcceleration(s);
    cout << "body acc: " << bodyAcc << endl;

    aPendulum.setOneU(s, 0, 0.);

    const Real angleInDegrees = 45;
    const Vec4 aa(angleInDegrees*RadiansPerDegree,0, 0, 1);
    Quaternion q; q.setQuaternionFromAngleAxis(aa);
    aPendulum.setQToFitTransform(s,Transform(Rotation(q), Vec3(.1,.2,.3)));
    viz.report(s);

    //pend.updQ(s)[2] = -.1;
    //pend.setJointQ(s, 1, 2, -0.999*std::acos(-1.)/2);

    const Real h = 1./30;
    const Real tstart = 0.;
    const Real tmax = 20;

    RungeKuttaMersonIntegrator ee(mbs);
    ee.setFinalTime(tmax);

    s.updTime() = tstart;
    ee.initialize(s);   // assemble if needed
    s = ee.getState();
    viz.report(s);

    Integrator::SuccessfulStepStatus status;
    int step = 0;
    while ((status=ee.stepTo(step*h)) != Integrator::EndOfSimulation) {
        const State& s = ee.getState();

        if (!(step % 10)) {
            // This is so we can calculate potential energy (although logically
            // one should be able to do that at Stage::Position).
            mbs.realize(s, Stage::Dynamics);

            cout << " E=" << mbs.calcEnergy(s)
                 << " (pe=" << mbs.calcPotentialEnergy(s)
                 << ", ke=" << mbs.calcKineticEnergy(s)
                 << ") hNext=" << ee.getPredictedNextStepSize() << endl;

            const Vector qdot = pend.getQDot(s);

            Transform  x = aPendulum.getBodyTransform(s);
            SpatialVec v = aPendulum.getBodyVelocity(s);

            //Vec3 err = x.p()-Vec3(2.5,0.,0.);
            //Real d = err.norm();
            //Real k = m*gravity.norm(); // stiffness, should balance at 1
            // Real c = 10.; // damping
            //Vec3 fk = -k*err;
            //Real fc = -c*pend.getU(s)[2];
            //pend.applyPointForce(s,aPendulum,Vec3(0,0,0),fk);
            //pend.applyJointForce(s,aPendulum,2,fc);

            cout << s.getTime() << " " 
                 << s.getQ() << " " << s.getU() 
                 << " hNext=" << ee.getPredictedNextStepSize() << endl;
            cout << "body config=" << x;
            cout << "body velocity=" << v << endl;
            //cout << "err=" << err << " |err|=" << d << endl;
            //cout << "spring force=" << fk << endl;
            //cout << "damping joint forces=" << fc << endl;
            
        }

        viz.report(s);

        if (status == Integrator::ReachedReportTime)
            ++step;


        if (!(step % 100)) {
            mbs.realize(s, Stage::Acceleration);
            const Vector udot = s.getUDot();
            cout << "udot = " << udot << endl;
        }
    }

}
catch (const std::exception& e) {
    printf("EXCEPTION THROWN: %s\n", e.what());
}
    return 0;
}