1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
|
/* -------------------------------------------------------------------------- *
* Simbody(tm) *
* -------------------------------------------------------------------------- *
* This is part of the SimTK biosimulation toolkit originating from *
* Simbios, the NIH National Center for Physics-Based Simulation of *
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody. *
* *
* Portions copyright (c) 2011-15 Stanford University and the Authors. *
* Authors: Peter Eastman *
* Contributors: Michael Sherman *
* *
* Licensed under the Apache License, Version 2.0 (the "License"); you may *
* not use this file except in compliance with the License. You may obtain a *
* copy of the License at http://www.apache.org/licenses/LICENSE-2.0. *
* *
* Unless required by applicable law or agreed to in writing, software *
* distributed under the License is distributed on an "AS IS" BASIS, *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
* See the License for the specific language governing permissions and *
* limitations under the License. *
* -------------------------------------------------------------------------- */
#include "SimTKsimbody.h"
#include <string>
#include <ctime>
using std::cout;
using std::endl;
using std::string;
#ifdef _MSC_VER
#pragma warning(disable:4996) // don't warn about strerror, sprintf, etc.
#endif
using namespace SimTK;
/**
* This test measures the speed of various multibody calculations. It executes a collection of operations
* on various systems. The CPU time required to perform each operation 1000 times is measured and
* printed to the console.
*
* Each test system contains 256 identical bodies (plus ground), but they differ in the type of
* bodies and their arrangement into a multibody tree. The arrangements include 1) all bodies attached
* directly to ground, 2) the bodies linked in a single chain, and 3) the bodies arranged to form
* a binary tree.
*/
// The following routines define the operations to be profiled.
void doRealizeTime(MultibodySystem& system, State& state) {
state.invalidateAllCacheAtOrAbove(Stage::Time);
system.realize(state, Stage::Time);
}
void doRealizePosition(MultibodySystem& system, State& state) {
state.invalidateAllCacheAtOrAbove(Stage::Position);
system.realize(state, Stage::Position);
}
void doRealizeVelocity(MultibodySystem& system, State& state) {
state.invalidateAllCacheAtOrAbove(Stage::Velocity);
system.realize(state, Stage::Velocity);
}
void doRealizePositionKinematics(MultibodySystem& system, State& state) {
const SimbodyMatterSubsystem& matter = system.getMatterSubsystem();
matter.invalidatePositionKinematics(state);
matter.realizePositionKinematics(state);
}
void doRealizeVelocityKinematics(MultibodySystem& system, State& state) {
const SimbodyMatterSubsystem& matter = system.getMatterSubsystem();
matter.invalidateVelocityKinematics(state);
matter.realizeVelocityKinematics(state);
}
void doRealizeArticulatedBodyInertias(MultibodySystem& system, State& state) {
const SimbodyMatterSubsystem& matter = system.getMatterSubsystem();
matter.invalidateArticulatedBodyInertias(state);
matter.realizeArticulatedBodyInertias(state);
}
void doRealizeArticulatedBodyVelocity(MultibodySystem& system, State& state) {
const SimbodyMatterSubsystem& matter = system.getMatterSubsystem();
matter.invalidateArticulatedBodyVelocity(state);
matter.realizeArticulatedBodyVelocity(state);
}
void doRealizeDynamics(MultibodySystem& system, State& state) {
state.invalidateAllCacheAtOrAbove(Stage::Dynamics);
system.realize(state, Stage::Dynamics);
}
void doRealizeAcceleration(MultibodySystem& system, State& state) {
state.invalidateAllCacheAtOrAbove(Stage::Acceleration);
system.realize(state, Stage::Acceleration);
}
// Cost to re-evaluate accelerations after applying some new forces, but leaving
// the state variables unchanged.
void doRealizeDynamics2Acceleration(MultibodySystem& system, State& state) {
state.invalidateAllCacheAtOrAbove(Stage::Dynamics);
system.realize(state, Stage::Acceleration);
}
// Cost to re-evaluate accelerations after updating velocities, but leaving
// the positions unchanged (e.g. semi-implicit Euler iterating velocities).
void doRealizeVelocity2Acceleration(MultibodySystem& system, State& state) {
state.updU(); // should invalidate velocity kinematics
state.invalidateAllCacheAtOrAbove(Stage::Velocity);
system.realize(state, Stage::Acceleration);
}
// Cost for a complete acceleration calculation at a new time and state.
// This includes the cost of articulated body inertias.
void doRealizeTime2Acceleration(MultibodySystem& system, State& state) {
state.updQ(); // should invalidate position & velocity kinematics
state.invalidateAllCacheAtOrAbove(Stage::Time);
system.realize(state, Stage::Acceleration);
}
void doMultiplyByM(MultibodySystem& system, State& state) {
const SimbodyMatterSubsystem& matter = system.getMatterSubsystem();
Vector v(matter.getNumMobilities(), 1.0);
Vector mv;
matter.multiplyByM(state, v, mv);
}
void doMultiplyByMInv(MultibodySystem& system, State& state) {
const SimbodyMatterSubsystem& matter = system.getMatterSubsystem();
Vector v(matter.getNumMobilities(), 1.0);
Vector minvv;
matter.multiplyByMInv(state, v, minvv);
}
void doCalcResidualForceIgnoringConstraints(MultibodySystem& system, State& state) {
const SimbodyMatterSubsystem& matter = system.getMatterSubsystem();
Vector appliedMobilityForces(matter.getNumMobilities(), 1.0);
Vector_<SpatialVec> appliedBodyForces(matter.getNumBodies(), SpatialVec(Vec3(1, 0, 0), Vec3(0, 1, 0)));
Vector knownUdot, residualMobilityForces;
matter.calcResidualForceIgnoringConstraints(state, appliedMobilityForces, appliedBodyForces, knownUdot, residualMobilityForces);
}
void doCalcMobilizerReactionForces(MultibodySystem& system, State& state) {
Vector_<SpatialVec> forces;
system.getMatterSubsystem().calcMobilizerReactionForces(state, forces);
}
void doMultiplyBySystemJacobianTranspose(MultibodySystem& system, State& state) {
const SimbodyMatterSubsystem& matter = system.getMatterSubsystem();
Vector_<SpatialVec> dEdR(matter.getNumBodies(), SpatialVec(Vec3(1, 0, 0), Vec3(0, 1, 0)));
Vector dEdQ;
matter.multiplyBySystemJacobianTranspose(state, dEdR, dEdQ);
}
void doCalcCompositeBodyInertias(MultibodySystem& system, State& state) {
Array_<SpatialInertia, MobilizedBodyIndex> r;
system.getMatterSubsystem().calcCompositeBodyInertias(state, r);
}
static double flopTimeInNs;
/**
* Time how long it takes to perform an operation 1000 times. The test is repeated 5 times,
* and the average is returned. The return value represents CPU time, *not* clock time.
*/
void timeComputation(MultibodySystem& system, void function(MultibodySystem& system, State& state),
const string& name, int iterations, bool useEulerAngles) {
const int repeats = 3;
Vector cpuTimes(repeats);
State state = system.getDefaultState();
if (useEulerAngles) {
system.getMatterSubsystem().setUseEulerAngles(state, true);
system.realizeModel(state);
}
system.realize(state, Stage::Acceleration);
const int ndof = system.getMatterSubsystem().getNumMobilities();
const int nmovbod = system.getMatterSubsystem().getNumBodies()-1; // not Ground
// Repeatedly measure the CPU time for performing the operation 1000 times.
for (int i = 0; i < repeats; i++) {
double startCpu = threadCpuTime();
for (int j = 0; j < iterations; j++)
function(system, state);
double endCpu = threadCpuTime();
cpuTimes[i] = Real(endCpu-startCpu);
}
double timePerIterUs = mean(cpuTimes)*1000000/iterations; // us
double flopTimeUs = flopTimeInNs / 1000;
double flopTimePerIter = timePerIterUs/flopTimeUs;
std::printf("%40s:%6.4gus -> %4d flp/dof, %4d flp/bod\n",
name.c_str(), timePerIterUs, (int)(flopTimePerIter/ndof),
(int)(flopTimePerIter/nmovbod));
}
/**
* Time all the different calculations for one system.
*/
void runAllTests(MultibodySystem& system, bool useEulerAngles=false) {
std::cout << "# dofs=" << system.getMatterSubsystem().getNumMobilities() << "\n";
timeComputation(system, doRealizeTime, "realizeTime", 5000, useEulerAngles);
timeComputation(system, doRealizePositionKinematics, "realizePositionKinematics", 5000, useEulerAngles);
timeComputation(system, doRealizePosition, "realizePosition", 5000, useEulerAngles);
timeComputation(system, doRealizeVelocityKinematics, "realizeVelocityKinematics", 5000, useEulerAngles);
timeComputation(system, doRealizeVelocity, "realizeVelocity", 5000, useEulerAngles);
timeComputation(system, doRealizeArticulatedBodyInertias, "doRealizeArticulatedBodyInertias", 3000, useEulerAngles);
timeComputation(system, doRealizeArticulatedBodyVelocity, "doRealizeArticulatedBodyVelocity", 5000, useEulerAngles);
timeComputation(system, doRealizeDynamics, "realizeDynamics", 5000, useEulerAngles);
timeComputation(system, doRealizeAcceleration, "realizeAcceleration", 5000, useEulerAngles);
timeComputation(system, doRealizeDynamics2Acceleration, "doRealizeDynamics2Acceleration", 5000, useEulerAngles);
timeComputation(system, doRealizeVelocity2Acceleration, "realizeVelocity2Acceleration", 3000, useEulerAngles);
timeComputation(system, doRealizeTime2Acceleration, "realizeTime2Acceleration", 2000, useEulerAngles);
timeComputation(system, doMultiplyByM, "multiplyByM", 5000, useEulerAngles);
timeComputation(system, doMultiplyByMInv, "multiplyByMInv", 5000, useEulerAngles);
timeComputation(system, doCalcResidualForceIgnoringConstraints, "calcResidualForceIgnoringConstraints", 5000, useEulerAngles);
timeComputation(system, doCalcMobilizerReactionForces, "calcMobilizerReactionForces", 1000, useEulerAngles);
timeComputation(system, doMultiplyBySystemJacobianTranspose, "multiplyBySystemJacobianTranspose", 5000, useEulerAngles);
timeComputation(system, doCalcCompositeBodyInertias, "calcCompositeBodyInertias", 5000, useEulerAngles);
}
// The following routines create the systems to be profiled.
void createParticles(MultibodySystem& system) {
SimbodyMatterSubsystem matter(system);
Body::Rigid body;
for (int i = 0; i < 256; i++)
MobilizedBody::Translation next(matter.updGround(), Vec3(1, 0, 0), body, Vec3(0));
system.realizeTopology();
}
void createFreeBodies(MultibodySystem& system) {
SimbodyMatterSubsystem matter(system);
Body::Rigid body;
for (int i = 0; i < 256; i++)
MobilizedBody::Free next(matter.updGround(), Vec3(1, 0, 0), body, Vec3(0));
system.realizeTopology();
}
void createPinChain(MultibodySystem& system) {
SimbodyMatterSubsystem matter(system);
Body::Rigid body;
MobilizedBody last = matter.updGround();
for (int i = 0; i < 256; i++) {
MobilizedBody::Pin next(last, Vec3(1, 0, 0), body, Vec3(0));
last = next;
}
system.realizeTopology();
}
void createSliderChain(MultibodySystem& system) {
SimbodyMatterSubsystem matter(system);
Body::Rigid body;
MobilizedBody last = matter.updGround();
for (int i = 0; i < 256; i++) {
MobilizedBody::Slider next(last, Vec3(1, 0, 0), body, Vec3(0));
last = next;
}
system.realizeTopology();
}
void createBallChain(MultibodySystem& system) {
SimbodyMatterSubsystem matter(system);
Body::Rigid body;
MobilizedBody last = matter.updGround();
for (int i = 0; i < 256; i++) {
MobilizedBody::Ball next(last, Vec3(1, 0, 0), body, Vec3(0));
last = next;
}
system.realizeTopology();
}
void createGimbalChain(MultibodySystem& system) {
SimbodyMatterSubsystem matter(system);
Body::Rigid body;
MobilizedBody last = matter.updGround();
for (int i = 0; i < 256; i++) {
MobilizedBody::Gimbal next(last, Vec3(1, 0, 0), body, Vec3(0));
last = next;
}
system.realizeTopology();
}
void createPinTree(MultibodySystem& system) {
SimbodyMatterSubsystem matter(system);
Body::Rigid body;
for (int i = 0; i < 256; i++) {
MobilizedBody& parent = matter.updMobilizedBody(MobilizedBodyIndex(i/2));
MobilizedBody::Pin next(parent, Vec3(1, 0, 0), body, Vec3(0));
}
system.realizeTopology();
}
void createBallTree(MultibodySystem& system) {
SimbodyMatterSubsystem matter(system);
Body::Rigid body;
for (int i = 0; i < 256; i++) {
MobilizedBody& parent = matter.updMobilizedBody(MobilizedBodyIndex(i/2));
MobilizedBody::Ball next(parent, Vec3(1, 0, 0), body, Vec3(0));
}
system.realizeTopology();
}
static int tenInts[10];
static Real tenReals[10];
// These should multiply out to about 1.
static Real tenMults[10] =
{Real(0.501),Real(0.2501),Real(0.201),Real(0.101),Real(1.000000001),
Real(1/1.000000002),Real(1/.101), Real(1/.201), Real(1/.2501), Real(1/.501)};
void testFunctions(double& flopTime, bool flopTimeOnly=false) {
Real addRes=1,subRes=1,mulRes=1,divRes=1,sqrtRes=1,oosqrtRes=1,
sinRes=1,cosRes=1,atan2Res=1,logRes=1,expRes=1;
int intAddRes=1;
Random::Uniform rand; rand.setMin(-5); rand.setMax(5);
for (int i=0; i<10; i++) tenInts[i] = rand.getIntValue();
for (int i=0; i<10; i++) tenReals[i] = rand.getValue();
double tprev = threadCpuTime();
for (int i = 0; i < 10*100000000; i++) {
intAddRes += tenInts[0];
intAddRes -= tenInts[1];
intAddRes += tenInts[2];
intAddRes -= tenInts[3];
intAddRes += tenInts[4];
intAddRes -= tenInts[5];
intAddRes += tenInts[6];
intAddRes -= tenInts[7];
intAddRes += tenInts[8];
intAddRes -= tenInts[9];
}
double t = threadCpuTime(); double intAddTime = (t-tprev)/10; // time for 1e9 ops
printf("intAdd %gs\n", t-tprev);
tprev = threadCpuTime();
for (int i = 0; i < 5*100000000; i++) {
addRes += Real(1.1);
addRes += Real(1.2);
addRes += Real(1.3);
addRes += Real(1.4);
addRes += Real(1.501);
addRes += Real(1.6);
addRes += Real(1.7);
addRes += Real(1.8);
addRes += Real(1.9);
addRes += Real(2.007);
}
t = threadCpuTime(); double addTime = (t-tprev)/5;
printf("add %gs\n", t-tprev);
tprev = threadCpuTime();
for (int i = 0; i < 5*100000000; i++) {
subRes -= Real(1.1);
subRes -= Real(1.2);
subRes -= Real(1.3);
subRes -= Real(1.4);
subRes -= Real(1.501);
subRes -= Real(1.6);
subRes -= Real(1.7);
subRes -= Real(1.8);
subRes -= Real(1.9);
subRes -= Real(2.007);
}
t = threadCpuTime(); double subTime = (t-tprev)/5;
printf("sub %gs\n", t-tprev);
tprev = threadCpuTime();
for (int i = 0; i < 3*100000000; i++) {
mulRes *= Real(0.501);
mulRes *= Real(0.2501);
mulRes *= Real(0.201);
mulRes *= Real(0.101);
mulRes *= Real(1.000000001);
mulRes *= Real(1/1.000000002); // done at compile time
mulRes *= Real(1/.101);
mulRes *= Real(1/.201);
mulRes *= Real(1/.2501);
mulRes *= Real(1/.501);
}
t = threadCpuTime(); double mulTime=(t-tprev)/3;
printf("mul %gs\n", t-tprev);
flopTime = (addTime+mulTime)/2;
std::cout << "1 flop=avg(add,mul)=" << flopTime << "ns\n";
if (flopTimeOnly)
return;
tprev = threadCpuTime();
for (int i = 0; i < 100000000; i++) {
divRes /= tenMults[7];
divRes /= tenMults[9];
divRes /= tenMults[8];
divRes /= tenMults[6];
divRes /= tenMults[2];
divRes /= tenMults[3];
divRes /= tenMults[1];
divRes /= tenMults[0];
divRes /= tenMults[4];
divRes /= tenMults[5];
// prevent clever optimization VC10 did to turn divides
// into multiplies.
tenMults[i%10] = Real(tenMults[i%10]*1.0000000000001);
tenMults[(i+5)%10] = Real(tenMults[(i+5)%10]*0.9999999999999);
}
t = threadCpuTime(); double divTime=(t-tprev);
printf("div %gs\n", t-tprev);
tprev = threadCpuTime();
for (int i = 0; i < 100000000/2; i++) {
const Real ir = (Real)i;
sqrtRes += std::sqrt(ir+(Real)0.001); // two adds
sqrtRes += std::sqrt(ir+(Real)0.1);
sqrtRes += std::sqrt(ir+(Real)0.2);
sqrtRes += std::sqrt(ir+(Real)0.3);
sqrtRes += std::sqrt(ir+(Real)0.4);
sqrtRes += std::sqrt(ir+(Real)0.501);
sqrtRes += std::sqrt(ir+(Real)0.6);
sqrtRes += std::sqrt(ir+(Real)0.7);
sqrtRes += std::sqrt(ir+(Real)0.8);
sqrtRes += std::sqrt(ir+(Real)0.9);
}
t = threadCpuTime(); double sqrtTime=2*(t-tprev)-2*addTime;
printf("sqrt %gs\n", t-tprev);
tprev = threadCpuTime();
for (int i = 0; i < 100000000/4; i++) {
const Real ir = (Real)i;
oosqrtRes += 1/std::sqrt(ir+(Real)0.001); // two adds
oosqrtRes += 1/std::sqrt(ir+(Real)0.1);
oosqrtRes += 1/std::sqrt(ir+(Real)0.2);
oosqrtRes += 1/std::sqrt(ir+(Real)0.3);
oosqrtRes += 1/std::sqrt(ir+(Real)0.4);
oosqrtRes += 1/std::sqrt(ir+(Real)0.501);
oosqrtRes += 1/std::sqrt(ir+(Real)0.6);
oosqrtRes += 1/std::sqrt(ir+(Real)0.7);
oosqrtRes += 1/std::sqrt(ir+(Real)0.8);
oosqrtRes += 1/std::sqrt(ir+(Real)0.9);
}
t = threadCpuTime(); double oosqrtTime=4*(t-tprev)-2*addTime;
printf("1/sqrt %gs\n", t-tprev);
tprev = threadCpuTime();
for (int i = 0; i < 100000000/5; i++) {
const Real ir = (Real)i;
logRes += std::log(ir+(Real)0.001); // two adds
logRes += std::log(ir+(Real)0.1);
logRes += std::log(ir+(Real)0.2);
logRes += std::log(ir+(Real)0.3);
logRes += std::log(ir+(Real)0.4);
logRes += std::log(ir+(Real)0.501);
logRes += std::log(ir+(Real)0.6);
logRes += std::log(ir+(Real)0.7);
logRes += std::log(ir+(Real)0.8);
logRes += std::log(ir+(Real)0.9);
}
t = threadCpuTime(); double logTime=(t-tprev)*5-2*addTime;
printf("log %gs\n", t-tprev);
tprev = threadCpuTime();
for (int i = 0; i < 100000000/5; i++) {
const Real ir = (Real).000000001*(Real)i;
expRes += std::exp(ir+(Real)0.001); // two adds
expRes += std::exp(ir+(Real)0.1);
expRes += std::exp(ir+(Real)0.2);
expRes += std::exp(ir+(Real)0.3);
expRes += std::exp(ir+(Real)0.4);
expRes += std::exp(ir+(Real)0.501);
expRes += std::exp(ir+(Real)0.6);
expRes += std::exp(ir+(Real)0.7);
expRes += std::exp(ir+(Real)0.8);
expRes += std::exp(ir+(Real)0.9);
}
t = threadCpuTime(); double expTime=(t-tprev)*5-2*addTime;
printf("exp %gs\n", t-tprev);
tprev = threadCpuTime();
for (int i = 0; i < 100000000/10; i++) {
const Real ir = (Real)i;
sinRes += std::sin(ir+(Real)0.001); // two adds
sinRes += std::sin(ir+(Real)0.1);
sinRes += std::sin(ir+(Real)0.2);
sinRes += std::sin(ir+(Real)0.3);
sinRes += std::sin(ir+(Real)0.4);
sinRes += std::sin(ir+(Real)0.501);
sinRes += std::sin(ir+(Real)0.6);
sinRes += std::sin(ir+(Real)0.7);
sinRes += std::sin(ir+(Real)0.8);
sinRes += std::sin(ir+(Real)0.9);
}
t = threadCpuTime(); double sinTime=(t-tprev)*10-2*addTime;
printf("sin %gs\n", t-tprev);
tprev = threadCpuTime();
for (int i = 0; i < 100000000/10; i++) {
const Real ir = (Real)i;
cosRes += std::cos(ir+(Real)0.001); // two adds
cosRes += std::cos(ir+(Real)0.1);
cosRes += std::cos(ir+(Real)0.2);
cosRes += std::cos(ir+(Real)0.3);
cosRes += std::cos(ir+(Real)0.4);
cosRes += std::cos(ir+(Real)0.501);
cosRes += std::cos(ir+(Real)0.6);
cosRes += std::cos(ir+(Real)0.7);
cosRes += std::cos(ir+(Real)0.8);
cosRes += std::cos(ir+(Real)0.9);
}
t = threadCpuTime(); double cosTime=(t-tprev)*10-2*addTime;
printf("cos %gs\n", t-tprev);
tprev = threadCpuTime();
for (int i = 0; i < 100000000/10; i++) {
const Real ir = (Real)i;
atan2Res += std::atan2(ir+(Real)0.001,ir-(Real)0.001); // three adds
atan2Res += std::atan2(ir+(Real)0.1,ir-(Real)0.1);
atan2Res += std::atan2(ir+(Real)0.2,ir-(Real)0.2);
atan2Res += std::atan2(ir+(Real)0.3,ir-(Real)0.3);
atan2Res += std::atan2(ir+(Real)0.4,ir-(Real)0.4);
atan2Res += std::atan2(ir+(Real)0.501,ir-(Real)0.501);
atan2Res += std::atan2(ir+(Real)0.6,ir-(Real)0.6);
atan2Res += std::atan2(ir+(Real)0.7,ir-(Real)0.7);
atan2Res += std::atan2(ir+(Real)0.8,ir-(Real)0.8);
atan2Res += std::atan2(ir+(Real)0.9,ir-(Real)0.9);
}
t = threadCpuTime(); double atan2Time=(t-tprev)*10-3*addTime;
printf("atan2 %gs\n", t-tprev);
tprev = threadCpuTime();
std::cout << std::setprecision(5);
std::cout << "1 flop=avg(add,mul)=" << flopTime << "ns\n";
printf("op\t t/10^9\t flops\t final result\n");
std::cout << "int+:\t" <<intAddTime<<"\t"<<intAddTime /flopTime<<"\t"<<intAddRes<< "\n";
std::cout << "+:\t" <<addTime<<"\t"<<addTime /flopTime<<"\t"<<addRes<< "\n";
std::cout << "-:\t" <<subTime<<"\t"<<subTime /flopTime<<"\t"<<subRes<< "\n";
std::cout << "*:\t" <<mulTime<<"\t"<<mulTime /flopTime<<"\t"<<mulRes<< "\n";
std::cout << "/:\t" <<divTime<<"\t"<<divTime /flopTime<<"\t"<<divRes<< "\n";
std::cout << "sqrt:\t" <<sqrtTime<<"\t"<<sqrtTime /flopTime<<"\t"<<sqrtRes<< "\n";
std::cout << "1/sqrt:\t"<<oosqrtTime<<"\t"<<oosqrtTime/flopTime<<"\t"<<oosqrtRes<< "\n";
std::cout << "log:\t" <<logTime<<"\t"<<logTime /flopTime<<"\t"<<logRes<< "\n";
std::cout << "exp:\t" <<expTime<<"\t"<<expTime /flopTime<<"\t"<<expRes<< "\n";
std::cout << "sin:\t" <<sinTime<<"\t"<<sinTime /flopTime<<"\t"<<sinRes<< "\n";
std::cout << "cos:\t" <<cosTime<<"\t"<<cosTime /flopTime<<"\t"<<cosRes<< "\n";
std::cout << "atan2:\t" <<atan2Time<<"\t"<<atan2Time /flopTime<<"\t"<<atan2Res<< "\n";
}
int main() {
time_t now;
time(&now);
printf("Starting: %s\n", ctime(&now));
{ std::cout << "\nCPU performance\n" << std::endl;
testFunctions(flopTimeInNs, true /*flop time only*/);
}
double startClock = realTime();
double startCpu = cpuTime();
double startThread = threadCpuTime();
{
std::cout << "\nParticles:\n" << std::endl;
MultibodySystem system;
createParticles(system);
runAllTests(system);
}
{
std::cout << "\nFree Bodies (Quaternions):\n" << std::endl;
MultibodySystem system;
createFreeBodies(system);
runAllTests(system, false);
}
{
std::cout << "\nFree Bodies (Euler angles):\n" << std::endl;
MultibodySystem system;
createFreeBodies(system);
runAllTests(system, true);
}
{
std::cout << "\nPin Chain:\n" << std::endl;
MultibodySystem system;
createPinChain(system);
runAllTests(system);
}
{
std::cout << "\nSlider Chain:\n" << std::endl;
MultibodySystem system;
createSliderChain(system);
runAllTests(system);
}
{
std::cout << "\nBall Chain (Quaternions):\n" << std::endl;
MultibodySystem system;
createBallChain(system);
runAllTests(system, false);
}
{
std::cout << "\nBall Chain (Euler angles):\n" << std::endl;
MultibodySystem system;
createBallChain(system);
runAllTests(system, true);
}
{
std::cout << "\nGimbal Chain:\n" << std::endl;
MultibodySystem system;
createGimbalChain(system);
runAllTests(system);
}
{
std::cout << "\nPin Tree:\n" << std::endl;
MultibodySystem system;
createPinTree(system);
runAllTests(system);
}
{
std::cout << "\nBall Tree:\n" << std::endl;
MultibodySystem system;
createBallTree(system);
runAllTests(system);
}
std::cout << "Total time:\n";
std::cout << " process CPU=" << cpuTime()-startCpu << "s\n";
std::cout << " thread CPU =" << threadCpuTime()-startThread << "s\n";
std::cout << " real time =" << realTime()-startClock << "s\n";
}
|