File: TestRiboseMobilizer.cpp

package info (click to toggle)
simbody 3.7%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 72,896 kB
  • sloc: cpp: 248,827; ansic: 18,240; sh: 29; makefile: 24
file content (528 lines) | stat: -rw-r--r-- 17,144 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
#include "SimTKsimbody.h"
#include <iostream>

using namespace std;
using namespace SimTK;

// eliding boost::units expressions to make a more portable example --cmb
// pay no attention to these types and units.  They are hollow echo of
// the use of boost::units in an earlier version of this example
typedef Real angle_t;
typedef Real length_t;
typedef Real mass_t;
typedef Vec3 location_t;
Real degrees = 3.14159/180.0;
Real radians = 1.0;
Real angstroms = 0.10;
Real nanometers = 1.0;
Real daltons = 1.0;

class ZeroFunction : public Function::Constant {
public:
        ZeroFunction() : Function::Constant(0, 0) {}
};

class UnityFunction : public Function::Constant {
public:
    UnityFunction() : Function::Constant(1.0, 0) {}
};

class IdentityFunction : public Function {
public:
    IdentityFunction() {}

    Real calcValue(const Vector& x) const override{
        return x[0];
    }

    Real calcDerivative(const Array_<int>& derivComponents, const Vector& x) const override{
        if (derivComponents.size() == 1) return 1.0;
        else return 0.0;
    }

    int getArgumentSize() const override {return 1;}
    
    int getMaxDerivativeOrder() const override {return 1000;}
};

// Difference between two components of a two component vector
// Used as a target function for equality coupling constraint
class DifferenceFunction : public Function::Linear {
public:
    DifferenceFunction() : Function::Linear( createCoefficients() ) {}

private:
    static Vector createCoefficients() {
        Vector answer(3);
        answer[0] = 1.0; // ax
        answer[1] = -1.0; // -by
        answer[2] = 0.0; // +c
        return answer;
    }
};


/// Function that when zero, ensures that three variables are equal
/// f(x,y,z) = (x-y)^2 + (x-z)^2 + (y-z)^2
/// df/dx = 2(x-y) + 2(x-z)
/// df/dx^2 = 4
/// df/dxdy = -2
class ThreeDifferencesFunction : public Function {
public:
    Real calcValue(const Vector& x) const override
    {
        assert( 3 == x.size() );

        Real dxy(x[0] - x[1]);
        Real dxz(x[0] - x[2]);
        Real dyz(x[1] - x[2]);

        return dxy*dxy + dxz*dxz + dyz*dyz;
    }

    Real calcDerivative(const Array_<int>& derivComponents, const Vector& x) const override
    {
        Real deriv = 0;
    
        assert(3 == x.size());
        
        int derivOrder = derivComponents.size();
        assert(1 <= derivOrder);

        if (derivOrder == 1) 
        {
            // too clever
            //    df/dx
            //  = 2(x-y) + 2(x-z) 
            //  = 2x - 2y + 2x - 2z
            //  = 4x - 2y - 2z
            //  = 6x - 2x - 2y - 2z
            deriv = 2 * (3 * x[derivComponents[0]] -x[0] -x[1] -x[2]);
        }
        else if (derivOrder == 2) 
        {
            if (derivComponents[0] == derivComponents[1])
                deriv = 4.0; // df/dx^2
            else
                deriv = -2.0; // df/dxdy
        } 
        else ; // all derivatives higher than two are zero

        return deriv;
    }

    int getArgumentSize() const override{
        return 3;
    }
    
    int getMaxDerivativeOrder() const override{
        return 1000;
    }
};

/// Implements a simple functional relationship, y = amplitude * sin(x - phase)
class SinusoidFunction : public Function {
private:
    angle_t amplitude;
    angle_t phase;
public:

    //Default constructor
    SinusoidFunction()
        : amplitude(180.0*degrees), phase(0.0*degrees) {}
    
    //Convenience constructor to specify the slope and Y-intercept of the linear r
    SinusoidFunction(angle_t amp, angle_t phi)
    : amplitude(amp), phase(phi) {}
    
    Real calcValue(const Vector& x) const override{
        assert( 1 == x.size() );
        return angle_t(amplitude*sin(x[0]*radians - phase));
    }
    
    Real calcDerivative(const Array_<int>& derivComponents, const Vector& x) const override{
        Real deriv = 0;
    
        assert(1 == x.size());
        
        // Derivatives repeat after 4
        int derivOrder = derivComponents.size() % 4;

        // Derivatives 1, 5, 9, 13, ... are cos()
        if      ( 1 == derivOrder ) {
            deriv = angle_t(amplitude*cos(x[0]*radians - phase));
        }
        // Derivatives 2, 6, 10, 14, ... are -sin()
        else if ( 2 == derivOrder ) {
            deriv = angle_t(-amplitude*sin(x[0]*radians - phase));
        }
        // Derivatives 3, 7, 11, 15, ... are -cos()
        else if ( 3 == derivOrder ) {
            deriv = angle_t(-amplitude*cos(x[0]*radians - phase));
        }
        // Derivatives 0, 4, 8, 12, ... are sin()
        else if ( 0 == derivOrder ) {
            deriv = angle_t(amplitude*sin(x[0]*radians - phase));
        }
        else assert(false);
        
        return deriv;
    }
    
    int getArgumentSize() const override{
        return 1;
    }
    
    int getMaxDerivativeOrder() const override{
        return 1000;
    }
};

// The pupose of TestPinMobilizer is to prove that I have understood the
// basic syntax of Function-based mobilizers
class TestPinMobilizer : public MobilizedBody::FunctionBased
{
public:
        TestPinMobilizer(
                        MobilizedBody& parent,
                        const Transform& inbFrame,
                        const Body& body,
                        const Transform& outbFrame
                        )
        : MobilizedBody::FunctionBased(
                        parent,
                        inbFrame,
                        body,
                        outbFrame,
                        1,
                        createFunctions(),
                        createCoordIndices()
                        )
        {}

private:
    static std::vector< const Function* > createFunctions() {
        std::vector< const Function* > functions;
        functions.push_back(new ZeroFunction ); // x rotation
        functions.push_back(new ZeroFunction ); // y rotation

        // Z-rotation is the only degree of freedom for this mobilizer
        functions.push_back(new IdentityFunction ); // z rotation

        functions.push_back(new ZeroFunction ); // x translation
        functions.push_back(new ZeroFunction ); // y translation
        functions.push_back(new ZeroFunction ); // z translation

        return functions;        
    }

    static std::vector< std::vector<int> > createCoordIndices() {
        std::vector<int> oneCoordinateVec;
        oneCoordinateVec.push_back(0); // first and only generalized coordinate index

        std::vector< std::vector<int> > coordIndices;
        // All six functions take the one generalized coordinate
        coordIndices.push_back(std::vector<int>()); // 1, empty
        coordIndices.push_back(std::vector<int>()); // 2, empty
        coordIndices.push_back(oneCoordinateVec);   // 3, one coordinate, zero
        coordIndices.push_back(std::vector<int>()); // 4, empty
        coordIndices.push_back(std::vector<int>()); // 5, empty
        coordIndices.push_back(std::vector<int>()); // 6, empty

        return coordIndices;
    }
};

class PseudorotationMobilizer : public MobilizedBody::FunctionBased
{
public:
        PseudorotationMobilizer(
                        MobilizedBody& parent,
                        const Transform& inbFrame,
                        const Body& body,
                        const Transform& outbFrame,
                        angle_t amplitude,
                        angle_t phase
                        )
        : MobilizedBody::FunctionBased(
                        parent,
                        inbFrame,
                        body,
                        outbFrame,
                        1,
                        createFunctions(amplitude, phase),
                        createCoordIndices() // TODO ask Ajay
                        )
        {}

private:
    static std::vector< const Function* > createFunctions(angle_t amplitude, angle_t phase) {
        std::vector< const Function* > functions;
        functions.push_back(new ZeroFunction ); // x rotation
        functions.push_back(new ZeroFunction ); // y rotation

        // Z-rotation is the only degree of freedom for this mobilizer
        functions.push_back(new SinusoidFunction(amplitude, phase) ); // z rotation

        functions.push_back(new ZeroFunction ); // x translation
        functions.push_back(new ZeroFunction ); // y translation
        functions.push_back(new ZeroFunction ); // z translation

        return functions;        
    }

    static std::vector< std::vector<int> > createCoordIndices() {
        std::vector<int> oneCoordinateVec;
        oneCoordinateVec.push_back(0); // first and only generalized coordinate index

        std::vector< std::vector<int> > coordIndices;
        // All six functions take the one generalized coordinate
        coordIndices.push_back(std::vector<int>()); // 1, empty
        coordIndices.push_back(std::vector<int>()); // 2, empty
        coordIndices.push_back(oneCoordinateVec);   // 3, one coordinate, zero
        coordIndices.push_back(std::vector<int>()); // 4, empty
        coordIndices.push_back(std::vector<int>()); // 5, empty
        coordIndices.push_back(std::vector<int>()); // 6, empty

        return coordIndices;
    }
};



void testRiboseMobilizer() 
{
    MultibodySystem system;
    SimbodyMatterSubsystem matter(system);
    DecorationSubsystem decorations(system);

    matter.setShowDefaultGeometry(false);

    // Put some hastily chosen mass there (doesn't help)
    Body::Rigid rigidBody;
    rigidBody.setDefaultRigidBodyMassProperties(MassProperties(
        mass_t(20.0*daltons),
        location_t(Vec3(0,0,0)*nanometers),
        Inertia(20.0)
        ));

    // One body anchored at C4 atom, 
    MobilizedBody::Weld c4Body( 
        matter.updGround(), 
        Rotation(-120*degrees, XAxis),
        rigidBody,
        Transform());
    // sphere for C4 atom
    decorations.addBodyFixedDecoration(
        c4Body.getMobilizedBodyIndex(), 
        Transform(),
        DecorativeSphere( length_t(0.5*angstroms) )
    );
    // sphere for C5 atom
    decorations.addBodyFixedDecoration(
        c4Body.getMobilizedBodyIndex(), 
        location_t(Vec3(-1.0,-1.0,0.5)*angstroms),
        DecorativeSphere( length_t(0.5*angstroms) )
    );

    decorations.addRubberBandLine(
        c4Body.getMobilizedBodyIndex(),
        Vec3(0),
        c4Body.getMobilizedBodyIndex(),
        location_t(Vec3(-1.0,-1.0,0.5)*angstroms),
        DecorativeLine().setColor(Vec3(0,0,0)).setLineThickness(6));

    // One body anchored at C3 atom -- works
    // Pin version
    //MobilizedBody::Pin c3Body( 
    //    c4Body, 
    //    Transform(),
    //    rigidBody,
    //    Transform(location_t(Vec3(0,0,1.5)*angstroms))
    //    );

    // Function based pin version -- works
    //TestPinMobilizer c3Body( 
    //    c4Body, 
    //    Transform(),
    //    rigidBody,
    //    Transform(location_t(Vec3(0,0,1.5)*angstroms))
    //    );
    
    PseudorotationMobilizer c3Body( 
        c4Body, 
        Transform(),
        rigidBody,
        Transform(location_t(Vec3(0,0,1.5)*angstroms)),
        angle_t(36.4*degrees), // amplitude
        angle_t(-161.8*degrees) // phase
        );
    // sphere for C3 atom
    decorations.addBodyFixedDecoration(
        c3Body.getMobilizedBodyIndex(), 
        Transform(),
        DecorativeSphere( length_t(0.5*angstroms) )
    );
    // sphere for O3 atom
    decorations.addBodyFixedDecoration(
        c3Body.getMobilizedBodyIndex(), 
        location_t(Vec3(-1.0,1.0,-0.5)*angstroms),
        DecorativeSphere( length_t(0.5*angstroms) ).setColor(Vec3(1,0,0))
    );

    decorations.addRubberBandLine(
        c3Body.getMobilizedBodyIndex(),
        Vec3(0),
        c3Body.getMobilizedBodyIndex(),
        location_t(Vec3(-1.0,1.0,-0.5)*angstroms),
        DecorativeLine().setColor(Vec3(0,0,0)).setLineThickness(6));
    decorations.addRubberBandLine(
        c4Body.getMobilizedBodyIndex(),
        Vec3(0),
        c3Body.getMobilizedBodyIndex(),
        Vec3(0),
        DecorativeLine().setColor(Vec3(0,0,0)).setLineThickness(6));

    PseudorotationMobilizer c2Body( 
        c3Body, 
        Rotation( angle_t(-80*degrees), YAxis ),
        rigidBody,
        Transform(location_t(Vec3(0,0,1.5)*angstroms)),
        angle_t(35.8*degrees), // amplitude
        angle_t(-91.3*degrees) // phase
        );
    // sphere for C2 atom
    decorations.addBodyFixedDecoration(
        c2Body.getMobilizedBodyIndex(), 
        Transform(),
        DecorativeSphere( length_t(0.5*angstroms) )
    );
    // sphere for O2 atom
    decorations.addBodyFixedDecoration(
        c2Body.getMobilizedBodyIndex(), 
        location_t(Vec3(-1.0,1.0,-0.5)*angstroms),
        DecorativeSphere( length_t(0.5*angstroms) ).setColor(Vec3(1,0,0))
    );

    decorations.addRubberBandLine(
        c2Body.getMobilizedBodyIndex(),
        Vec3(0),
        c2Body.getMobilizedBodyIndex(),
        location_t(Vec3(-1.0,1.0,-0.5)*angstroms),
        DecorativeLine().setColor(Vec3(0,0,0)).setLineThickness(6));
    decorations.addRubberBandLine(
        c3Body.getMobilizedBodyIndex(),
        Vec3(0),
        c2Body.getMobilizedBodyIndex(),
        Vec3(0),
        DecorativeLine().setColor(Vec3(0,0,0)).setLineThickness(6));

    PseudorotationMobilizer c1Body( 
        c2Body, 
        Rotation( angle_t(-80*degrees), YAxis ),
        rigidBody,
        Transform(location_t(Vec3(0,0,1.5)*angstroms)),
        angle_t(37.6*degrees), // amplitude
        angle_t(52.8*degrees) // phase
        );
    // sphere for C1 atom
    decorations.addBodyFixedDecoration(
        c1Body.getMobilizedBodyIndex(), 
        Transform(),
        DecorativeSphere( length_t(0.5*angstroms) )
    );
    // sphere for N1 atom
    decorations.addBodyFixedDecoration(
        c1Body.getMobilizedBodyIndex(), 
        location_t(Vec3(-1.0,-1.0,-0.5)*angstroms),
        DecorativeSphere( length_t(0.5*angstroms) ).setColor(Vec3(0,0,1))
    );
    // sphere for O4 atom
    decorations.addBodyFixedDecoration(
        c1Body.getMobilizedBodyIndex(), 
        location_t(Vec3(1.0,0,-0.5)*angstroms),
        DecorativeSphere( length_t(0.5*angstroms) ).setColor(Vec3(1,0,0))
    );

    decorations.addRubberBandLine(
        c2Body.getMobilizedBodyIndex(),
        Vec3(0),
        c1Body.getMobilizedBodyIndex(),
        Vec3(0),
        DecorativeLine().setColor(Vec3(0,0,0)).setLineThickness(6));
    decorations.addRubberBandLine(
        c1Body.getMobilizedBodyIndex(),
        Vec3(0),
        c1Body.getMobilizedBodyIndex(),
        location_t(Vec3(1.0,0,-0.5)*angstroms),
        DecorativeLine().setColor(Vec3(0,0,0)).setLineThickness(6));
    decorations.addRubberBandLine(
        c1Body.getMobilizedBodyIndex(),
        Vec3(0),
        c1Body.getMobilizedBodyIndex(),
        location_t(Vec3(-1.0,-1.0,-0.5)*angstroms),
        DecorativeLine().setColor(Vec3(0,0,0)).setLineThickness(6));
    decorations.addRubberBandLine(
        c4Body.getMobilizedBodyIndex(),
        Vec3(0),
        c1Body.getMobilizedBodyIndex(),
        location_t(Vec3(1.0,0,-0.5)*angstroms),
        DecorativeLine().setColor(Vec3(0,0,0)).setLineThickness(6));

    // Prescribed motion
    Constraint::ConstantSpeed(c3Body, 0.5);

    // Two constraint way works; one constraint way does not
    bool useTwoConstraints = true;

    if (useTwoConstraints) {
        // Constraints to make three generalized coordinates identical
        std::vector<MobilizedBodyIndex> c32bodies(2);
        c32bodies[0] = c3Body.getMobilizedBodyIndex();
        c32bodies[1] = c2Body.getMobilizedBodyIndex();
        std::vector<MobilizerQIndex> coordinates(2, MobilizerQIndex(0));
        Constraint::CoordinateCoupler(matter, new DifferenceFunction, c32bodies, coordinates);

        std::vector<MobilizedBodyIndex> c21bodies(2);
        c21bodies[0] = c2Body.getMobilizedBodyIndex();
        c21bodies[1] = c1Body.getMobilizedBodyIndex();
        Constraint::CoordinateCoupler(matter, new DifferenceFunction, c21bodies, coordinates);
    }
    else { // trying to get single constraint way to work
        // Try one constraint for all three mobilizers
        std::vector<MobilizedBodyIndex> c123Bodies(3);
        c123Bodies[0] = c1Body.getMobilizedBodyIndex();
        c123Bodies[1] = c2Body.getMobilizedBodyIndex();
        c123Bodies[2] = c3Body.getMobilizedBodyIndex();
        std::vector<MobilizerQIndex> coords3(3, MobilizerQIndex(0));
        Constraint::CoordinateCoupler(matter, new ThreeDifferencesFunction, c123Bodies, coords3);
    }


    Visualizer viz(system);
    viz.setBackgroundType(Visualizer::SolidColor);

    system.addEventReporter(new Visualizer::Reporter(viz, 0.10));

    system.realizeTopology();
    State& state = system.updDefaultState();
    
    // Simulate it.
    VerletIntegrator integ(system);
    //RungeKuttaMersonIntegrator integ(system);
    TimeStepper ts(system, integ);
    ts.initialize(state);
    ts.stepTo(50.0);
}

int main() 
{
  try {
    testRiboseMobilizer();
  } catch (const std::exception& e) {
    std::cout << "EXCEPTION: " << e.what() << std::endl;
    return 1;
  }

    return 0;
}