1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
|
/* -------------------------------------------------------------------------- *
* Simbody(tm) *
* -------------------------------------------------------------------------- *
* This is part of the SimTK biosimulation toolkit originating from *
* Simbios, the NIH National Center for Physics-Based Simulation of *
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody. *
* *
* Portions copyright (c) 2009-12 Stanford University and the Authors. *
* Authors: Michael Sherman *
* Contributors: *
* *
* Licensed under the Apache License, Version 2.0 (the "License"); you may *
* not use this file except in compliance with the License. You may obtain a *
* copy of the License at http://www.apache.org/licenses/LICENSE-2.0. *
* *
* Unless required by applicable law or agreed to in writing, software *
* distributed under the License is distributed on an "AS IS" BASIS, *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
* See the License for the specific language governing permissions and *
* limitations under the License. *
* -------------------------------------------------------------------------- */
/**@file
* Test the Force::Thermostat force element.
*/
#include "SimTKsimbody.h"
#include "SimTKcommon/Testing.h"
#include <cstdio>
#include <exception>
#include <iostream>
using std::cout; using std::endl;
using namespace SimTK;
class ThermoReporter : public PeriodicEventReporter {
public:
ThermoReporter(const MultibodySystem& sys,
const Force::Thermostat& thermo,
const Force::LinearBushing& bushing1,
const Force::LinearBushing& bushing2,
Real dt)
: PeriodicEventReporter(dt), system(sys), thermo(thermo),
bushing1(bushing1), bushing2(bushing2) {}
void handleEvent(const State& state) const override {
printf("THERMO t=%g, stage %s, KE+PE=%g Ebath=%g CONSERVED=%g\n",
state.getTime(),
state.getSystemStage().getName().c_str(),
system.calcEnergy(state),
thermo.calcBathEnergy(state),
system.calcEnergy(state)
+ thermo.calcBathEnergy(state)
+ bushing1.getDissipatedEnergy(state)
+ bushing2.getDissipatedEnergy(state));
printf("TEMP=%g N=%d Power=%g Work=%g\n",
thermo.getCurrentTemperature(state),
thermo.getNumThermalDofs(state),
thermo.getExternalPower(state),
thermo.getExternalWork(state));
}
private:
const MultibodySystem& system;
const Force::Thermostat& thermo;
const Force::LinearBushing& bushing1;
const Force::LinearBushing& bushing2;
};
void testConservationOfEnergy() {
// Create the system.
MultibodySystem system;
SimbodyMatterSubsystem matter(system);
GeneralForceSubsystem forces(system);
Force::UniformGravity gravity(forces, matter, Vec3(0, -9.8, 0));
const Real Mass = 1;
const Vec3 HalfShape = Vec3(1,.5,.25)/2;
const Transform BodyAttach(Rotation(), Vec3(HalfShape[0],0,0));
Body::Rigid brickBody(MassProperties(Mass, Vec3(.1,.2,.3),
Mass*Inertia(1,1.1,1.2,0.01,0.02,0.03)));
//Body::Rigid brickBody(MassProperties(Mass, Vec3(0),
// Mass*UnitInertia::ellipsoid(HalfShape)));
brickBody.addDecoration(Transform(), DecorativeEllipsoid(HalfShape)
.setOpacity(0.25)
.setColor(Blue));
brickBody.addDecoration(BodyAttach,
DecorativeFrame(0.5).setColor(Red));
const int NBod=50;
MobilizedBody::Free brick1(matter.Ground(), Transform(),
brickBody, BodyAttach);
MobilizedBody::Free brick2(brick1, Transform(),
brickBody, BodyAttach);
MobilizedBody prev=brick2;
MobilizedBody body25;
for (int i=0; i<NBod; ++i) {
MobilizedBody::Ball next(prev, -1*BodyAttach.p(),
brickBody, BodyAttach);
if (i==25) body25=next;
//Force::TwoPointLinearSpring(forces,
// prev, Vec3(0), next, Vec3(0), 1000, 1);
prev=next;
}
Constraint::Ball(matter.Ground(), Vec3(0,1,0)-2*NBod/3*BodyAttach.p(),
prev, BodyAttach.p());
Constraint::Ball(matter.Ground(), Vec3(0,1,0)-1*NBod/3*BodyAttach.p(),
body25, BodyAttach.p());
Vec6 k1(1,100,1,100,100,100), c1(0);
Force::LinearBushing(forces, matter.Ground(), -2*NBod/3*BodyAttach.p(),
prev, BodyAttach.p(), k1, c1);
matter.Ground().addBodyDecoration(-2*NBod/3*BodyAttach.p(),
DecorativeFrame().setColor(Green));
Force::Thermostat thermo(forces, matter,
SimTK_BOLTZMANN_CONSTANT_MD,
5000,
.1);
Vec6 k(1,100,1,100,100,100), c(0);
Force::LinearBushing bushing1(forces, matter.Ground(), -1*NBod/3*BodyAttach.p(),
brick1, BodyAttach, k, c);
Force::LinearBushing bushing2(forces, brick1, Transform(),
brick2, BodyAttach, k, c);
matter.Ground().addBodyDecoration(-1*NBod/3*BodyAttach.p(),
DecorativeFrame().setColor(Green));
Visualizer viz(system);
Visualizer::Reporter* reporter = new Visualizer::Reporter(viz, 1./30);
viz.setBackgroundType(Visualizer::SolidColor);
system.addEventReporter(reporter);
ThermoReporter* thermoReport = new ThermoReporter
(system, thermo, bushing1, bushing2, 1./10);
system.addEventReporter(thermoReport);
// Initialize the system and state.
system.realizeTopology();
State state = system.getDefaultState();
viz.report(state);
printf("Default state -- hit ENTER\n");
cout << "t=" << state.getTime()
<< " q=" << brick1.getQAsVector(state) << brick2.getQAsVector(state)
<< " u=" << brick1.getUAsVector(state) << brick2.getUAsVector(state)
<< "\nnChains=" << thermo.getNumChains(state)
<< " T=" << thermo.getBathTemperature(state)
<< "\nt_relax=" << thermo.getRelaxationTime(state)
<< " kB=" << thermo.getBoltzmannsConstant()
<< endl;
getchar();
state.setTime(0);
system.realize(state, Stage::Acceleration);
Vector initU(state.getNU());
initU = Test::randVector(state.getNU());
state.updU()=initU;
RungeKuttaMersonIntegrator integ(system);
//integ.setMinimumStepSize(1e-1);
integ.setAccuracy(1e-2);
TimeStepper ts(system, integ);
ts.initialize(state);
const State& istate = integ.getState();
viz.report(integ.getState());
viz.zoomCameraToShowAllGeometry();
printf("After initialize -- hit ENTER\n");
cout << "t=" << integ.getTime()
<< "\nE=" << system.calcEnergy(istate)
<< "\nEbath=" << thermo.calcBathEnergy(istate)
<< endl;
thermoReport->handleEvent(istate);
getchar();
// Simulate it.
ts.stepTo(20.0);
viz.report(integ.getState());
viz.zoomCameraToShowAllGeometry();
printf("After simulation:\n");
cout << "t=" << integ.getTime()
<< "\nE=" << system.calcEnergy(istate)
<< "\nEbath=" << thermo.calcBathEnergy(istate)
<< "\nNsteps=" << integ.getNumStepsTaken()
<< endl;
thermoReport->handleEvent(istate);
}
int main() {
SimTK_START_TEST("TestThermostat");
SimTK_SUBTEST(testConservationOfEnergy);
SimTK_END_TEST();
}
|