1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912
|
/* -------------------------------------------------------------------------- *
* Simbody(tm) - Tim's Box PGS *
* -------------------------------------------------------------------------- *
* This is part of the SimTK biosimulation toolkit originating from *
* Simbios, the NIH National Center for Physics-Based Simulation of *
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody. *
* *
* Portions copyright (c) 2012-14 Stanford University and the Authors. *
* Authors: Michael Sherman *
* Contributors: Thomas Uchida *
* *
* Licensed under the Apache License, Version 2.0 (the "License"); you may *
* not use this file except in compliance with the License. You may obtain a *
* copy of the License at http://www.apache.org/licenses/LICENSE-2.0. *
* *
* Unless required by applicable law or agreed to in writing, software *
* distributed under the License is distributed on an "AS IS" BASIS, *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
* See the License for the specific language governing permissions and *
* limitations under the License. *
* -------------------------------------------------------------------------- */
/* Solve TimsBox contact & impact using the Projected Gauss Seidel iterative
solver rather than a direct solver. */
//#define NDEBUG 1
#include "Simbody.h"
#include <string>
#include <iostream>
#include <exception>
using std::cout;
using std::endl;
using namespace SimTK;
//#define USE_TIMS_PARAMS
#define ANIMATE // off to get more accurate CPU time (you can still playback)
//#define HERTZ
#define POISSON
//#define NEWTON
// Misc. utilities
namespace {
// On return a<=b.
inline void sort2(int& a, int& b) {
if (a>b) std::swap(a,b);
}
// On return a<=b<=c.
inline void sort3(int& a, int& b, int& c) {
sort2(a,b); // a<=b
sort2(b,c); // a<=c, b<=c
sort2(a,b); // a<=b<=c
}
// Smooth, convex approximation to max(z,0); small eps is smoother.
inline Real softmax0(Real z, Real eps) {
assert(eps>0);
return (z+std::sqrt(z*z+eps))/2;
}
// Partial derivative of softmax0 with respect to z.
inline Real dsoftmax0(Real z, Real eps) {
assert(eps>0);
return (1+z/std::sqrt(z*z+eps))/2;
}
// Smooth, concave approximation to min(z,0); small eps is smoother.
inline Real softmin0(Real z, Real eps) {
assert(eps>0);
return (z-std::sqrt(z*z+eps))/2;
}
// Partial derivative of softmin0 with respect to z.
inline Real dsoftmin0(Real z, Real eps) {
assert(eps>0);
return (1-z/std::sqrt(z*z+eps))/2;
}
// Smooth, convex approximation to abs(z); small eps is smoother.
inline Real softabs(Real z, Real eps) {
assert(eps>0);
return std::sqrt(z*z+eps);
}
// Partial derivative of softabs with respect to z.
inline Real dsoftabs(Real z, Real eps) {
assert(eps>0);
return z/std::sqrt(z*z+eps);
}
/** Given a scalar s, ensure that lb <= s <= ub by moving s to the nearest
bound if necessary. Return true if any change is made. **/
bool boundScalar(Real lb, Real& s, Real ub) {
assert(lb <= ub);
if (s > ub) {s=ub; return true;}
else if (s < lb) {s=lb; return true;}
return false;
}
/** Given an index set IV, ensure that ||w[IV]|| <= maxLen by scaling the
vector to that length if necessary. Return true if any change is made. **/
bool boundVector(Real maxLen, const Array_<int>& IV, Vector& w) {
assert(maxLen >= 0);
const Real maxLen2 = square(maxLen);
Real wNorm2 = 0;
for (unsigned i=0; i<IV.size(); ++i) wNorm2 += square(w[IV[i]]);
if (wNorm2 <= maxLen2)
return false;
const Real scale = std::sqrt(maxLen2/wNorm2); // 0 <= scale < 1
for (unsigned i=0; i<IV.size(); ++i) w[IV[i]] *= scale;
return true;
}
/** Given index set IN identifying the components of the normal force vector,
and index set IF identifying the components of the friction vector, ensure
that ||w[IF]|| <= mu*||w[IN]|| by scaling the friction vector if necessary.
Return true if any change is made. **/
bool boundFriction(Real mu, const Array_<int>& IN,
const Array_<int>& IF, Vector& w) {
assert(mu >= 0);
Real N2=0, F2=0; // squares of normal and friction force magnitudes
for (unsigned i=0; i<IN.size(); ++i) N2 += square(w[IN[i]]);
for (unsigned i=0; i<IF.size(); ++i) F2 += square(w[IF[i]]);
const Real mu2N2 = mu*mu*N2;
if (F2 <= mu2N2)
return false;
const Real scale = std::sqrt(mu2N2/F2); // 0 <= scale < 1
for (unsigned i=0; i<IF.size(); ++i) w[IF[i]] *= scale;
return true;
}
SimTK_DEFINE_UNIQUE_INDEX_TYPE(ActiveIndex);
}
//==============================================================================
// MY CONTACT ELEMENT
//==============================================================================
// This abstract class hides the details about which kind of contact constraint
// we're dealing with, while giving us enough to work with for deciding what's
// on and off and generating impulses.
//
// There is always a scalar associated with the constraint for making
// decisions. There may be a friction element associated with this contact.
namespace {
class MyFrictionElement;
class MyContactElement {
public:
MyContactElement(Constraint uni, Real multSign, Real coefRest)
: m_uni(uni), m_multSign(multSign), m_coefRest(coefRest),
m_index(-1), m_friction(0),
m_velocityDependentCOR(NaN), m_restitutionDone(false)
{ m_uni.setDisabledByDefault(true); }
MultiplierIndex getMultIndex(const State& s) const {
int mp, mv, ma;
MultiplierIndex px0, vx0, ax0;
m_uni.getNumConstraintEquationsInUse(s,mp,mv,ma);
assert(mp==1 && mv==0 && ma==0); // don't call if not enabled
m_uni.getIndexOfMultipliersInUse(s, px0, vx0, ax0);
assert(px0.isValid() && !vx0.isValid() && !ax0.isValid());
return px0;
}
virtual ~MyContactElement() {}
// (Re)initialize base & concrete class. If overridden, be sure to
// invoke base class first.
virtual void initialize() {
setRestitutionDone(false);
m_velocityDependentCOR = NaN;
}
// Provide a human-readable string identifying the type of contact
// constraint.
virtual String getContactType() const = 0;
// These must be constructed so that a negative value means the
// unilateral constraint condition is violated.
virtual Real getPerr(const State& state) const = 0;
virtual Real getVerr(const State& state) const = 0;
virtual Real getAerr(const State& state) const = 0;
// This returns a point in the ground frame at which you might want to
// say the constraint is "located", for purposes of display. This should
// return something useful even if the constraint is currently off.
virtual Vec3 whereToDisplay(const State& state) const = 0;
// This is used by some constraints to collect position information that
// may be used later to set instance variables when enabling the underlying
// Simbody constraint. All constraints zero impulses here.
virtual void initializeForImpact(const State& state, Real captureVelocity) {
if (-captureVelocity <= getVerr(state) && getVerr(state) < 0) {
m_velocityDependentCOR = 0;
SimTK_DEBUG3("CAPTURING %d because %g <= v=%g < 0\n",
m_index, -captureVelocity, getVerr(state));
} else {
m_velocityDependentCOR = m_coefRest;
}
setRestitutionDone(false);
}
// Returns zero if the constraint is not currently enabled. Otherwise
// return the signed constraint force, with a negative value indicating
// that the unilateral force condition is violated.
Real getForce(const State& s) const {
if (isDisabled(s)) return 0;
return m_multSign*s.updMultipliers()[getMultIndex(s)];
}
// Append to geometry array.
virtual void showContactForce(const State& s,
Array_<DecorativeGeometry>& geometry) const {}
bool isProximal(const State& state, Real posTol) const
{ return /*!isDisabled(state) || */getPerr(state) <= posTol; }
bool isCandidate(const State& state, Real posTol, Real velTol) const
{ return isProximal(state, posTol) && getVerr(state) <= velTol; }
void enable(State& state) const {m_uni.enable(state);}
void disable(State& state) const {m_uni.disable(state);}
bool isDisabled(const State& state) const {return m_uni.isDisabled(state);}
void setMyDesiredDeltaV(const State& s,
Vector& desiredDeltaV) const
{ Vector myDesiredDV(1); myDesiredDV[0] = m_multSign*getVerr(s);
m_uni.setMyPartInConstraintSpaceVector(s, myDesiredDV,
desiredDeltaV); }
Real getMyValueFromConstraintSpaceVector(const State& state,
const Vector& lambda) const
{ Vector myValue(1);
m_uni.getMyPartFromConstraintSpaceVector(state, lambda, myValue);
return -m_multSign*myValue[0]; }
Real getMaxCoefRest() const {return m_coefRest;}
Real getEffectiveCoefRest() const {return m_velocityDependentCOR;}
void setRestitutionDone(bool isDone) {m_restitutionDone=isDone;}
bool isRestitutionDone() const {return m_restitutionDone;}
// Record position within the set of unilateral contact constraints.
void setContactIndex(int index) {m_index=index;}
int getContactIndex() const {return m_index;}
// If there is a friction element for which this is the master contact,
// record it here.
void setFrictionElement(MyFrictionElement& friction)
{ m_friction = &friction; }
// Return true if there is a friction element associated with this contact
// element.
bool hasFrictionElement() const {return m_friction != 0;}
// Get the associated friction element.
const MyFrictionElement& getFrictionElement() const
{ assert(hasFrictionElement()); return *m_friction; }
MyFrictionElement& updFrictionElement() const
{ assert(hasFrictionElement()); return *m_friction; }
protected:
Constraint m_uni;
const Real m_multSign; // 1 or -1
const Real m_coefRest;
int m_index; // contact index in unilateral constraint set
MyFrictionElement* m_friction; // if any (just a reference, not owned)
// Runtime -- initialized at start of impact handler.
Real m_velocityDependentCOR; // Calculated at start of impact
bool m_restitutionDone;
};
//==============================================================================
// MY FRICTION ELEMENT
//==============================================================================
// Generated forces during sliding, and the force limit during rolling, depend
// on a scalar normal force N that comes from a
// separate "normal force master", which might be one of the following:
// - a unilateral constraint
// - a bilateral constraint
// - a mobilizer
// - a compliant force element
// If the master is an inactive unilateral constraint, or if N=0, then no
// friction forces are generated. In this example, we're only going to use
// a unilateral contact constraint as the "normal force master".
//
// For all but the compliant normal force master, the normal force N is
// acceleration-dependent and thus may be coupled to the force produced by a
// sliding friction element. This may require iteration to ensure consistency
// between the sliding friction force and its master contact's normal force.
//
// A Coulomb friction element depends on a scalar slip speed defined by the
// normal force master (this might be the magnitude of a generalized speed or
// slip velocity vector). When the slip velocity goes to zero, the stiction
// constraint is enabled if its constraint force magnitude can be kept to
// mu_s*|N| or less. Otherwise, or if the slip velocity is nonzero, the sliding
// force is enabled instead and generates a force of constant magnitude mu_d*|N|
// that opposes the slip direction, or impending slip direction, as defined by
// the master.
class MyFrictionElement {
public:
MyFrictionElement(Real mu_d, Real mu_s, Real mu_v)
: mu_d(mu_d), mu_s(mu_s), mu_v(mu_v), m_index(-1) {}
virtual ~MyFrictionElement() {}
// (Re)initialize base & concrete class. If overridden, be sure to
// invoke base class first.
virtual void initialize() {
}
Real getDynamicFrictionCoef() const {return mu_d;}
Real getStaticFrictionCoef() const {return mu_s;}
Real getViscousFrictionCoef() const {return mu_v;}
// This returns a point in the ground frame at which you might want to
// say the friction is "located", for purposes of display.
virtual Vec3 whereToDisplay(const State& state) const = 0;
// Return true if the stiction constraint is enabled.
virtual bool isEnabled(const State&) const = 0;
virtual void setInstanceParameters(State&) const {}
virtual void enable(State&) const = 0;
virtual void disable(State&) const = 0;
// Return true if the normal force master *could* be involved in an
// impact event (because it is touching).
virtual bool isMasterProximal(const State&, Real posTol) const = 0;
// Return true if the normal force master is currently generating a
// normal force (or impulse) so that this friction element might be
// generating a force also.
virtual bool isMasterActive(const State&) const = 0;
// This is used by some stiction constraints to collect position information
// that may be used later to set instance variables when enabling the
// underlying Simbody constraint. Recorded impulses should be zeroed.
virtual void initializeFriction(const State& state) = 0;
// If this friction element's stiction constraint is enabled, set its
// constraint-space velocity entry(s) in desiredDeltaV to the current
// slip velocity (which might be a scalar or 2-vector).
virtual void setMyDesiredDeltaV(const State& s,
Vector& desiredDeltaV) const = 0;
// Output the status, friction force, slip velocity, prev slip direction
// (scalar or vector) to the given ostream, indented as indicated and
// followed by a newline. May generate multiple lines.
virtual std::ostream& writeFrictionInfo(const State& state,
const String& indent,
std::ostream& o) const = 0;
// Optional: give some kind of visual representation for the friction force.
virtual void showFrictionForce(const State& state,
Array_<DecorativeGeometry>& geometry, const Vec3& color) const {}
void setFrictionIndex(int index) {m_index=index;}
int getFrictionIndex() const {return m_index;}
private:
Real mu_d, mu_s, mu_v;
int m_index; // friction index within unilateral constraint set
};
//==============================================================================
// MY UNILATERAL CONSTRAINT SET
//==============================================================================
// These are indices into the unilateral constraint set arrays.
struct MyElementSubset {
void clear() {m_contact.clear();m_friction.clear();}
Array_<int> m_contact;
Array_<int> m_friction; // friction elements that might stick
};
class MyUnilateralConstraintSet {
public:
// Capture velocity: if the normal approach velocity
// is smaller, the coefficient of restitution is set to zero for the
// upcoming impact. Transition velocity: if a slip velocity is smaller than
// this use the static coefficient of friction, otherwise use dynamic
// plus viscous.
MyUnilateralConstraintSet(const MultibodySystem& mbs,
Real captureVelocity, Real transitionVelocity)
: m_mbs(mbs), m_captureVelocity(captureVelocity),
m_transitionVelocity(transitionVelocity) {}
// This class takes over ownership of the heap-allocated contact element.
int addContactElement(MyContactElement* contact) {
const int index = (int)m_contact.size();
m_contact.push_back(contact);
contact->setContactIndex(index);
return index;
}
// This class takes over ownership of the heap-allocated friction element.
int addFrictionElement(MyFrictionElement* friction) {
const int index = (int)m_friction.size();
m_friction.push_back(friction);
friction->setFrictionIndex(index);
return index;
}
Real getCaptureVelocity() const {return m_captureVelocity;}
void setCaptureVelocity(Real v) {m_captureVelocity=v;}
Real getTransitionVelocity() const {return m_transitionVelocity;}
void setTransitionVelocity(Real v) {m_transitionVelocity=v;}
int getNumContactElements() const {return (int)m_contact.size();}
int getNumFrictionElements() const {return (int)m_friction.size();}
const MyContactElement& getContactElement(int ix) const
{ return *m_contact[ix]; }
const MyFrictionElement& getFrictionElement(int ix) const
{ return *m_friction[ix]; }
// Allow writable access to elements from const set so we can record
// runtime results (e.g. impulses).
MyContactElement& updContactElement(int ix) const {return *m_contact[ix];}
MyFrictionElement& updFrictionElement(int ix) const {return *m_friction[ix];}
// Initialize all runtime fields in the contact & friction elements.
void initialize()
{
for (unsigned i=0; i < m_contact.size(); ++i)
m_contact[i]->initialize();
for (unsigned i=0; i < m_friction.size(); ++i)
m_friction[i]->initialize();
}
// Return the contact and friction elements that might be involved in an
// impact occurring in this configuration. They are the contact elements
// for which perr <= posTol, and friction elements whose normal force
// masters can be involved in the impact. State must be realized through
// Position stage.
void findProximalElements(const State& state,
Real posTol,
MyElementSubset& proximals,
MyElementSubset& distals) const
{
proximals.clear(); distals.clear();
for (unsigned i=0; i < m_contact.size(); ++i)
if (m_contact[i]->isProximal(state,posTol))
proximals.m_contact.push_back(i);
else distals.m_contact.push_back(i);
for (unsigned i=0; i < m_friction.size(); ++i)
if (m_friction[i]->isMasterProximal(state,posTol))
proximals.m_friction.push_back(i);
else distals.m_friction.push_back(i);
// Any friction elements might stick if they are proximal since
// we'll be changing velocities.
}
// In Debug mode, produce a useful summary of the current state of the
// contact and friction elements.
void showConstraintStatus(const State& state, const String& place) const;
~MyUnilateralConstraintSet() {
for (unsigned i=0; i < m_contact.size(); ++i)
delete m_contact[i];
for (unsigned i=0; i < m_friction.size(); ++i)
delete m_friction[i];
}
const MultibodySystem& getMultibodySystem() const {return m_mbs;}
private:
const MultibodySystem& m_mbs;
Real m_captureVelocity;
Real m_transitionVelocity;
Array_<MyContactElement*> m_contact;
Array_<MyFrictionElement*> m_friction;
};
//==============================================================================
// MY POINT CONTACT
//==============================================================================
// Define a unilateral constraint to represent contact of a follower point on
// one body with a plane fixed to another body.
class MyPointContact : public MyContactElement {
typedef MyContactElement Super;
public:
MyPointContact(
MobilizedBody& planeBodyB, const UnitVec3& normal_B, Real height,
MobilizedBody& followerBodyF, const Vec3& point_F,
Real coefRest)
: MyContactElement(
Constraint::PointInPlane(planeBodyB, normal_B, height,
followerBodyF, point_F),
Real(-1), // multiplier sign
coefRest),
m_planeBody(planeBodyB), m_frame(normal_B, ZAxis), m_height(height),
m_follower(followerBodyF), m_point(point_F)
{
}
Real getPerr(const State& s) const override {
const Vec3 p = m_follower.findStationLocationInAnotherBody
(s, m_point, m_planeBody);
return ~p*m_frame.z() - m_height;
}
Real getVerr(const State& s) const override {
const Vec3 v = m_follower.findStationVelocityInAnotherBody
(s, m_point, m_planeBody);
return ~v*m_frame.z(); // normal is constant in P
}
Real getAerr(const State& s) const override {
const Vec3 a = m_follower.findStationAccelerationInAnotherBody
(s, m_point, m_planeBody);
return ~a*m_frame.z(); // normal is constant in P
}
String getContactType() const override {return "Point";}
Vec3 whereToDisplay(const State& state) const override {
return m_follower.findStationLocationInGround(state,m_point);
}
// Will be zero if the stiction constraints are on.
Vec2 getSlipVelocity(const State& s) const {
const Vec3 v = m_follower.findStationVelocityInAnotherBody
(s, m_point, m_planeBody);
return Vec2(~v*m_frame.x(), ~v*m_frame.y());
}
// Will be zero if the stiction constraints are on.
Vec2 getSlipAcceleration(const State& s) const {
const Vec3 a = m_follower.findStationAccelerationInAnotherBody
(s, m_point, m_planeBody);
return Vec2(~a*m_frame.x(), ~a*m_frame.y());
}
Vec3 getContactPointInPlaneBody(const State& s) const
{ return m_follower.findStationLocationInAnotherBody
(s, m_point, m_planeBody); }
void showContactForce(const State& s,
Array_<DecorativeGeometry>& geometry)
const override
{
const Real Scale = .1;
const Real f = getForce(s);
if (std::abs(f) < SignificantReal)
return;
const Vec3 stationG = whereToDisplay(s);
const Vec3 endG = stationG + Scale*f*m_frame.z();
geometry.push_back(DecorativeLine(endG + Vec3(0,.05,0),
stationG + Vec3(0,.05,0))
.setColor(Magenta));
}
const MobilizedBody& getBody() const {return m_follower;}
MobilizedBody& updBody() {return m_follower;}
const Vec3& getBodyStation() const {return m_point;}
const MobilizedBody& getPlaneBody() const {return m_planeBody;}
MobilizedBody& updPlaneBody() const {return m_planeBody;}
const Rotation& getPlaneFrame() const {return m_frame;}
Real getPlaneHeight() const {return m_height;}
private:
MobilizedBody& m_planeBody; // body P
const Rotation m_frame; // z is normal; expressed in P
const Real m_height;
MobilizedBody& m_follower; // body F
const Vec3 m_point; // measured & expressed in F
};
//==============================================================================
// MY POINT CONTACT FRICTION
//==============================================================================
// This friction element expects its master to be a unilateral point contact
// constraint. It provides slipping forces or stiction constraint forces acting
// in the plane, based on the normal force being applied by the point contact
// constraint.
class MyPointContactFriction : public MyFrictionElement {
typedef MyFrictionElement Super;
public:
// The constructor allocates two NoSlip1D constraints.
MyPointContactFriction(MyPointContact& contact,
Real mu_d, Real mu_s, Real mu_v, Real vtol, //TODO: shouldn't go here
GeneralForceSubsystem& forces)
: MyFrictionElement(mu_d,mu_s,mu_v), m_contact(contact),
m_noslipX(contact.updPlaneBody(), Vec3(0), contact.getPlaneFrame().x(),
contact.updPlaneBody(), contact.updBody()),
m_noslipY(contact.updPlaneBody(), Vec3(0), contact.getPlaneFrame().y(),
contact.updPlaneBody(), contact.updBody())
{
assert((0 <= mu_d && mu_d <= mu_s) && (0 <= mu_v));
contact.setFrictionElement(*this);
m_noslipX.setDisabledByDefault(true);
m_noslipY.setDisabledByDefault(true);
initializeRuntimeFields();
}
~MyPointContactFriction() {}
void initialize() override {
Super::initialize();
initializeRuntimeFields();
}
Vec3 whereToDisplay(const State& state) const override {
return m_contact.whereToDisplay(state);
}
MultiplierIndex getMultIndexX(const State& s) const {
int mp, mv, ma;
MultiplierIndex px0, vx0, ax0;
m_noslipX.getNumConstraintEquationsInUse(s,mp,mv,ma);
assert(mp==0 && mv==1 && ma==0); // don't call if not enabled
m_noslipX.getIndexOfMultipliersInUse(s, px0, vx0, ax0);
assert(!px0.isValid() && vx0.isValid() && !ax0.isValid());
return vx0;
}
MultiplierIndex getMultIndexY(const State& s) const {
int mp, mv, ma;
MultiplierIndex px0, vx0, ax0;
m_noslipY.getNumConstraintEquationsInUse(s,mp,mv,ma);
assert(mp==0 && mv==1 && ma==0); // don't call if not enabled
m_noslipY.getIndexOfMultipliersInUse(s, px0, vx0, ax0);
assert(!px0.isValid() && vx0.isValid() && !ax0.isValid());
return vx0;
}
// The way we constructed the NoSlip1D constraints makes the multipliers be
// the force on Ground; we negate here so we'll get the force on the sliding
// body instead.
Vec2 getFrictionForce(const State& s) const {
if (m_noslipX.isDisabled(s)) return Vec2(0);
Vec2 fOnG(s.updMultipliers()[getMultIndexX(s)],
s.updMultipliers()[getMultIndexY(s)]);
return -fOnG;
}
// Implement pure virtuals from MyFrictionElement base class.
bool isEnabled(const State& s) const override
{ return !m_noslipX.isDisabled(s); } // X,Z always on or off together
// Note that initializeForStiction() must have been called first.
void setInstanceParameters(State& s) const override
{ m_noslipX.setContactPoint(s, m_contactPointInPlane);
m_noslipY.setContactPoint(s, m_contactPointInPlane); }
void enable(State& s) const override
{ m_noslipX.setContactPoint(s, m_contactPointInPlane);
m_noslipY.setContactPoint(s, m_contactPointInPlane);
m_noslipX.enable(s); m_noslipY.enable(s); }
void disable(State& s) const override
{ m_noslipX.disable(s); m_noslipY.disable(s); }
bool isMasterProximal(const State& s, Real posTol) const override
{ return m_contact.isProximal(s, posTol); }
bool isMasterActive(const State& s) const override
{ return !m_contact.isDisabled(s); }
// Set the friction application point to be the projection of the contact
// point onto the contact plane. This will be used the next time friction
// is enabled. Requires state realized to Position stage.
void initializeFriction(const State& s) override {
const Vec3 p = m_contact.getContactPointInPlaneBody(s);
m_contactPointInPlane = p;
}
// Fill in deltaV to eliminate slip velocity using the stiction
// constraints.
void setMyDesiredDeltaV(const State& s,
Vector& desiredDeltaV) const override
{
if (!isEnabled(s)) return;
const Vec2 dv = -m_contact.getSlipVelocity(s); // X,Z
Vector myDesiredDV(1); // Nuke translational velocity also.
myDesiredDV[0] = dv[0];
m_noslipX.setMyPartInConstraintSpaceVector(s, myDesiredDV, desiredDeltaV);
myDesiredDV[0] = dv[1];
m_noslipY.setMyPartInConstraintSpaceVector(s, myDesiredDV, desiredDeltaV);
}
Real getMyImpulseMagnitudeFromConstraintSpaceVector(const State& state,
const Vector& lambda) const
{ Vector myImpulseX(1), myImpulseY(1);
m_noslipX.getMyPartFromConstraintSpaceVector(state, lambda, myImpulseX);
m_noslipY.getMyPartFromConstraintSpaceVector(state, lambda, myImpulseY);
const Vec2 tI(myImpulseX[0], myImpulseY[0]);
return tI.norm();
}
std::ostream& writeFrictionInfo(const State& s, const String& indent,
std::ostream& o) const override
{
o << indent;
if (!isMasterActive(s)) o << "OFF";
else if (isEnabled(s)) o << "STICK";
else o << "SLIP";
const Vec2 v = m_contact.getSlipVelocity(s);
const Vec2 f = getFrictionForce(s);
o << " V=" << ~v << " F=" << ~f << endl;
return o;
}
void showFrictionForce(const State& s, Array_<DecorativeGeometry>& geometry,
const Vec3& color)
const override
{
const Real Scale = 0.1;
const Vec2 f = getFrictionForce(s);
if (f.normSqr() < square(SignificantReal))
return;
const MobilizedBody& bodyB = m_contact.getBody();
const Vec3& stationB = m_contact.getBodyStation();
const Vec3 stationG = bodyB.getBodyTransform(s)*stationB;
Vec3 F = f[0]*m_contact.getPlaneFrame().x()
+ f[1]*m_contact.getPlaneFrame().y();
const Vec3 endG = stationG - Scale*F;
geometry.push_back(DecorativeLine(endG + Vec3(0,.05,0),
stationG + Vec3(0,.05,0))
.setColor(color));
}
const MyPointContact& getMyPointContact() const {return m_contact;}
private:
void initializeRuntimeFields() {
m_contactPointInPlane = Vec3(0);
}
const MyPointContact& m_contact;
Constraint::NoSlip1D m_noslipX, m_noslipY; // stiction
// Runtime
Vec3 m_contactPointInPlane; // point on plane body where friction will act
};
//==============================================================================
// MY PUSH FORCE
//==============================================================================
// This is a force element that generates a constant force on a body for a
// specified time interval. It is useful to perturb the system to force it
// to transition from sticking to sliding, for example.
class MyPushForceImpl : public Force::Custom::Implementation {
public:
MyPushForceImpl(const MobilizedBody& bodyB,
const Vec3& stationB,
const Vec3& forceG, // force direction in Ground!
Real onTime,
Real offTime)
: m_bodyB(bodyB), m_stationB(stationB), m_forceG(forceG),
m_on(onTime), m_off(offTime)
{ }
//--------------------------------------------------------------------------
// Custom force virtuals
void calcForce(const State& state, Vector_<SpatialVec>& bodyForces,
Vector_<Vec3>& particleForces, Vector& mobilityForces) const
override
{
if (!(m_on <= state.getTime() && state.getTime() <= m_off))
return;
m_bodyB.applyForceToBodyPoint(state, m_stationB, m_forceG, bodyForces);
}
// No potential energy.
Real calcPotentialEnergy(const State& state) const override {return 0;}
void calcDecorativeGeometryAndAppend
(const State& state, Stage stage,
Array_<DecorativeGeometry>& geometry) const override
{
const Real ScaleFactor = 0.1;
if (stage != Stage::Time) return;
if (!(m_on <= state.getTime() && state.getTime() <= m_off))
return;
const Vec3 stationG = m_bodyB.findStationLocationInGround(state, m_stationB);
geometry.push_back(DecorativeLine(stationG-ScaleFactor*m_forceG, stationG)
.setColor(Yellow)
.setLineThickness(3));
}
private:
const MobilizedBody& m_bodyB;
const Vec3 m_stationB;
const Vec3 m_forceG;
Real m_on;
Real m_off;
};
//==============================================================================
// PGS AUGMENTED MULTIBODY SYSTEM
//==============================================================================
/* This is a Simbody MultibodySystem able to provide some additional information
about its constraints, in a form suitable for a PGS solver. The extra
information allows us to emulate conditional constraints using Simbody's
unconditional constraints plus its constraint enable/disable feature.
We first construct the system with all possible constraints included, but with
conditional ones initially disabled. Then for any given configuration q, we
determine which conditional constraints are "proximal", meaning that they may
participate in applying forces to the system in that configuration. Those
constraints are enabled and all other conditional constraints are disabled.
Simbody can then calculate the constraint Jacobian G(q), and the
constraint-space compliance matrix A(q)=GM\~G.
Extra constraint info:
Unconditional:
- which multipliers / holonomic or not
Bounded scalar (stop/contact/clutch/motor):
- lower and upper bounds
- which multipliers / holonomic or not
- if holo, restitution coefficients, capture velocity
Length-limited vector:
- function L(t,q,u) giving max length
- which multipliers / holonomic or not
Frictional constraint:
- master constraint (unconditional or bounded, holonomic, dim 1,2, or 3)
- friction coefficients, transition velocity
- which multipliers
*/
const Real DefaultCaptureVelocity = .01,
DefaultTransitionVelocity = .01;
class PGSAugmentedMultibodySystem : public MultibodySystem {
public:
PGSAugmentedMultibodySystem() : m_matter(0), m_forces(0), m_unis(0) {
m_matter = new SimbodyMatterSubsystem(*this);
m_forces = new GeneralForceSubsystem(*this);
m_unis = new MyUnilateralConstraintSet(*this,
DefaultCaptureVelocity, DefaultTransitionVelocity);
m_matter->setShowDefaultGeometry(false);
}
virtual ~PGSAugmentedMultibodySystem()
{ delete m_unis; delete m_forces; delete m_matter; }
virtual const MobilizedBody& getBodyToWatch() const
{ return m_matter->getGround(); }
virtual Vec3 getWatchOffset() const {return Vec3(0, 2, 1.5);}
virtual Real getScale() const {return 1;}
virtual void calcInitialState(State& state) const = 0;
const SimbodyMatterSubsystem& getMatterSubsystem() const {return *m_matter;}
SimbodyMatterSubsystem& updMatterSubsystem() {return *m_matter;}
const GeneralForceSubsystem& getForceSubsystem() const {return *m_forces;}
GeneralForceSubsystem& updForceSubsystem() {return *m_forces;}
const MyUnilateralConstraintSet& getUnis() const {return *m_unis;}
MyUnilateralConstraintSet& updUnis() {return *m_unis;}
private:
//TODO: this shouldn't require pointers.
SimbodyMatterSubsystem* m_matter;
GeneralForceSubsystem* m_forces;
MyUnilateralConstraintSet* m_unis;
};
//==============================================================================
// PGS TIME STEPPER
//==============================================================================
struct Bounded {
Bounded(MultiplierIndex ix, Real lb, Real ub, Real effCOR)
: m_ix(ix), m_lb(lb), m_ub(ub), m_frictional(-1),
m_effCOR(effCOR), m_hitBound(false)
{ assert(m_lb<=m_ub);
assert(isNaN(m_effCOR) || (0<=m_effCOR && m_effCOR<=1)); }
MultiplierIndex m_ix; // which constraint multiplier
Real m_lb, m_ub; // lower, upper bounds; lb <= ub
int m_frictional; // index to corr. frictional elt., -1 if none
Real m_effCOR; // velocity-dependent COR
bool m_hitBound;
};
struct LengthLimited {
LengthLimited(const Array_<MultiplierIndex>& components, Real maxLength)
: m_components(components), m_maxLength(maxLength), m_hitLimit(false)
{ assert(m_components.size()<=3); assert(m_maxLength>=0); }
Array_<MultiplierIndex> m_components;
Real m_maxLength;
bool m_hitLimit;
};
struct Frictional {
Frictional(const Array_<MultiplierIndex>& frictionComponents,
const Array_<MultiplierIndex>& normalComponents,
Real muEff)
: m_Fk(frictionComponents), m_Nk(normalComponents),
m_effMu(muEff), m_wasLimited(false)
{ assert(m_Fk.size()<=3 && m_Nk.size()<=3);
assert(isNaN(m_effMu) || m_effMu>=0); }
Array_<MultiplierIndex> m_Fk, m_Nk;
Real m_effMu;
bool m_wasLimited;
};
/**
**/
// Limit single-step direction change to 30 degrees.
static const Real CosMaxSlidingDirChange = std::cos(Pi/6);
static const Real MaxRollingTangVel = 1.0e-1; //Can't roll above this velocity.
class PGSTimeStepper {
public:
explicit PGSTimeStepper(const PGSAugmentedMultibodySystem& ambs)
: m_ambs(ambs),
m_PGSConvergenceTol(1e-6), m_PGSMaxIters(100), m_PGSSOR(1),
m_accuracy(1e-2), m_consTol(1e-3), m_useNewton(false)
{ resetPGSStats(); }
void setUseNewtonRestitution(bool useNewton) {m_useNewton=useNewton;}
bool getUseNewtonRestitution() const {return m_useNewton;}
/** Set integration accuracy; requires variable length steps. **/
void setAccuracy(Real accuracy) {m_accuracy=accuracy;}
/** Set the tolerance to which constraints must be satisfied. **/
void setConstraintTol(Real consTol) {m_consTol=consTol;}
Real getAccuracy() const {return m_accuracy;}
Real getConstraintTol() const {return m_consTol;}
void resetPGSStats() const {
for (int i=0; i<3; ++i) {
m_PGSNumCalls[i] = 0; // mutable
m_PGSNumIters[i] = 0;
m_PGSNumFailures[i] = 0;
}
}
long long getPGSNumCalls(int phase) const {return m_PGSNumCalls[phase];}
long long getPGSNumIters(int phase) const {return m_PGSNumIters[phase];}
long long getPGSNumFailures(int phase) const
{ return m_PGSNumFailures[phase]; }
void setPGSConvergenceTol(Real tol) {m_PGSConvergenceTol=tol;}
void setPGSMaxIters(int mx) {m_PGSMaxIters=mx;}
void setPGSSOR(Real sor) {assert(0<=sor && sor<=2); m_PGSSOR = sor;}
Real getPGSConvergenceTol() const {return m_PGSConvergenceTol;}
int getPGSMaxIters() const {return m_PGSMaxIters;}
Real getPGSSOR() const {return m_PGSSOR;}
/** Initialize the PGSTimeStepper's internally maintained state to a copy
of the given state. **/
void initialize(const State& initState);
const State& getState() const {return m_state;}
Real getTime() const {return m_state.getTime();}
/** Advance to the indicated time in one or more steps, using repeated
induced impacts. **/
Integrator::SuccessfulStepStatus stepTo(Real time);
/** Advance to the indicated time in one or more steps, using a single
expansion impulse. **/
Integrator::SuccessfulStepStatus stepToOLD(Real time);
private:
// Determine which constraints will be involved for this step.
void findProximalConstraints(const State&);
// Enable all proximal constraints, disable all distal constraints,
// reassigning multipliers if needed. Returns true if anything changed.
bool enableProximalConstraints(State&);
// After constraints are enabled, gather up useful info about them.
void collectConstraintInfo(const State& s);
// Calculate velocity-dependent coefficients of restitution and friction
// and apply combining rules for dissimilar materials.
void calcCoefficientsOfFriction(const State&, const Vector& verr);
void calcCoefficientsOfRestitution(const State&, const Vector& verr);
// Easy if there are no constraints active.
void takeUnconstrainedStep(State& s, Real h);
// Given a velocity constraint error, determine if any of its entries
// indicate that an impact is occurring.
bool isImpact(const State& s, const Vector& verr) const;
// Adjust given verr to reflect Newton restitution.
bool applyNewtonRestitutionIfAny(const State&, Vector& verr) const;
// Adjust given compression impulse to include Poisson restitution impulse.
// Note which contacts are expanding.
bool applyPoissonRestitutionIfAny(const State&, Vector& impulse,
Array_<int>& expanders) const;
bool calcExpansionImpulseIfAny(const State& s, const Array_<int>& impacters,
const Vector& compressionImpulse,
Vector& expansionImpulse,
Array_<int>& expanders) const;
// This phase uses all the proximal constraints and should use a starting
// guess for impulse saved from the last step if possible.
bool doCompressionPhase(const State&, const Vector& eps,
Vector& compressionImpulse);
// This phase uses all the proximal constraints, but we expect the result
// to be zero unless expansion causes new violations.
bool doExpansionPhase(const State&, const Vector& eps,
Vector& reactionImpulse);
bool doInducedImpactRound(const State&, const Vector& eps,
const Array_<MultiplierIndex>& participating,
const Array_<int>& whichBounded,
const Array_<int>& whichFrictional,
Vector& impulse);
bool anyPositionErrorsViolated(const State&, const Vector& perr) const;
// This phase uses only holonomic constraints, and zero is a good initial
// guess for the (hopefully small) position correction.
bool doPositionCorrectionPhase(const State&, const Vector& eps,
Vector& positionImpulse);
private:
// Returns true if it converges.
bool projGaussSeidel(int phase, // for stats
const Matrix& A, const Vector& eps, Vector& pi,
const Array_<MultiplierIndex>& all,
const Array_<MultiplierIndex>& unconditional,
Array_<Bounded>& bounded,
Array_<LengthLimited>& lengthLimited,
Array_<Frictional>& frictional) const;
Real m_PGSConvergenceTol;
int m_PGSMaxIters;
Real m_PGSSOR;
mutable long long m_PGSNumCalls[3]; // phases 0=comp, 1=exp, 2=position
mutable long long m_PGSNumIters[3];
mutable long long m_PGSNumFailures[3];
private:
const PGSAugmentedMultibodySystem& m_ambs;
Real m_accuracy;
Real m_consTol;
bool m_useNewton;
// Runtime data.
State m_state;
MyElementSubset m_proximals, m_distals;
Array_<Bounded> m_bounded, m_boundedPos;
Array_<LengthLimited> m_lengthLimited;
Array_<Frictional> m_frictional;
Array_<MultiplierIndex> m_all, m_allPos, m_uncond, m_uncondPos;
Matrix m_GMInvGt; // G M\ ~G
// Updated during impact rounds.
Array_<bool> m_expanders; // has pending impulse
Array_<bool> m_observers; // ignore this round
friend class ShowContact;
};
//==============================================================================
// SHOW CONTACT
//==============================================================================
// For each visualization frame, generate ephemeral geometry to show just
// during this frame, based on the current State.
class ShowContact : public DecorationGenerator {
public:
explicit ShowContact(const PGSTimeStepper& ts)
: m_ts(ts) {}
void generateDecorations(const State& state,
Array_<DecorativeGeometry>& geometry) override
{
const PGSAugmentedMultibodySystem& ambs = m_ts.m_ambs;
const MyUnilateralConstraintSet& unis = ambs.getUnis();
const Real TextScale = ambs.getScale()/10; // was .1
ambs.realize(state, Stage::Dynamics);
const Real KE=ambs.calcKineticEnergy(state), E=ambs.calcEnergy(state);
DecorativeText energy; energy.setIsScreenText(true);
energy.setText("Energy/KE: " + String(E, "%.3f") + String(KE, "/%.3f"));
geometry.push_back(energy);
for (unsigned i=0; i < m_ts.m_proximals.m_contact.size(); ++i) {
const int id = m_ts.m_proximals.m_contact[i];
const MyContactElement& contact = unis.getContactElement(id);
const Vec3 loc = contact.whereToDisplay(state);
if (!contact.isDisabled(state)) {
geometry.push_back(DecorativeSphere(.1)
.setTransform(loc)
.setColor(Red).setOpacity(.25));
contact.showContactForce(state, geometry);
String text;
if (!contact.hasFrictionElement())
text = "-ENABLED";
geometry.push_back(DecorativeText(String(id)+text)
.setColor(White).setScale(TextScale)
.setTransform(loc+Vec3(0,.04,0)));
} else {
geometry.push_back(DecorativeText(String(id))
.setColor(White).setScale(TextScale)
.setTransform(loc+Vec3(0,.02,0)));
}
}
for (unsigned i=0; i < m_ts.m_proximals.m_friction.size(); ++i) {
const int id = m_ts.m_proximals.m_friction[i];
const MyFrictionElement& felt = unis.getFrictionElement(id);
const Vec3 loc = felt.whereToDisplay(state);
const Frictional& fric = m_ts.m_frictional[i];
String text = fric.m_wasLimited ? "slip" : "STICK";
Vec3 color = fric.m_wasLimited ? Green : Orange;
felt.showFrictionForce(state, geometry, color);
geometry.push_back(DecorativeText(text)
.setColor(color).setScale(TextScale)
.setTransform(loc+Vec3(0.1,.04,0)));
}
}
private:
const PGSTimeStepper& m_ts;
};
//==============================================================================
// TIM'S BOX
//==============================================================================
class TimsBox : public PGSAugmentedMultibodySystem {
public:
TimsBox();
void calcInitialState(State& state) const override;
const MobilizedBody& getBodyToWatch() const override
{ return m_brick; }
Vec3 getWatchOffset() const override
{ return Vec3(0, 2, 8); }
private:
Force::Gravity m_gravity;
Force::GlobalDamper m_damper;
MobilizedBody::Free m_brick;
MobilizedBody::Ball m_brick2;
};
//==============================================================================
// BOUNCING BALLS
//==============================================================================
class BouncingBalls : public PGSAugmentedMultibodySystem {
public:
BouncingBalls();
~BouncingBalls() {delete m_contactForces; delete m_tracker;}
void calcInitialState(State& state) const override;
const MobilizedBody& getBodyToWatch() const override
{ static const MobilizedBody nobod; return nobod; }
Vec3 getWatchOffset() const override {return Vec3(0, 2, 20.);}
const MobilizedBody::Slider& getHBall(int i) const {return m_Hballs[i];}
const MobilizedBody::Slider& getPBall(int i) const {return m_Pballs[i];}
const MobilizedBody::Slider& getNBall(int i) const {return m_Nballs[i];}
private:
// Add subsystems for compliant contact. TODO: shouldn't need pointers
ContactTrackerSubsystem* m_tracker;
CompliantContactSubsystem* m_contactForces;
static const int NBalls = 6;
Force::Gravity m_gravity;
Force::GlobalDamper m_damper;
MobilizedBody::Slider m_Hballs[NBalls]; // Hertz
MobilizedBody::Slider m_Pballs[NBalls]; // Poisson
MobilizedBody::Slider m_Nballs[NBalls]; // Newton
};
//==============================================================================
// PENCIL
//==============================================================================
class Pencil : public PGSAugmentedMultibodySystem {
public:
Pencil();
~Pencil() {delete m_contactForces; delete m_tracker;}
void calcInitialState(State& state) const override;
const MobilizedBody& getBodyToWatch() const override {return m_pencil;}
Vec3 getWatchOffset() const override {return Vec3(0, 2, 20.);}
Real getScale() const override {return 5;}
const MobilizedBody::Planar& getPencil() const {return m_pencil;}
private:
// Add subsystems for compliant contact. TODO: shouldn't need pointers
ContactTrackerSubsystem* m_tracker;
CompliantContactSubsystem* m_contactForces;
Force::Gravity m_gravity;
Force::GlobalDamper m_damper;
MobilizedBody::Planar m_pencil;
};
}
//==============================================================================
// MAIN
//==============================================================================
int main(int argc, char** argv) {
#ifdef USE_TIMS_PARAMS
const Real RunTime=16; // Tim's time
const Real Accuracy = 1e-4;
#else
const Real RunTime=20;
const Real Accuracy = 1e-2;
#endif
const bool UseNewton = false; // default is Poisson restitution
try { // If anything goes wrong, an exception will be thrown.
// Create the augmented multibody model.
TimsBox mbs;
//BouncingBalls mbs;
//Pencil mbs;
PGSTimeStepper pgs(mbs);
const SimbodyMatterSubsystem& matter = mbs.getMatterSubsystem();
const MyUnilateralConstraintSet& unis = mbs.getUnis();
Visualizer viz(mbs);
viz.setShowSimTime(true);
viz.setShowFrameNumber(true);
viz.setShowFrameRate(true);
viz.addDecorationGenerator(new ShowContact(pgs));
if (!mbs.getBodyToWatch().isEmptyHandle())
viz.addFrameController(
new Visualizer::BodyFollower(mbs.getBodyToWatch(), Vec3(0),
mbs.getWatchOffset()));
// Simulate it.
State s;
mbs.calcInitialState(s);
printf("Initial state shown. ENTER to continue.\n");
viz.report(s);
getchar();
const Real ConsTol = .001;
const Real PGSConvergenceTol = 1e-5;
const int PGSMaxIters = 100;
const Real PGSSor = 1.0/*0.95*/; // successive over relaxation, 0..2, 1 is neutral
pgs.setUseNewtonRestitution(UseNewton);
pgs.setAccuracy(Accuracy); // integration accuracy
pgs.setConstraintTol(ConsTol);
pgs.setPGSConvergenceTol(PGSConvergenceTol);
pgs.setPGSMaxIters(PGSMaxIters);
pgs.setPGSSOR(PGSSor);
pgs.initialize(s);
mbs.resetAllCountersToZero();
mbs.updUnis().initialize(); // reinitialize
Array_<State> states; states.reserve(10000);
int nSteps=0, nStepsWithEvent = 0;
const double startReal = realTime();
const double startCPU = cpuTime();
const Real h = .0055;
const int SaveEvery = 1; // save every nth step ~= 33ms
do {
const State& pgsState = pgs.getState();
if ((nSteps%SaveEvery)==0) {
#ifdef ANIMATE
viz.report(pgsState);
printf("\nWAITING:"); getchar();
#endif
states.push_back(pgsState);
}
//pgs.stepToOLD(pgsState.getTime() + h);
pgs.stepTo(pgsState.getTime() + h);
++nSteps;
} while (pgs.getTime() < RunTime);
// TODO: did you lose the last step?
const double timeInSec = realTime()-startReal;
const double cpuInSec = cpuTime()-startCPU;
cout << "Done -- took " << nSteps << " steps in " <<
timeInSec << "s for " << pgs.getTime() << "s sim (avg step="
<< (1000*pgs.getTime())/nSteps << "ms) ";
cout << "CPUtime " << cpuInSec << endl;
printf("Used PGS solver (%s) at acc=%g consTol=%g"
" convergenceTol=%g maxIters=%d SOR=%g.\n",
pgs.getUseNewtonRestitution() ? "Newton" : "Poisson",
pgs.getAccuracy(), pgs.getConstraintTol(),
pgs.getPGSConvergenceTol(), pgs.getPGSMaxIters(),
pgs.getPGSSOR());
printf("Compression: ncalls=%lld, niters=%lld (%g/call), nfail=%lld\n",
pgs.getPGSNumCalls(0), pgs.getPGSNumIters(0),
(double)pgs.getPGSNumIters(0)/std::max(pgs.getPGSNumCalls(0),1LL),
pgs.getPGSNumFailures(0));
printf("Expansion: ncalls=%lld, niters=%lld (%g/call), nfail=%lld\n",
pgs.getPGSNumCalls(1), pgs.getPGSNumIters(1),
(double)pgs.getPGSNumIters(1)/std::max(pgs.getPGSNumCalls(1),1LL),
pgs.getPGSNumFailures(1));
printf("Position: ncalls=%lld, niters=%lld (%g/call), nfail=%lld\n",
pgs.getPGSNumCalls(2), pgs.getPGSNumIters(2),
(double)pgs.getPGSNumIters(2)/std::max(pgs.getPGSNumCalls(2),1LL),
pgs.getPGSNumFailures(2));
cout << "nstates =" << states.size() << endl;
// Instant replay.
while(true) {
printf("Hit ENTER for replay (%d states) ...",
states.size());
getchar();
for (unsigned i=0; i < states.size(); ++i) {
mbs.realize(states[i], Stage::Velocity);
viz.report(states[i]);
}
}
}
catch (const std::exception& e) {
printf("EXCEPTION THROWN: %s\n", e.what());
exit(1);
}
catch (...) {
printf("UNKNOWN EXCEPTION THROWN\n");
exit(1);
}
}
//==============================================================================
// PGS TIME STEPPER
//==============================================================================
// TODO: need to deal with prescribed motion
Integrator::SuccessfulStepStatus PGSTimeStepper::
stepToOLD(Real time) {
// Abbreviations.
const PGSAugmentedMultibodySystem& mbs = m_ambs;
const SimbodyMatterSubsystem& matter = mbs.getMatterSubsystem();
const MyUnilateralConstraintSet& unis = mbs.getUnis();
State& s = m_state;
const Real h = time - m_state.getTime(); // max timestep
// Kinematics should already be realized so this won't do anything.
mbs.realize(s, Stage::Position);
// Determine which constraints will be involved for this step.
findProximalConstraints(s);
// Enable all proximal constraints, reassigning multipliers if needed.
enableProximalConstraints(s);
collectConstraintInfo(s);
mbs.realize(s, Stage::Velocity);
const Vector& verr0 = s.getUErr();
if (!verr0.size()) {
takeUnconstrainedStep(s, h);
return Integrator::ReachedScheduledEvent;
}
// Calculate velocity-dependent coefficients of restitution and friction
// and apply combining rules for dissimilar materials.
calcCoefficientsOfRestitution(s, verr0);
calcCoefficientsOfFriction(s, verr0);
// We're going to accumulate velocity errors here, starting with the
// presenting violation.
Vector verr = verr0;
// If we're in Newton mode, or if a contact specifies Newton restitution,
// then modify the appropriate verr's here.
const bool anyNewton = applyNewtonRestitutionIfAny(s, verr);
// Evaluate applied forces and get reference to them. These include
// gravity but not centrifugal forces.
mbs.realize(s, Stage::Dynamics);
const Vector& f = mbs.getMobilityForces(s, Stage::Dynamics);
const Vector_<SpatialVec>& F = mbs.getRigidBodyForces(s, Stage::Dynamics);
// Calculate the constraint compliance matrix GM\~G.
matter.calcProjectedMInv(s, m_GMInvGt);
// Calculate udotExt = M\(f + ~J*(F-C)) where C are centrifugal forces.
// This is the unconstrained acceleration.
Vector udotExt; Vector_<SpatialVec> A_GB;
matter.calcAccelerationIgnoringConstraints(s,f,F,udotExt,A_GB);
// There are some constraints to deal with.
// Calculate verrExt = G*deltaU; the end-of-step constraint error due to
// external and centrifugal forces.
Vector verrExt;
matter.multiplyByG(s, h*udotExt, verrExt);
// Update velocity error to include verrExt.
verr += verrExt; // verr0+Newton restitution+external forces
//cout << "Precomp verr=" << verr << endl;
Vector impulse;
//--------------------------------------------------------------------------
// Initialize the impulse to a best guess from the previous step,
// compute the compression impulse that eliminates verr.
doCompressionPhase(s, verr, impulse);
//--------------------------------------------------------------------------
//cout << "Postcomp impulse=" << impulse << endl;
// Modify the compression impulse to add in expansion impulses.
Array_<int> expanders;
const bool anyPoisson = applyPoissonRestitutionIfAny(s, impulse, expanders);
//cout << "Poisson impulse=" << impulse << endl;
if (anyPoisson) {
// Must calculate a reaction impulse. Move now-known impulse to RHS
// (convert to verr). For small m, it would probably be faster just
// to multiply by GM\~G (O(m^2)), which we already calculated above.
Vector reacImpulse;
//Vector genImpulse, deltaU, expVerr;
//// constraint impulse -> gen impulse
//matter.multiplyByGTranspose(s, impulse, genImpulse);
//// gen impulse to delta-u, then to verr
//matter.multiplyByMInv(s, genImpulse, deltaU);
//matter.multiplyByG(s, deltaU, expVerr);
//// Update verr to include compression+expansion impulse.
//verr -= expVerr; // watch sign -- multipliers are opposite forces
verr -= m_GMInvGt * impulse; // O(m^2) time
//cout << "Preexp verr=" << verr << endl;
//----------------------------------------------------------------------
doExpansionPhase(s, verr, reacImpulse); // initial guess=zero
//----------------------------------------------------------------------
//cout << "Reac impulse=" << reacImpulse << endl;
impulse += reacImpulse;
//TODO: reaction impulse should cause a further expansion in a
//contact that hasn't bounced yet.
}
// We need forces, not impulses for the next calculation.
s.updMultipliers() = impulse/h;
// Calculate constraint forces ~G*lambda (body frcs Fc, mobility frcs fc).
Vector_<SpatialVec> Fc; Vector fc;
matter.calcConstraintForcesFromMultipliers
(s,s.updMultipliers(), Fc, fc);
// Now calculate udot = M\(f-fc + ~J*(F-Fc-C)).
Vector udot;
matter.calcAccelerationIgnoringConstraints(s,f-fc,F-Fc,udot,A_GB);
s.updUDot() = udot;
//TODO: need to calculate reaction forces from (udot,lambda), and
// raise state's stage to Acceleration.
// Update auxiliary states z, invalidating Stage::Dynamics.
s.updZ() += h*s.getZDot();
// Update u from deltaU, invalidating Stage::Velocity.
s.updU() += h*udot;
// Done with velocity update. Now calculate qdot, possiblity including
// an additional position error correction term.
Vector qdot;
const Vector& perr0 = s.getQErr();
if (!anyPositionErrorsViolated(s, perr0)) {
matter.multiplyByN(s,false,s.getU(),qdot);
} else {
// Don't include quaternions for position correction.
Vector posImpulse, genImpulse, posVerr, deltaU;
posVerr.resize(s.getNUErr()); posVerr.setToZero();
const int nQuat = matter.getNumQuaternionsInUse(s);
posVerr(0, perr0.size()-nQuat) = perr0(0, perr0.size()-nQuat)/h;
//----------------------------------------------------------------------
// Calculate impulse and then deltaU=M\~G*impulse such that -h*deltaU
// will eliminate position errors, respecting only position constraints.
doPositionCorrectionPhase(s, posVerr, posImpulse);
//----------------------------------------------------------------------
// constraint impulse -> gen impulse
matter.multiplyByGTranspose(s, posImpulse, genImpulse);
// gen impulse to deltaU (watch sign)
matter.multiplyByMInv(s, genImpulse, deltaU);
// convert corrected u to qdot (note we're not changing u)
matter.multiplyByN(s,false,s.getU()-deltaU, qdot);
}
// We have qdot, now update q, fix quaternions, update time.
s.updQ() += h*qdot; // invalidates Stage::Position
matter.normalizeQuaternions(s);
s.updTime() += h; // invalidates Stage::Time
// Return from step with kinematics realized. Note that we may have
// broken the velocity constraints by updating q, but we won't fix that
// until the next step. Also position constraints are only imperfectly
// satisfied by the correction above.
mbs.realize(s, Stage::Velocity);
return Integrator::ReachedScheduledEvent;
}
//--------------------------- stepTo --------------------------------
Integrator::SuccessfulStepStatus PGSTimeStepper::
stepTo(Real time) {
// Abbreviations.
const PGSAugmentedMultibodySystem& mbs = m_ambs;
const SimbodyMatterSubsystem& matter = mbs.getMatterSubsystem();
const MyUnilateralConstraintSet& unis = mbs.getUnis();
State& s = m_state;
const Real t0 = m_state.getTime();
const Real h = time - t0; // max timestep
// Kinematics should already be realized so this won't do anything.
mbs.realize(s, Stage::Position);
// Determine which constraints will be involved for this step.
findProximalConstraints(s);
// Enable all proximal constraints, reassigning multipliers if needed.
enableProximalConstraints(s);
collectConstraintInfo(s);
mbs.realize(s, Stage::Velocity);
const Vector u0 = s.getU(); // save
const Vector& verr0 = s.getUErr();
if (!verr0.size()) {
takeUnconstrainedStep(s, h);
return Integrator::ReachedScheduledEvent;
}
const int m = verr0.size();
// Friction coefficient is fixed by initial slip velocity and doesn't
// change during impact processing even the the slip velocity will change.
// The logic is that it takes time for surface asperities to engage or
// separate and no time is going by during an impact.
calcCoefficientsOfFriction(s, verr0);
calcCoefficientsOfRestitution(s, verr0);
// If we're in Newton mode, or if a contact specifies Newton restitution,
// then modify the appropriate verr's here.
Vector verr = verr0;
const bool anyNewton = applyNewtonRestitutionIfAny(s, verr);
// Calculate the constraint compliance matrix GM\~G.
matter.calcProjectedMInv(s, m_GMInvGt); // m X m
Array_<int> expanders;
Array_<MultiplierIndex> participating;
Array_<int> impacters;
Array_<int> whichFrictional;
//cout << "Precomp verr=" << verr << endl;
Vector totalImpulse(m, Real(0));
Vector impulse(m), expansionImpulse(m, Real(0));
bool anyImpact = false;
while (true) {
// Calculate participating constraints. All but:
// - ignore "observers" (nonnegative impact velocity)
// - ignore normal constraints for "expanders" (friction stays)
// Then impacters=all contacts with negative impact velocity
// whichFrictional=all impacter & expander frictional elements
participating.clear(); /* =m_allFixed*/;
impacters.clear();
whichFrictional.clear();
const MyUnilateralConstraintSet& unis = m_ambs.getUnis();
for (unsigned i=0; i < m_proximals.m_contact.size(); ++i) {
const int id = m_proximals.m_contact[i];
const MyContactElement& elt = unis.getContactElement(id);
const MultiplierIndex mx = elt.getMultIndex(s);
if (expansionImpulse[mx] != 0) continue; //expander
if (verr[mx] > -m_consTol) continue; //observer
participating.push_back(mx);
impacters.push_back(i);
}
// Include all proximal friction except observers.
for (unsigned i=0; i < m_frictional.size(); ++i) {
const Frictional& fric = m_frictional[i];
if (fric.m_Nk.size() == 1) {
const MultiplierIndex mx = fric.m_Nk[0];
if (expansionImpulse[mx] == 0 && verr[mx] > -m_consTol)
continue; // an observer
}
for (unsigned j=0; j < fric.m_Fk.size(); ++j)
participating.push_back(fric.m_Fk[j]);
whichFrictional.push_back(i);
}
if (participating.empty())
break;
//--------------------------------------------------------------------------
anyImpact = true;
impulse = expansionImpulse;
#ifndef NDEBUG
printf("impacters: "); cout << impacters << endl;
printf("whichFrictional: "); cout << whichFrictional << endl;
printf("participating: "); cout << participating << endl;
cout << "Preimpact impulse=" << impulse << endl;
cout << " verr=" << verr << endl;
#endif
doInducedImpactRound(s, verr, participating,
impacters, whichFrictional, impulse);
//--------------------------------------------------------------------------
impulse -= expansionImpulse; // already applied it
// Calculate the new expansion impulse.
const bool anyExpansion = calcExpansionImpulseIfAny(s, impacters, impulse,
expansionImpulse,expanders);
#ifndef NDEBUG
cout << "Postimpact impulse=" << impulse << endl;
cout << "Expansion impulse=" << expansionImpulse << endl;
cout << "Expanders: " << expanders << endl;
#endif
if (anyExpansion) impulse += expansionImpulse;
totalImpulse += impulse;
verr -= m_GMInvGt*impulse;
#ifndef NDEBUG
cout << "Postimpact verr=" << verr << endl;
#endif
if (!anyExpansion)
break;
calcCoefficientsOfRestitution(s, verr);
}
if (anyImpact) {
Vector genImpulse, deltaU, expVerr;
// constraint impulse -> gen impulse
matter.multiplyByGTranspose(s, -totalImpulse, genImpulse);
// gen impulse to delta-u
matter.multiplyByMInv(s, genImpulse, deltaU);
s.updU() += deltaU;
mbs.realize(s, Stage::Velocity); // updates rotational forces
#ifndef NDEBUG
cout << "Impact: imp " << totalImpulse << "-> du " << deltaU << endl;
#endif
} else {
#ifndef NDEBUG
cout << "No impact.\n";
#endif
}
// Evaluate applied forces and get reference to them. These include
// gravity but not centrifugal forces.
mbs.realize(s, Stage::Dynamics);
const Vector& f = mbs.getMobilityForces(s, Stage::Dynamics);
const Vector_<SpatialVec>& F = mbs.getRigidBodyForces(s, Stage::Dynamics);
// Calculate udotExt = M\(f + ~J*(F-C)) where C are centrifugal forces.
// This is the unconstrained acceleration.
Vector udotExt; Vector_<SpatialVec> A_GB;
matter.calcAccelerationIgnoringConstraints(s,f,F,udotExt,A_GB);
// Calculate verrExt = G*deltaU; the end-of-step constraint error due to
// external and centrifugal forces.
Vector verrExt;
matter.multiplyByG(s, h*udotExt, verrExt);
verrExt += verr;
this->doCompressionPhase(s, verrExt, impulse);
#ifndef NDEBUG
cout << "Dynamics verr=" << verrExt << endl;
cout << " impulse=" << impulse << endl;
#endif
totalImpulse += impulse;
s.updMultipliers() = totalImpulse/h;
// Calculate constraint forces ~G*lambda (body frcs Fc, mobility frcs fc).
Vector_<SpatialVec> Fc; Vector fc;
matter.calcConstraintForcesFromMultipliers(s,impulse/h, Fc, fc);
// Now calculate udot = M\(f-fc + ~J*(F-Fc-C)).
Vector udot;
matter.calcAccelerationIgnoringConstraints(s,f-fc,F-Fc,udot,A_GB);
// Update auxiliary states z, invalidating Stage::Dynamics.
s.updZ() += h*s.getZDot();
// Update u from deltaU, invalidating Stage::Velocity.
s.updU() += h*udot;
s.updUDot() = (s.getU()-u0)/h;
//TODO: need to calculate reaction forces from (udot,lambda), and
// raise state's stage to Acceleration.
// Done with velocity update. Now calculate qdot, possiblity including
// an additional position error correction term.
Vector qdot;
const Vector& perr0 = s.getQErr();
if (!anyPositionErrorsViolated(s, perr0)) {
matter.multiplyByN(s,false,s.getU(),qdot);
} else {
// Don't include quaternions for position correction.
Vector posImpulse, genImpulse, posVerr, deltaU;
posVerr.resize(s.getNUErr()); posVerr.setToZero();
const int nQuat = matter.getNumQuaternionsInUse(s);
posVerr(0, perr0.size()-nQuat) = perr0(0, perr0.size()-nQuat)/h;
//----------------------------------------------------------------------
// Calculate impulse and then deltaU=M\~G*impulse such that -h*deltaU
// will eliminate position errors, respecting only position constraints.
doPositionCorrectionPhase(s, posVerr, posImpulse);
//----------------------------------------------------------------------
// constraint impulse -> gen impulse
matter.multiplyByGTranspose(s, posImpulse, genImpulse);
// gen impulse to deltaU (watch sign)
matter.multiplyByMInv(s, genImpulse, deltaU);
// convert corrected u to qdot (note we're not changing u)
matter.multiplyByN(s,false,s.getU()-deltaU, qdot);
}
// We have qdot, now update q, fix quaternions, update time.
s.updQ() += h*qdot; // invalidates Stage::Position
matter.normalizeQuaternions(s);
s.updTime() += h; // invalidates Stage::Time
// Return from step with kinematics realized. Note that we may have
// broken the velocity constraints by updating q, but we won't fix that
// until the next step. Also position constraints are only imperfectly
// satisfied by the correction above.
mbs.realize(s, Stage::Velocity);
#ifndef NDEBUG
printf("end of step (%g,%g): verr=", t0,s.getTime());
cout << s.getUErr() << endl;
#endif
return Integrator::ReachedScheduledEvent;
}
//==============================================================================
// PROJECTED GAUSS SEIDEL
//==============================================================================
/*
We are given
- A, square matrix of dimension mA
- b, rhs vector (length mA)
- w, solution vector with initial value w=w0 (length mA)
representing mA scalar constraint equations A[i]*w=b[i].
A smaller square subset may be selected via
- I, selection index set, a subset of IA={1,...,mA}
The selected subset I is partitioned into four disjoint index sets
- IU: Unconditional
- IB: Bounded scalar
- IV: Length-limited vector
- IF: Friction
Each bounded scalar constraint k provides
- a single constraint index iB_k from IB, and
- lower and upper bounds lb_k, ub_k.
Each length-limited vector constraint k specifies
- a unique index set of 1-3 distinct constraints IV_k from IV,
- a nonnegative scalar L_k specifing the maximum length of the vector.
Each friction constraint k specifies
- a unique index set of 1-3 distinct friction constraints IF_k from IF,
- an index set of 1-3 distinct normal constraints IN_k from IA-IF,
- the effective coefficient of friction mu.
Note that the normal constraints in IN_k do not have to be selected from the
active subset I; if not they will be fixed at w0[IN_k] on entry.
Given those inputs, we attempt to solve:
A[I,I] w[I] = b[I]
subject to lb_k <= w[iB_k] <= ub_k for bounded constraints k in IB
and ||w[IV_k]|| <= L_k for vector constraints k in IV
and ||w[IF_k]|| <= mu*||w[IN_k]|| for friction constraints k in IF
Implicitly, complementarity conditions must hold:
w_i in interior of constraint -> A[i]*w == b[i]
w_i on boundary of constraint -> A[i]*w != b[i]
*/
bool PGSTimeStepper::projGaussSeidel
(int phase,
const Matrix& A, const Vector& b, Vector& w,
const Array_<MultiplierIndex>& all,
const Array_<MultiplierIndex>& unconditional,
Array_<Bounded>& bounded,
Array_<LengthLimited>& lengthLimited,
Array_<Frictional>& frictional) const
{
//#ifndef NDEBUG
// FactorQTZ fac(A);
// cout << "A=" << A; cout << "b=" << b << endl;
// Vector x;
// fac.solve(b, x);
// cout << "x=" << x << endl;
// cout << "resid=" << A*x-b << endl;
//#endif
++m_PGSNumCalls[phase];
const int mA=A.nrow(), nA=A.ncol();
assert(mA==nA); assert(b.nrow()==mA); assert(w.nrow()==nA);
const int m = (int)all.size();
assert(m<=mA);
// Partitions of selected subset.
const int mUncond = (int)unconditional.size();
const int mBounded = (int)bounded.size();
const int mLength = (int)lengthLimited.size();
const int mFric = (int)frictional.size();
// If debugging, check for consistent constraint equation count.
#ifndef NDEBUG
{int mCount = mUncond + mBounded; // 1 each
for (int k=0; k<mLength; ++k)
mCount += lengthLimited[k].m_components.size();
for (int k=0; k<mFric; ++k)
mCount += frictional[k].m_Fk.size();
assert(mCount == m);}
#endif
if (m == 0) {
printf("PGS %d: nothing to do; converged in 0 iters.\n", phase);
return true;
}
// Track total error for all included equations, and the error for just
// those equations that are being enforced.
bool converged = false;
Real normRMSall = Infinity, normRMSenf = Infinity, sor=m_PGSSOR;
Real prevNormRMSenf = NaN;
int its = 1;
bool decreasing=false, increasing=false;
for (; its <= m_PGSMaxIters; ++its) {
++m_PGSNumIters[phase];
Real sum2all = 0, sum2enf = 0; // track solution errors
prevNormRMSenf = normRMSenf;
// UNCONDITIONAL: these are always on.
for (int fx=0; fx < mUncond; ++fx) {
const int rx = unconditional[fx];
Real rowSum = 0;
for (int c=0; c < m; ++c) {
const int cx = all[c];
rowSum += A(rx,cx)*w[cx];
}
const Real er = b[rx]-rowSum, er2=er*er;
if (A(rx,rx) != Real(0))
w[rx] += sor * er/A(rx,rx);
sum2all += er2; sum2enf += er2;
}
// BOUNDED: conditional scalar constraints with constant bounds
// on resulting w.
for (int k=0; k < mBounded; ++k) {
Bounded& bnd = bounded[k];
const int rx = bnd.m_ix;
Real rowSum = 0;
for (int c=0; c < m; ++c) {
const int cx = all[c];
rowSum += A(rx,cx)*w[cx];
}
const Real er = b[rx]-rowSum, er2=er*er;
if (A(rx,rx) != Real(0))
w[rx] += sor * er/A(rx,rx);
sum2all += er2;
if (!(bnd.m_hitBound=boundScalar(bnd.m_lb, w[rx], bnd.m_ub)))
sum2enf += er2;
}
// LENGTH: a set of constraint equations forming a vector whose
// maximum length is limited.
for (int k=0; k < mLength; ++k) {
LengthLimited& len = lengthLimited[k];
const Array_<int>& rows = len.m_components;
Vec3 rowSums(0);
for (int c=0; c < m; ++c) {
const int cx = all[c];
for (unsigned i=0; i<rows.size(); ++i)
rowSums[i] += A(rows[i],cx)*w[cx];
}
Real localEr2 = 0;
for (unsigned i=0; i<rows.size(); ++i) {
const int rx = rows[i];
const Real er = b[rx]-rowSums[i];
if (A(rx,rx) != Real(0))
w[rx] += sor * er/A(rx,rx);
localEr2 += square(er);
}
sum2all += localEr2;
if (!(len.m_hitLimit=boundVector(len.m_maxLength, rows, w)))
sum2enf += localEr2;
}
// FRICTIONAL: a set of constraint equations forming a vector whose
// maximum length is limited by the norm of other multipliers w.
for (int k=0; k < mFric; ++k) {
Frictional& fric = frictional[k];
const Array_<int>& Fk = fric.m_Fk; // friction components
Vec3 rowSums(0);
for (int c=0; c < m; ++c) {
const int cx = all[c];
for (unsigned i=0; i<Fk.size(); ++i)
rowSums[i] += A(Fk[i],cx)*w[cx];
}
Real localEr2 = 0;
for (unsigned i=0; i<Fk.size(); ++i) {
const int rx = Fk[i];
const Real er = b[rx]-rowSums[i];
if (A(rx,rx) != Real(0))
w[rx] += sor * er/A(rx,rx);
localEr2 += square(er);
}
sum2all += localEr2;
if (!(fric.m_wasLimited=boundFriction(fric.m_effMu,fric.m_Nk,Fk,w)))
sum2enf += localEr2;
}
normRMSall = std::sqrt(sum2all/m);
normRMSenf = std::sqrt(sum2enf/m);
const Real rate = normRMSenf/prevNormRMSenf;
if (!increasing && rate > 1) {
printf("GOT WORSE@%d: sor=%g rate=%g\n", its, sor, rate);
if (sor > .1)
sor = std::max(.8*sor, .1);
decreasing = true;
}
else if (!decreasing && its > 5 && rate > .9) {
printf("TOO SLOW@%d: sor=%g rate=%g\n", its, sor, rate);
//if (its > 20) {
// const Real needFac = normRMSenf/m_PGSConvergenceTol;
// const int needIts = -std::ceil(std::log(needFac)/std::log(rate));
// SimTK_DEBUG2(" need reduction by %g (%d iters)\n", needFac, needIts);
// if (needIts > m_PGSMaxIters-its) {
// SimTK_DEBUG1(" only %d iters left -- give up\n", m_PGSMaxIters-its);
// converged = false;
// break;
// }
//}
if (sor < 1.6)
sor = std::min(1.1*sor, 1.6);
increasing = true;
}
#ifndef NDEBUG
printf("%d/%d: EST rmsAll=%g rmsEnf=%g rate=%g\n", phase, its,
normRMSall, normRMSenf,
normRMSenf/prevNormRMSenf);
#endif
#ifdef NDEBUG // i.e., NOT debugging (TODO)
if (its > 90)
printf("%d/%d: EST rmsAll=%g rmsEnf=%g rate=%g\n", phase, its,
normRMSall, normRMSenf,
normRMSenf/prevNormRMSenf);
#endif
if (normRMSenf < m_PGSConvergenceTol) //TODO: add failure-to-improve check
{
SimTK_DEBUG3("PGS %d converged to %g in %d iters\n",
phase, normRMSenf, its);
converged = true;
break;
}
#ifndef NDEBUG
cout << "w=" << w << " err=" << normRMSenf << " rate=" << rate << endl;
#endif
}
if (!converged) {
printf("PGS %d CONVERGENCE FAILURE: %d iters -> norm=%g\n",
phase, its, normRMSenf);
++m_PGSNumFailures[phase];
}
#ifndef NDEBUG
cout << "FINAL@" << its << " w=" << w << " resid=" << normRMSenf << endl;
#endif
return converged;
}
/** An object of this class attempts to find the m-dimensional impulse vector
pi that best solves a given impact or velocity-level contact problem. The total
impulse is modeled as the vector sum of of a series of impulse "intervals".
<pre>
pi_total = sum_i[ alpha(i)*pi_interval(i) ], i=1..numIntervals
where 0<alpha(i)<1, i=1..numIntervals-1
and alpha(numIntervals)=1.
</pre>
Each interval's impulse represents a solution to that interval's set of
equations and inequalitites. We treat that as a line of constant direction in
the overall solution space, and advance the solution a fraction alpha along
that line until we encounter a qualitative change to a sliding contact (or other
slipping constraint), signaling the need for a direction change. If no such
change occurs, we accept the full impulse (alpha=1) and no further intervals
are required. Otherwise we accept the fraction alpha<1 of the impulse that ends
with the first sliding change, reformulate the equations, and begin a new
interval.
If there are no slipping constraints at the beginning of an interval, then that
will be the final interval. Even with slipping present, often only a single
interval will be required, but in that case we do not know in advance how many
more intervals will be needed.
Within each interval, we seek the least squares impulse (impulse vector of
minimum 2-norm) that satisfies the interval equations and inequalities; the
total impulse is the the scaled sum of these least squares impulses. The
qualitative changes that terminate an interval are: (1) a sliding contact comes
to a stop (so it should transition to rolling), or (2) a sliding direction
changes substantially, where the allowed amount is a parameter but must be less
than 90 degrees.
We distinguish four kinds of constraints:
- Unconditional
- Unilateral (scalar; active/inactive)
- Bounded scalar (upper, lower bounds; slipping/impending/rolling)
- Frictional (inactive/slipping/impending/rolling)
(Here we're using "rolling" to include "sticking" and "engaged".) The solution
to the interval equations requires determining the state of the conditional
constraints, collectively the "active set".
Unconditional constraints are workless linear equality constraints, always
active.
Unilateral constraints are workless linear complementarity constraints (joint
stops, ropes, contact normals), each either enforced as an equality with a
negative impulse pi_i (active), or satisfied as an inequality with a zero
impulse (inactive). There may be an associated frictional constraints which
must be marked inactive whenever the corresponding unilateral constraint is
inactive.
A Bounded scalar constraint's impulse remains within given upper and lower
bounds (torque-limited motor). It is always active, but may be governed by one
of three equations. When rolling (engaged) it is a workless equality constraint. Otherwise it is
maximally dissipative and has either the upper or lower value depending on
the sign of the slip velocity. When slipping, the velocity sign is known. When
impending, the initial slip velocity is zero and the constraint equation
includes an unknown direction.
Frictional constraints consist of 1-3 nonholonomic constraint equations whose
impulse multipliers form a vector whose magnitude cannot exceed a given
limiting value N>=0. There are three subtypes of Frictional constraint,
depending on the source of N:
- Limited: N=mu*F, where F>=0 is a given force magnitude
- Unilateral: N=mu*max(-pi_i,0) where pi_i is a unilateral constraint
multiplier
- Bilateral: N=mu*||pi_N|| where pi_N is a vector formed from 1-3
unconditional constraint multipliers
When rolling (sticking), the Frictional equations are workless, linear equations
that eliminate relative sliding velocity. When sliding, the equations represent
maximally dissipative behavior in which the impulse direction opposes the known
relative slip velocity. When impending, the equations represent maximal
dissipation but the sliding direction is unknown. For either sliding or
impending slip, the magnitude may be given or may be a function of unknown
normal multipliers.
A Frictional constraint whose normal contact force magnitude N comes from a
Unilateral constraint (always a scalar) uses N=max(-pi_N,0) if the Unilateral
constraint is active, N=0 if not. All other Frictional constraints are limited
by N=||pi_N|| where pi_N is the normal force vector.
We are given the mXm matrix A=GM\~G that maps an impulse pi to the constraint-
space velocity it induces: dv=-A*pi. Note the sign convention: in Simbody's
formulation, multipliers have the opposite sign from applied forces so a
negative impulse produces a positive velocity. If a diagonal A_ii is
nonpositive, we ignore that equation and set pi_i=0.
We are also given the vector verr of constraint
velocity errors that we would eliminate if every constraint were active in
its workless (rolling) state. In that case we would write err(pi)=A*pi-verr
and solve err(pi)=0. If the i'th constraint is unilateral, we instead have
the complementarity condition err_i(pi)>=0, pi_i<=0, err_i*pi_i=0. For a rolling
constraint, we must check that the impulse is within the bounds or magnitude
limit. In the case of sliding or impending slip constraints, the corresponding
error functions are replaced by the appropriate linear or nonlinear equations.
The problem is represented as a set of equality and inequality constraints.
minimize ||pi||_2
subject to
Ak pi = bk, k is unconditional
Akz pi = bkz, k is unilateral, active
and pi_kz >= 0
pi_kz = 0, k is unilateral, inactive
and Akz pi <= bkz
[Akx Aky] pi = [bkx bky], k is rolling
|pi_kx pi_ky| <= mu_k * max(pi_kz,0)
|slipVel_k|*[pi_kx pi_ky] = -mu_k * max(pi_kz,0) * slipVel_k,
k is slipping
|d_k|*[pi_kx pi_ky] = -mu_k * max(pi_kz,0) * d_k,
k is impending
and d_k = -[Akx Aky] pi
**/
class SuccessivePruning {
public:
SuccessivePruning() : m_A(0), m_b(0), m_minSmoothness(SqrtEps) {}
bool solve( int phase,
const Matrix& A, const Vector& b, Vector& w,
const Array_<MultiplierIndex>& all,
const Array_<MultiplierIndex>& unconditional,
Array_<Bounded>& bounded,
Array_<LengthLimited>& lengthLimited,
Array_<Frictional>& frictional);
private:
// Given point P and line segment AB, find the point closest to P that lies
// on AB, which we call Q. Returns stepLength, the ratio AQ:AB. In our case,
// P is the origin and AB is the line segment connecting the initial and
// final tangential velocity vectors.
// @author Thomas Uchida
Real calcSlidingStepLengthToOrigin(const Vec2& A, const Vec2& B, Vec2& Q)
const;
Real calcSlidingStepLengthToOrigin(const Vec3& A, const Vec3& B, Vec3& Q)
const;
// Given vectors A and B, find step length alpha such that the angle between
// A and A+alpha*(B-A) is MaxSlidingDirChange. The solutions were generated
// in Maple using the law of cosines, then exported as optimized code.
// @author Thomas Uchida
Real calcSlidingStepLengthToMaxChange(const Vec2& A, const Vec2& B) const;
Real calcSlidingStepLengthToMaxChange(const Vec3& A, const Vec3& B) const;
void classifyFrictionals(const Array_<Frictional>& frictional);
// Go through the given set of active constraints and build a reverse map
// from the multipliers to the active index.
void fillMult2Active(const Array_<MultiplierIndex,ActiveIndex>& active,
Array_<ActiveIndex,MultiplierIndex>& mult2active) const;
// Copy the active rows and columns of A into the Jacobian. These will
// be the right values for the linear equations, but rows for nonlinear
// equations (sliding, impending) will get overwritten. Initialize piActive
// from pi.
void initializeNewton(const Vector& piGuess,
const Array_<Bounded>& bounded);
// Given a new piActive, update the impending slip directions and calculate
// the new err(piActive).
void updateDirectionsAndCalcCurrentError
(const Array_<Frictional>& frictional,
const Vector& piActive, Vector& errActive);
// This takes a converged solution and makes it strictly satisfy the
// constraints where possible.
void tidyUpSolution(const Array_<Bounded>& bounded,
const Array_<Frictional>& frictional);
// Replace rows of Jacobian for constraints corresponding to sliding or
// impending slip frictional elements. This is the partial derivative of the
// constraint error w.r.t. pi. Also set rhs m_verrActive.
void updateJacobianForSliding(const Array_<Frictional>& frictional);
void factorAndSolve(Vector& dpi) {
if (m_JacActive.nrow() == 0) {
dpi.clear();
return;
}
FactorQTZ fac(m_JacActive);
fac.solve(m_errActive, dpi);
}
// These are set when solve() is called.
const Matrix* m_A; // original matrix A=GM\~G
const Vector* m_b; // original rhs verr
Real m_minSmoothness;
// This is the given expansion impulse.
Vector m_expImpulse; // mA of these
// This starts out as b and is then reduced during each interval.
Vector m_verr; // mA of these
// This is a subset of the given participating constraints that are
// presently active. Only the rows and columns of A that are listed here
// can be used (and we'll replace some of those rows).
Array_<MultiplierIndex,ActiveIndex> m_active;
Array_<ActiveIndex,MultiplierIndex> m_mult2active; // mA of these
Matrix m_JacActive; // Jacobian for Newton iteration
Vector m_verrActive; // RHS for Newton iteration
Vector m_piActive; // Current impulse during Newton.
Vector m_errActive; // Error(piActive)
enum Condition {Unknown=0,Slipping=1,Impending=2,Rolling=3};
Array_<Condition> m_fricCondition;
Array_<Vec2> m_slipVel; // updated for impending slip
Array_<Real> m_slipMag;
};
namespace {
// Multiply the active entries of a row of the full matrix A by a packed
// column containing only active entries. Useful for A[r]*piActive.
static Real multRowTimesActiveCol(const Matrix& A, MultiplierIndex row,
const Array_<MultiplierIndex,ActiveIndex>& active,
const Vector& colActive)
{
const RowVectorView Ar = A[row];
Real result = 0;
for (ActiveIndex ax(0); ax < active.size(); ++ax)
result += Ar[active[ax]] * colActive[ax];
return result;
}
// Unpack an active column vector and add its values into a full column.
static void addInActiveCol(const Array_<MultiplierIndex,ActiveIndex>& active,
const Vector& colActive,
Vector& colFull)
{
for (ActiveIndex ax(0); ax < active.size(); ++ax)
colFull[active[ax]] += colActive[ax];
}
}
bool SuccessivePruning::solve
(int phase,
const Matrix& A, const Vector& b, Vector& w,
const Array_<MultiplierIndex>& all,
const Array_<MultiplierIndex>& unconditional,
Array_<Bounded>& bounded,
Array_<LengthLimited>& lengthLimited,
Array_<Frictional>& frictional)
{
printf("\n--------------------------------\n");
printf( "START SUCCESSIVE PRUNING SOLVER:\n");
const int mA=A.nrow(), nA=A.ncol();
assert(mA==nA); assert(b.nrow()==mA); assert(w.nrow()==nA);
const int m = (int)all.size();
assert(m<=mA);
// Partitions of selected subset.
const int mUncond = (int)unconditional.size();
const int mBounded = (int)bounded.size();
const int mLength = (int)lengthLimited.size();
const int mFric = (int)frictional.size();
// If debugging, check for consistent constraint equation count.
#ifndef NDEBUG
{int mCount = mUncond + mBounded; // 1 each
for (int k=0; k<mLength; ++k)
mCount += lengthLimited[k].m_components.size();
for (int k=0; k<mFric; ++k)
mCount += frictional[k].m_Fk.size();
assert(mCount == m);}
#endif
if (m == 0) {
printf("SP %d: nothing to do; converged in 0 iters.\n", phase);
return true;
}
m_A = &A; m_b = &b;
// Note: w contains only expansion impulse, already applied.
m_expImpulse = w;
m_verr = b; // what's left to solve
// Make room for friction information.
m_fricCondition.resize(mFric); m_fricCondition.fill(Unknown);
m_slipVel.resize(mFric); m_slipVel.fill(Vec2(NaN));
m_slipMag.resize(mFric); m_slipMag.fill(NaN);
Vector piTotal(mA, Real(0)), piGuess(mA);
Vector piSave, dpi; // temps
// Track total error for all included equations, and the error for just
// those equations that are being enforced.
bool converged = false;
Real normRMSall = Infinity, normRMSenf = Infinity;
Real prevNormRMSenf = NaN;
// Each interval is a complete restart, except that we continue to
// accumulate piTotal. We're done when we took an interval of length
// alpha==1.
int interval = 0;
Real alpha = 0;
while (alpha < 1) {
++interval;
m_active = all; fillMult2Active(m_active, m_mult2active);
printf("\n***** Interval %d start\n", interval);
cout << " active=" << m_active << endl;
cout << " mult2active=" << m_active << endl;
cout << " piTotal=" << piTotal << endl;
cout << " verr=" << m_verr << endl;
cout << " expnd=" << m_expImpulse << endl;
piGuess = 0; // Hold the best-guess impulse for this interval.
// Determine step begin Rolling vs. Sliding and get slip direction.
classifyFrictionals(frictional); // no Impendings at interval start
int its = 1;
for (; ; ++its) {
printf("\n....... Active set iter %d start\n", its);
cout << ": active=" << m_active << endl;
cout << ": slipMag=" << m_slipMag << endl;
cout << ": slipVel=" << m_slipVel << endl;
cout << ": fricCond=" << m_fricCondition << endl;
// piGuess has the best guess impulse from the previous active set,
// unpacked into the associated multiplier slots. This will be
// the actual piActive values projected to be in-bounds.
fillMult2Active(m_active, m_mult2active);
initializeNewton(piGuess, bounded);
updateDirectionsAndCalcCurrentError(frictional,m_piActive,m_errActive);
if (m_active.empty())
break;
updateJacobianForSliding(frictional);
const Real NewtonTol = 1e-10;
Real errNorm = m_errActive.norm();
int newtIter = 0;
printf(">>>> Start NEWTON solve with errNorm=%g...\n", errNorm);
while (errNorm > NewtonTol) {
++newtIter;
printf("> NEWTON iter %d begin, errNorm=%g\n", newtIter, errNorm);
cout << "> piActive=" << m_piActive << endl;
cout << "> errActive=" << m_errActive << endl;
// Solve for deltaPi.
factorAndSolve(dpi);
cout << "> deltaPi=" << dpi << endl;
// Backtracking line search.
const Real MinFrac = 0.01; // take at least this much
const Real SearchReduceFac = 0.5;
Real frac = 1;
int nsearch = 0;
piSave = m_piActive;
while (true) {
++nsearch;
printf("Line search iter %d with frac=%g.\n", nsearch, frac);
m_piActive = piSave - frac*dpi;
// Remove sliding friction that should be zero.
for (int k=0; k < mFric; ++k) {
Frictional& fric = frictional[k];
const Array_<MultiplierIndex>& Fk = fric.m_Fk;
const Array_<MultiplierIndex>& Nk = fric.m_Nk;
assert(Fk.size()==2); //TODO: generalize
if (!m_mult2active[Fk[0]].isValid())
continue;
if (!(m_fricCondition[k]==Slipping || m_fricCondition[k]==Impending))
continue;
const ActiveIndex ax=m_mult2active[Fk[0]], ay=m_mult2active[Fk[1]],
az=m_mult2active[Nk[0]];
if (!az.isValid())
continue; // expander; always N>0
}
updateDirectionsAndCalcCurrentError(frictional,m_piActive,
m_errActive);
Real normNow = m_errActive.norm();
cout << "> piNow=" << m_piActive << endl;
cout << "> errNow=" << m_errActive
<< " normNow=" << normNow << endl;
if (normNow < errNorm) {
errNorm = normNow;
break;
}
frac *= SearchReduceFac;
if (frac*SearchReduceFac < MinFrac) {
printf("LINE SEARCH STUCK at iter %d: accepting small "
" norm increase at frac=%g\n", nsearch,frac);
errNorm = normNow;
break;
}
printf("GOT WORSE at iter %d: backtracking to frac=%g\n",
nsearch, frac);
}
if (errNorm < NewtonTol)
break; // we have a winner
updateJacobianForSliding(frictional);
}
printf("<<<< NEWTON done in %d iters; norm=%g.\n",newtIter,errNorm);
// UNCONDITIONAL: these are always on.
for (int fx=0; fx < mUncond; ++fx) {
const MultiplierIndex mx = unconditional[fx];
piGuess[mx] = m_piActive[m_mult2active[mx]]; // unpack
}
// BOUNDED: conditional scalar constraints with constant bounds
// on resulting w.
int worstBounded=0; Real worstBoundedValue=0;
for (int k=0; k < mBounded; ++k) {
Bounded& bnd = bounded[k];
const MultiplierIndex mx = bnd.m_ix;
const ActiveIndex ax = m_mult2active[mx];
if (!ax.isValid())
continue; // not active
// Only the in-bounds value gets saved in piGuess in case we
// need to use it for an initial guess on the next iteration.
piGuess[mx] = clamp(bnd.m_lb, m_piActive[ax], bnd.m_ub);
const Real err=std::abs(m_piActive[ax] - piGuess[mx]);
if (err>worstBoundedValue)
worstBounded=k, worstBoundedValue=err;
}
// LENGTH: a set of constraint equations forming a vector whose
// maximum length is limited.
//for (int k=0; k < mLength; ++k) {
// LengthLimited& len = lengthLimited[k];
// const Array_<int>& rows = len.m_components;
// Vec3 rowSums(0);
// for (int c=0; c < m; ++c) {
// const int cx = all[c];
// for (unsigned i=0; i<rows.size(); ++i)
// rowSums[i] += A(rows[i],cx)*w[cx];
// }
// Real localEr2 = 0;
// for (unsigned i=0; i<rows.size(); ++i) {
// const int rx = rows[i];
// const Real er = b[rx]-rowSums[i];
// if (A(rx,rx) != Real(0))
// w[rx] += sor * er/A(rx,rx);
// localEr2 += square(er);
// }
// sum2all += localEr2;
// if (!(len.m_hitLimit=boundVector(len.m_maxLength, rows, w)))
// sum2enf += localEr2;
//}
// FRICTIONAL: a set of constraint equations forming a vector whose
// maximum length is limited by the norm of other multipliers pi.
int worstFric=0; Real worstFricValue=0;
for (int k=0; k < mFric; ++k) {
Frictional& fric = frictional[k];
const Array_<MultiplierIndex>& Fk = fric.m_Fk; // friction components
const Array_<MultiplierIndex>& Nk = fric.m_Nk; // normal components
if (!m_mult2active[Fk[0]].isValid())
continue; // not active
const Real mu = fric.m_effMu;
Real scale = 1;
if (m_fricCondition[k] == Rolling) {
Real tmag=0, nmag=0;
for (unsigned i=0; i<Fk.size(); ++i) {
const MultiplierIndex mx = Fk[i];
const ActiveIndex ax = m_mult2active[mx];
tmag += square(m_piActive[ax]);
}
if (m_mult2active[Nk[0]].isValid()) {
assert(Nk.size()==1); // TODO: generalize
// "Sucking" normal forces are zero already in piGuess.
for (unsigned i=0; i<Nk.size(); ++i)
nmag += square(piGuess[Nk[i]]);
} else { // expander
// Expansion forces always have the right sign.
for (unsigned i=0; i<Nk.size(); ++i)
nmag += square(m_expImpulse[Nk[i]]);
}
tmag = std::sqrt(tmag); nmag = std::sqrt(nmag);
if (tmag > mu*nmag) {
scale = mu*nmag/tmag;
const Real err = tmag - mu*nmag;
if (err > worstFricValue)
worstFric=k, worstFricValue=err;
}
}
// Copy the possibly-reduced value into piGuess.
for (unsigned i=0; i<Fk.size(); ++i) {
const MultiplierIndex mx = Fk[i];
const ActiveIndex ax = m_mult2active[mx];
piGuess[mx] = scale*m_piActive[ax];
}
}
if ( worstFricValue<=SignificantReal
&& worstBoundedValue<=SignificantReal) {
printf("Contact & rolling OK; worstBounded=%g, worstFric=%g. Check sliding.\n",
worstBoundedValue, worstFricValue);
break;
}
bool mustReleaseFriction = true; // if we don't release a normal.
if (worstBoundedValue > worstFricValue) {
printf("Worst offender is bounded %d err=%g ...\n",
worstBounded, worstBoundedValue);
// A contact normal is the worst offender. However, if it has a
// rolling friction constraint active we should release that first
// because doing so might fix the contact normal.
Bounded& bnd = bounded[worstBounded];
const int myFric = bnd.m_frictional;
if (myFric < 0 || m_fricCondition[myFric] != Rolling) {
const MultiplierIndex rx = bnd.m_ix;
// Update active set; must work from highest numbered to lowest
// to avoid moving.
if (myFric < 0) {
m_active.eraseFast(m_active.begin()+m_mult2active[rx]);
} else {
Frictional& fric = frictional[myFric];
const Array_<MultiplierIndex>& Fk = fric.m_Fk;
int a=m_mult2active[rx],b=m_mult2active[Fk[0]],
c=m_mult2active[Fk[1]];
sort3(a,b,c);
m_active.eraseFast(m_active.begin()+c);
m_active.eraseFast(m_active.begin()+b);
m_active.eraseFast(m_active.begin()+a);
}
// mult2active is invalid now.
mustReleaseFriction = false;
printf("... bounded %d released.\n", worstBounded);
} else {
printf("... but rolling fric %d must go first.\n", myFric);
worstFric = myFric;
worstFricValue = NaN;
mustReleaseFriction = true;
}
}
if (mustReleaseFriction) {
Frictional& fric = frictional[worstFric];
const Array_<MultiplierIndex>& Fk = fric.m_Fk;
const Array_<MultiplierIndex>& Nk = fric.m_Nk; // normal components
const ActiveIndex ax=m_mult2active[Fk[0]], ay=m_mult2active[Fk[1]],
az=m_mult2active[Nk[0]];
printf("switch worst fric %d from rolling->impending err=%g\n",
worstFric, worstFricValue);
m_fricCondition[worstFric] = Impending;
// Oppose the last rolling force as a guess at the slip velocity.
// Sign convention for multiplier is opposite velocity, so no
// explicit negation here.
const Vec2 ft(piGuess[Fk[0]], piGuess[Fk[1]]);
cout << " rolling impulse was " << ft << endl;
}
}
tidyUpSolution(bounded,frictional);
// Need to check how much of this interval we can accept.
alpha = 1;
for (int k=0; k < mFric; ++k) {
Frictional& fric = frictional[k];
const Array_<MultiplierIndex>& Fk = fric.m_Fk;
const Array_<MultiplierIndex>& Nk = fric.m_Nk;
assert(Fk.size()==2); //TODO: generalize
assert(Nk.size()==1); //TODO: generalize
if (!m_mult2active[Fk[0]].isValid())
continue;
if (!(m_fricCondition[k]==Slipping))
continue; // no limit for Impending
Vec2 db(multRowTimesActiveCol(A,Fk[0],m_active,m_piActive),
multRowTimesActiveCol(A,Fk[1],m_active,m_piActive));
Vec2 bend = m_slipVel[k] - db;
cout << "slipVel " << k << " from " << m_slipVel[k] << " to " << bend << endl;
const Real bendMag = bend.norm();
if (m_slipMag[k] <= MaxRollingTangVel) { // This shouldn't happen.
printf("Friction %d was impending???, v=%g\n", k, m_slipMag[k]);
continue;
}
if (bendMag <= MaxRollingTangVel) {
printf("Friction %d slowed to a halt, v=%g\n", k, bendMag);
continue;
}
const Real cosTheta =
clamp(-1, dot(m_slipVel[k],bend)/(m_slipMag[k]*bendMag), 1);
if (cosTheta >= CosMaxSlidingDirChange) {
printf("Friction %d rotated %g degrees, less than max %g\n", k,
std::acos(cosTheta)*180/Pi,
std::acos(CosMaxSlidingDirChange)*180/Pi);
continue;
}
printf("TOO BIG: Sliding friction %d; endmag=%g, rotation=%g deg > %g.\n",
k, bendMag, std::acos(cosTheta)*180/Pi,
std::acos(CosMaxSlidingDirChange)*180/Pi);
Vec2 endPt;
Real alpha1 = calcSlidingStepLengthToOrigin(m_slipVel[k],bend,endPt);
const Real endPtMag = endPt.norm();
if (endPtMag <= MaxRollingTangVel) {
printf(" Alpha=%g halts it, v=%g\n", alpha1, endPtMag);
alpha = std::min(alpha, alpha1);
continue;
}
Real alpha2 = calcSlidingStepLengthToMaxChange(m_slipVel[k],bend);
printf(" Alpha=%g reduces angle to %g degrees.\n",
alpha2, std::acos(CosMaxSlidingDirChange)*180/Pi);
alpha = std::min(alpha, alpha2);
}
if (alpha < 1) m_piActive *= alpha;
addInActiveCol(m_active, m_piActive, piTotal); // accumulate in piTotal
// TODO: Update verr. Won't be used when alpha=1; this is just so we can
// print it during development.
for (ActiveIndex ax(0); ax < m_active.size(); ++ax) {
const MultiplierIndex mx = m_active[ax];
m_verr[mx] -= multRowTimesActiveCol(A,mx,m_active,m_piActive);
}
printf("SP interval %d end: alpha=%g\n", interval, alpha);
cout << ": m_piActive=" << m_piActive << endl;
cout << ": m_verr=" << m_verr << endl;
}
// Return the result. TODO: don't copy
w = piTotal;
// Check how we did on the original problem.
printf("SP DONE. Check normal complementarity ...\n");
Vector res = b-A*w;
for (unsigned k=0; k < bounded.size(); ++k) {
const Bounded& bnd = bounded[k];
const MultiplierIndex mx = bnd.m_ix;
printf("%d: pi=%g verr=%g pi*v=%g\n", k, w[mx], res[mx], w[mx]*res[mx]);
}
//TODO: printf("SP DONE. Check friction cones ...\n");
#ifndef NDEBUG
cout << "SP FINAL " << interval << "intervals, piTotal=" << piTotal
<< " errNorm=" << m_errActive.norm() << endl;
#endif
return converged;
}
void PGSTimeStepper::initialize(const State& initState) {
m_state = initState;
m_ambs.realize(m_state, Stage::Acceleration);
}
// Determine which constraints will be involved for this step, allocate lists
// of bounded & frictional contact elements.
void PGSTimeStepper::
findProximalConstraints(const State& s) { //TODO: redo
const MyUnilateralConstraintSet& unis = m_ambs.getUnis();
unis.findProximalElements(s, m_consTol, m_proximals, m_distals);
#ifndef NDEBUG
if (m_proximals.m_contact.size()) {
printf("proximal contact:");
for (unsigned i=0; i < m_proximals.m_contact.size(); ++i)
printf(" %d", m_proximals.m_contact[i]);
printf("\n");
}
if (m_proximals.m_friction.size()) {
printf("proximal friction:");
for (unsigned i=0; i < m_proximals.m_friction.size(); ++i)
printf(" %d", m_proximals.m_friction[i]);
printf("\n");
}
#endif
}
// Enable all proximal constraints, disable all distal constraints,
// reassigning multipliers if needed. Returns true if any change was made.
bool PGSTimeStepper::
enableProximalConstraints(State& s) {
const MyUnilateralConstraintSet& unis = m_ambs.getUnis();
// Record friction application points. This has to be done while Position
// stage is still valid.
for (unsigned i=0; i < m_proximals.m_friction.size(); ++i) {
const int id = m_proximals.m_friction[i];
unis.updFrictionElement(id).initializeFriction(s);
}
bool changed = false;
// Disable non-proximal constraints if they were previously disabled.
for (unsigned i=0; i < m_distals.m_friction.size(); ++i) {
const int id = m_distals.m_friction[i];
const MyFrictionElement& fric = unis.getFrictionElement(id);
if (fric.isEnabled(s)) fric.disable(s), changed=true;
}
for (unsigned i=0; i < m_distals.m_contact.size(); ++i) {
const int id = m_distals.m_contact[i];
const MyContactElement& cont = unis.getContactElement(id);
if (!cont.isDisabled(s)) cont.disable(s), changed=true;
}
for (unsigned i=0; i < m_proximals.m_contact.size(); ++i) {
const int id = m_proximals.m_contact[i];
const MyContactElement& cont = unis.getContactElement(id);
if (cont.isDisabled(s)) cont.enable(s), changed=true;
}
for (unsigned i=0; i < m_proximals.m_friction.size(); ++i) {
const int id = m_proximals.m_friction[i];
const MyFrictionElement& fric = unis.getFrictionElement(id);
fric.setInstanceParameters(s);
if (!fric.isEnabled(s)) fric.enable(s), changed=true;
}
// TODO: Note that we always have to move the friction application points
// which is an Instance stage change; shouldn't be.
m_ambs.realize(s, Stage::Instance); // assign multipliers
return changed;
}
// Allocate lists of bounded & frictional contact elements.
void PGSTimeStepper::
collectConstraintInfo(const State& s) { //TODO: redo
const MyUnilateralConstraintSet& unis = m_ambs.getUnis();
Array_<int> contactElement2Bounded(unis.getNumContactElements(), -1);
m_bounded.clear();
for (unsigned i=0; i < m_proximals.m_contact.size(); ++i) {
const int id = m_proximals.m_contact[i];
const MyContactElement& elt = unis.getContactElement(id);
const MultiplierIndex mx = elt.getMultIndex(s);
contactElement2Bounded[id] = (int)m_bounded.size();
// COR will be set later when we know the impact velocity.
// TODO: fix sign convention (want 0,+Infinity)
m_bounded.push_back(Bounded(mx,-Infinity, Zero, NaN));
}
m_frictional.clear();
for (unsigned i=0; i < m_proximals.m_friction.size(); ++i) {
const int id = m_proximals.m_friction[i];
const MyFrictionElement& felt = unis.getFrictionElement(id);
const Real mu_d = felt.getDynamicFrictionCoef();
const Real mu_s = felt.getStaticFrictionCoef();
const Real mu_v = felt.getViscousFrictionCoef();
const MyPointContactFriction& pelt = // TODO: generalize
dynamic_cast<const MyPointContactFriction&>(felt);
const MultiplierIndex mx = pelt.getMultIndexX(s);
const MultiplierIndex my = pelt.getMultIndexY(s);
const MyPointContact& cont = pelt.getMyPointContact();
const MultiplierIndex mN = cont.getMultIndex(s);
// Fill in back reference so we can find this frictional element from
// the contact element.
const int boundedIx = contactElement2Bounded[cont.getContactIndex()];
m_bounded[boundedIx].m_frictional = (int)m_frictional.size();
Array_<MultiplierIndex> Fk; Fk.push_back(mx); Fk.push_back(my);
Array_<MultiplierIndex> Nk; Nk.push_back(mN);
// mu will be set later when we know the slip velocity.
m_frictional.push_back(Frictional(Fk,Nk,NaN));
}
const int m = s.getNUErr();
m_all.clear(); m_uncond.clear();
for (int i=0; i<m; ++i)
m_all.push_back(MultiplierIndex(i));
// TODO: add in unconditionals in m_uncond
#ifndef NDEBUG
if (!m_all.empty()) {
printf("all constraints: "); cout << m_all << endl;
}
#endif
m_allPos.clear(); m_boundedPos.clear(); m_uncondPos.clear();
for (unsigned i=0; i<m_bounded.size(); ++i) {
m_allPos.push_back(m_bounded[i].m_ix);
m_boundedPos.push_back(m_bounded[i]); //TODO should be holonomics only
m_boundedPos.back().m_frictional = -1; // no friction during pos proj.
}
// TODO: add in unconditionals in m_uncondPos
}
void PGSTimeStepper::takeUnconstrainedStep(State& s, Real h) {
const PGSAugmentedMultibodySystem& mbs = m_ambs;
const SimbodyMatterSubsystem& matter = mbs.getMatterSubsystem();
mbs.realize(s, Stage::Acceleration);
const Vector& udot = s.getUDot(); // grab before invalidated
s.updZ() += h*s.getZDot(); // invalidates Stage::Dynamics
s.updU() += h*udot; // invalidates Stage::Velocity
Vector qdot;
matter.multiplyByN(s,false,s.getU(),qdot);
s.updQ() += h*qdot; // invalidates Stage::Position
matter.normalizeQuaternions(s);
s.updTime() += h; // invalidates Stage::Time
mbs.realize(s, Stage::Velocity);
}
bool PGSTimeStepper::
isImpact(const State& s, const Vector& verr) const {
const PGSAugmentedMultibodySystem& mbs = m_ambs;
const MyUnilateralConstraintSet& unis = mbs.getUnis();
for (unsigned i=0; i < m_proximals.m_contact.size(); ++i) {
const int id = m_proximals.m_contact[i];
const MyContactElement& elt = unis.getContactElement(id);
const MultiplierIndex mx = elt.getMultIndex(s);
if (verr[mx] < -m_consTol) { // TODO: sign?
printf("IMPACT cuz verr[%d]=%g\n", (int)mx, verr[mx]);
return true;
}
}
return false;
}
// Calculate velocity-dependent coefficients of friction.
// TODO: apply combining rules for dissimilar materials.
void PGSTimeStepper::
calcCoefficientsOfFriction(const State& s, const Vector& verr) {
const MyUnilateralConstraintSet& unis = m_ambs.getUnis();
for (unsigned i=0; i < m_proximals.m_friction.size(); ++i) {
const int id = m_proximals.m_friction[i];
const MyFrictionElement& felt = unis.getFrictionElement(id);
const Real v_trans = unis.getTransitionVelocity();
const Real mu_d = felt.getDynamicFrictionCoef();
const Real mu_s = felt.getStaticFrictionCoef();
const Real mu_v = felt.getViscousFrictionCoef();
const MyPointContactFriction& pelt = // TODO: generalize
dynamic_cast<const MyPointContactFriction&>(felt);
const MultiplierIndex mx = pelt.getMultIndexX(s);
const MultiplierIndex my = pelt.getMultIndexY(s);
const Vec2 vSlip(verr[mx], verr[my]);
const Real speed = vSlip.norm();
const Real mu = (speed<=v_trans? mu_s : mu_d + speed*mu_v);
SimTK_DEBUG3("Fric %d speed=%g -> mu=%g\n", id, speed, mu);
m_frictional[i].m_effMu = mu;
}
}
// Calculate velocity-dependent coefficients of restitution.
// TODO: apply combining rules for dissimilar materials.
void PGSTimeStepper::
calcCoefficientsOfRestitution(const State& s, const Vector& verr) {
const MyUnilateralConstraintSet& unis = m_ambs.getUnis();
for (unsigned i=0; i < m_proximals.m_contact.size(); ++i) {
const int id = m_proximals.m_contact[i];
const MyContactElement& elt = unis.getContactElement(id);
const MultiplierIndex mx = elt.getMultIndex(s);
Real cor = elt.getMaxCoefRest();
if (verr[mx] >= -unis.getCaptureVelocity()) cor=0;
SimTK_DEBUG3("Contact %d speed=%g -> cor=%g\n", id, verr[mx], cor);
m_bounded[i].m_effCOR = cor;
}
}
bool PGSTimeStepper::
applyNewtonRestitutionIfAny(const State& s, Vector& verr) const {
if (!m_useNewton)
return false; //TODO: check individual contacts
bool anyRestitution = false;
const PGSAugmentedMultibodySystem& mbs = m_ambs;
const MyUnilateralConstraintSet& unis = mbs.getUnis();
for (unsigned i=0; i < m_proximals.m_contact.size(); ++i) {
const int id = m_proximals.m_contact[i];
const MyContactElement& elt = unis.getContactElement(id);
const MultiplierIndex mx = elt.getMultIndex(s);
const Bounded& bounded = m_bounded[i];
Real& v = verr[mx];
if (bounded.m_effCOR != 0 && std::abs(v) >= SignificantReal) {
v *= (1+bounded.m_effCOR);
anyRestitution = true;
}
}
return anyRestitution;
}
bool PGSTimeStepper::
applyPoissonRestitutionIfAny(const State& s, Vector& impulse,
Array_<int>& expanders) const {
expanders.clear();
if (m_useNewton)
return false; //TODO: check individual contacts
bool anyRestitution = false;
const PGSAugmentedMultibodySystem& mbs = m_ambs;
const MyUnilateralConstraintSet& unis = mbs.getUnis();
for (unsigned i=0; i < m_proximals.m_contact.size(); ++i) {
const int id = m_proximals.m_contact[i];
const MyContactElement& elt = unis.getContactElement(id);
const MultiplierIndex mx = elt.getMultIndex(s);
const Bounded& bounded = m_bounded[i];
Real& pi = impulse[mx];
if (bounded.m_effCOR != 0 && std::abs(pi) >= SignificantReal) {
pi *= (1+bounded.m_effCOR);
anyRestitution = true;
expanders.push_back(i);
}
}
return anyRestitution;
}
bool PGSTimeStepper::
calcExpansionImpulseIfAny(const State& s, const Array_<int>& impacters,
const Vector& compressionImpulse,
Vector& expansionImpulse,
Array_<int>& expanders) const
{
expansionImpulse.resize(compressionImpulse.size());
expansionImpulse.setToZero();
expanders.clear();
if (m_useNewton)
return false; //TODO: check individual contacts
bool anyRestitution = false;
const PGSAugmentedMultibodySystem& mbs = m_ambs;
const MyUnilateralConstraintSet& unis = mbs.getUnis();
for (unsigned i=0; i < impacters.size(); ++i) {
const int which = impacters[i];
const int id = m_proximals.m_contact[which];
const MyContactElement& elt = unis.getContactElement(id);
const MultiplierIndex mx = elt.getMultIndex(s);
const Bounded& bounded = m_bounded[which];
const Real& pi = compressionImpulse[mx];
if (bounded.m_effCOR != 0 && std::abs(pi) >= SignificantReal) {
expansionImpulse[mx] = pi*bounded.m_effCOR;
anyRestitution = true;
expanders.push_back(impacters[i]);
}
}
return anyRestitution;
}
// This phase uses all the proximal constraints and should use a starting
// guess for impulse saved from the last step if possible.
bool PGSTimeStepper::
doCompressionPhase(const State& s, const Vector& eps, Vector& compImpulse) {
#ifndef NDEBUG
printf("DYN t=%.15g verr=", s.getTime()); cout << eps << endl;
#endif
// TODO: improve initial guess
compImpulse.resize(m_GMInvGt.ncol()); compImpulse.setToZero();
//compImpulse = 0.001;//TODO: more stable solution?
SuccessivePruning prune;
bool converged = prune.solve(0, m_GMInvGt, eps, compImpulse,
m_all, m_uncond, m_bounded,
m_lengthLimited, m_frictional);
//bool converged = projGaussSeidel(0, m_GMInvGt, eps, compImpulse,
// m_all, m_uncond, m_bounded,
// m_lengthLimited, m_frictional);
return converged;
}
// This phase uses all the proximal constraints, but we expect the result
// to be zero unless expansion causes new violations.
bool PGSTimeStepper::
doExpansionPhase(const State&, const Vector& eps, Vector& reactionImpulse) {
// TODO: improve initial guess
reactionImpulse.resize(m_GMInvGt.ncol()); reactionImpulse.setToZero();
bool converged = projGaussSeidel(1, m_GMInvGt, eps, reactionImpulse,
m_all, m_uncond, m_bounded,
m_lengthLimited, m_frictional);
return converged;
}
// This phase includes only impacting contacts, plus the frictional constraints
// from expanders. It does not include any constraints from observers, nor the
// normal constraint from expanders.
bool PGSTimeStepper::
doInducedImpactRound(const State& s, const Vector& eps,
const Array_<MultiplierIndex>& participating,
const Array_<int>& whichBounded,
const Array_<int>& whichFrictional,
Vector& impulse)
{
#ifndef NDEBUG
printf("IMP t=%.15g verr=", s.getTime()); cout << eps << endl;
#endif
Array_<Bounded> bounded; Array_<Frictional> frictional;
for (unsigned i=0; i<whichBounded.size(); ++i)
bounded.push_back(m_bounded[whichBounded[i]]); // TODO: don't copy
for (unsigned i=0; i<whichFrictional.size(); ++i)
frictional.push_back(m_frictional[whichFrictional[i]]); // TODO: "
// impulse must already contain initial guess, including expansion impulse
SuccessivePruning prune;
bool converged = prune.solve(0, m_GMInvGt, eps, impulse,
participating, m_uncond, bounded,
m_lengthLimited, frictional);
//bool converged = projGaussSeidel(0, m_GMInvGt, eps, impulse,
// participating, m_uncond, bounded,
// m_lengthLimited, frictional);
return converged;
}
// This phase uses only holonomic constraints, and zero is a good initial
// guess for the (hopefully small) position correction.
bool PGSTimeStepper::
doPositionCorrectionPhase(const State&, const Vector& eps,
Vector& positionImpulse) {
positionImpulse.resize(m_GMInvGt.ncol()); positionImpulse.setToZero();
Array_<Frictional> noFrictionals;
SuccessivePruning prune;
bool converged = prune.solve(2, m_GMInvGt, eps, positionImpulse,
m_allPos, m_uncondPos, m_boundedPos,
m_lengthLimited, noFrictionals);
//bool converged = projGaussSeidel(2, m_GMInvGt, eps, positionImpulse,
// m_allPos, m_uncondPos, m_boundedPos,
// m_lengthLimited, noFrictionals);
return converged;
}
bool PGSTimeStepper::
anyPositionErrorsViolated(const State&, const Vector& perr) const {
// TODO: no need to fix if large perrs satisfy inequalities.
bool anyViolated = perr.normInf() > m_consTol;
SimTK_DEBUG2("maxAbs(perr)=%g -> %s\n", perr.normInf(),
anyViolated ? "VIOLATED" : "OK");
return anyViolated;
}
Real SuccessivePruning::
calcSlidingStepLengthToOrigin(const Vec2& A, const Vec2& B, Vec2& Q) const
{
// Check whether initial tangential velocity is small (impending slip).
if (A.normSqr() < square(MaxRollingTangVel)) {
SimTK_DEBUG2("--> initial slip velocity small (%g<%g); stepLen=1\n",
A.norm(), MaxRollingTangVel);
Q = B;
return 1;
}
const Vec2 P = Vec2(0);
const Vec2 AtoP = P-A, AtoB = B-A;
const Real ABsqr = AtoB.normSqr();
// Ensure line segment is of meaningful length.
if (ABsqr < SimTK::SignificantReal) {
SimTK_DEBUG1("-->ABsqr=%g short; returning stepLength=1\n", ABsqr);
Q = B;
return 1;
}
// Normalized distance from A to Q.
const Real stepLength = clamp(0.0, dot(AtoP,AtoB)/ABsqr, 1.0);
Q = A + stepLength*AtoB;
SimTK_DEBUG2("--> returning stepLength=%g (dist to origin=%g)\n",
stepLength, Q.norm());
return stepLength;
}
Real SuccessivePruning::
calcSlidingStepLengthToOrigin(const Vec3& A, const Vec3& B, Vec3& Q) const
{
// Check whether initial tangential velocity is small (impending slip).
if (A.normSqr() < square(MaxRollingTangVel)) {
SimTK_DEBUG2("--> initial slip velocity small (%g<%g); stepLen=1\n",
A.norm(), MaxRollingTangVel);
Q = B;
return 1;
}
const Vec3 P = Vec3(0);
const Vec3 AtoP = P-A, AtoB = B-A;
const Real ABsqr = AtoB.normSqr();
// Ensure line segment is of meaningful length.
if (ABsqr < SimTK::SignificantReal) {
SimTK_DEBUG1("-->ABsqr=%g short; returning stepLength=1\n", ABsqr);
Q = B;
return 1;
}
// Normalized distance from A to Q.
const Real stepLength = clamp(0.0, dot(AtoP,AtoB)/ABsqr, 1.0);
Q = A + stepLength*AtoB;
SimTK_DEBUG2("--> returning stepLength=%g (dist to origin=%g)\n",
stepLength, Q.norm());
return stepLength;
}
Real SuccessivePruning::
calcSlidingStepLengthToMaxChange(const Vec2& A, const Vec2& B) const
{
// Temporary variables created by dsolve/numeric/optimize.
Real t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, sol1, sol2;
const Vec2 v = B-A;
// Optimized computation sequence generated in Maple.
t1 = CosMaxSlidingDirChange;
t1 *= t1;
t2 = t1 - 1;
t3 = A[0]*v[1] - A[1]*v[0];
t3 = std::sqrt(-t1*t2*t3*t3);
t4 = t2*v[0]*A[0];
t5 = A[1]*v[1];
t2 *= t5;
t6 = v[1]*v[1];
t7 = v[0]*v[0];
t8 = t6 + t7;
t9 = A[1]*A[1];
t10 = A[0]*A[0];
t1 = t1*(t10*t8 + t8*t9) - t10*t7 - t6*t9 - 2*t5*A[0]*v[0];
t5 = t10 + t9;
t1 = 1 / t1;
sol1 = -t1*t5*(t2 + t4 + t3);
sol2 = -t1*t5*(t2 + t4 - t3);
assert(sol1>=0 || sol2>=0); //TODO: is this guaranteed?
Real sol;
if (sol1 < 0) sol=sol2;
else if (sol2 < 0) sol=sol1;
else sol = std::min(sol1, sol2);
SimTK_DEBUG3("-->max change solutions: %g and %g; returning %g\n",
sol1,sol2,sol);
return sol;
}
Real SuccessivePruning::
calcSlidingStepLengthToMaxChange(const Vec3& A, const Vec3& B) const
{
// Temporary variables created by dsolve/numeric/optimize.
Real t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12, t13, t14, t15;
Real sol1, sol2;
const Vec3 v = B-A;
// Optimized computation sequence generated in Maple.
t1 = CosMaxSlidingDirChange;
t1 *= t1;
t2 = t1 - 1;
t3 = A[0] * A[0];
t4 = v[0] * v[0];
t5 = A[2] * A[2];
t6 = v[1] * v[1];
t7 = A[1] * A[1];
t8 = A[1] * v[1];
t9 = A[0] * v[0];
t10 = std::sqrt(-(t1 * t2 * (t3 * t6 + t4 * t7 + t5 * (t6 + t4)
+ (-2 * A[2] * (t9 + t8) + (t7 + t3) * v[2]) * v[2] - 2 * t8 * t9)));
t11 = t9 * t2;
t12 = t8 * t2;
t13 = A[2] * v[2];
t2 = t13 * t2;
t14 = v[2] * v[2];
t15 = t6 + t14 + t4;
t1 = t1 * (t15 * t3 + t15 * t5 + t15 * t7) - t14 * t5 - t3 * t4 - t6 * t7
+ t9 * (-2 * t8 - 2 * t13) - 2 * t13 * t8;
t3 = t7 + t3 + t5;
t1 = 1 / t1;
sol1 = -(t12 + t2 + t11 + t10) * t1 * t3;
sol2 = -(t12 + t2 + t11 - t10) * t1 * t3;
Real sol;
if (sol1 < 0) sol=sol2;
else if (sol2 < 0) sol=sol1;
else sol = std::min(sol1, sol2);
SimTK_DEBUG3("-->max change solutions: %g and %g; returning %g\n",
sol1,sol2,sol);
return sol;
}
void SuccessivePruning::
classifyFrictionals(const Array_<Frictional>& frictional) {
for (unsigned k=0; k < frictional.size(); ++k) {
const Frictional& fric = frictional[k];
const Array_<MultiplierIndex>& Fk = fric.m_Fk; // friction components
assert(Fk.size()==2); //TODO: generalize
Real tmag=0;
for (unsigned i=0; i<Fk.size(); ++i) {
const MultiplierIndex rx = Fk[i];
m_slipVel[k][i] = m_verr[rx];
tmag += square(m_verr[rx]);
}
tmag = std::sqrt(tmag);
m_slipMag[k] = tmag;
m_fricCondition[k] = tmag > MaxRollingTangVel ? Slipping : Rolling;
}
printf("classifyFrictionals():\n");
cout << " condition: " << m_fricCondition << endl;
cout << " slipVel: " << m_slipVel << endl;
}
// Calculate err(pi).
void SuccessivePruning::
updateDirectionsAndCalcCurrentError
(const Array_<Frictional>& frictional, const Vector& piActive,
Vector& errActive)
{
const Matrix& A = (*m_A);
const int m = m_active.size();
assert(piActive.size() == m);
errActive.resize(m);
// Initialize as though all rolling.
for (ActiveIndex ai(0); ai < m; ++ai) {
const MultiplierIndex mi = m_active[ai];
// err = A pi - b
errActive[ai] = multRowTimesActiveCol(A,mi,m_active,piActive)
- m_verrActive[ai];
}
// Replace error equations for sliding and impending slip. For impending
// slip we'll also update slipVel and slipMag since we'll need them again
// when we calculate the Jacobian.
for (unsigned k=0; k < frictional.size(); ++k) {
const Frictional& fric = frictional[k];
const Array_<MultiplierIndex>& Fk = fric.m_Fk;
const Array_<MultiplierIndex>& Nk = fric.m_Nk;
assert(Fk.size()==2); //TODO: generalize
assert(Nk.size()==1); //TODO: generalize
const MultiplierIndex mx=Fk[0], my=Fk[1], mz=Nk[0];
if (!m_mult2active[mx].isValid())
continue;
if (!(m_fricCondition[k]==Slipping || m_fricCondition[k]==Impending))
continue;
if (m_fricCondition[k]==Impending) {
// Update slip direction to [Ax*pi Ay*pi].
Vec2 d(multRowTimesActiveCol(A,mx,m_active,piActive),
multRowTimesActiveCol(A,my,m_active,piActive));
const Real dnorm = d.norm();
m_slipVel[k] = d; m_slipMag[k] = dnorm;
printf("Updated impending slipVel %d to %g,%g\n",k, d[0],d[1]);
}
const Real mu = fric.m_effMu;
const ActiveIndex ax=m_mult2active[mx], ay=m_mult2active[my],
az=m_mult2active[mz];
const Real pix = piActive[ax], piy=piActive[ay];
errActive[ax] = m_slipMag[k]*pix;
errActive[ay] = m_slipMag[k]*piy;
if (az.isValid()) { // normal is active
const Real piz=piActive[az];
// errx=|v|pi_x + mu*vx*min(pi_z,0) [erry similar]
// But we calculate the Jacobian as though the equation were:
// errx=|v|pi_x + mu*vx*softmin0(pi_z)
const Real minz = std::min(piz, Real(0));
//const Real minz = softmin0(piz, m_minSmoothness);
errActive[ax] += mu*m_slipVel[k][0]*minz;
errActive[ay] += mu*m_slipVel[k][1]*minz;
} else { // normal is an expander
// errx=|v|pi_x + mu*vx*N [erry similar]
const Real N = m_expImpulse[mz];
errActive[ax] += mu*m_slipVel[k][0]*N;
errActive[ay] += mu*m_slipVel[k][1]*N;
}
}
//cout << "updateDirectionsAndCalcCurrentError():" << endl;
//cout << ": pi=" << piActive << endl;
//cout << ": ->err=" << errActive << endl;
}
void SuccessivePruning::
tidyUpSolution(const Array_<Bounded>& bounded,
const Array_<Frictional>& frictional)
{
printf("tidyUpSolution(): starting errNorm=%g\n", m_errActive.norm());
for (unsigned k=0; k < bounded.size(); ++k) {
const Bounded& bnd = bounded[k];
const MultiplierIndex mx = bnd.m_ix;
const ActiveIndex ax = m_mult2active[mx];
if (ax.isValid() && m_piActive[ax] > 0) {
printf(" contact %d pi %g->0\n", k, m_piActive[ax]);
m_piActive[ax] = 0;
}
}
//TODO: friction. Trim rolling and slipping to cone surface.
updateDirectionsAndCalcCurrentError(frictional, m_piActive, m_errActive);
printf("tidyUpSolution(): ending errNorm=%g\n", m_errActive.norm());
}
void SuccessivePruning::
fillMult2Active(const Array_<MultiplierIndex,ActiveIndex>& active,
Array_<ActiveIndex,MultiplierIndex>& mult2active) const
{
const int m = active.size();
const Matrix& A = *m_A;
mult2active.resize(A.nrow()); // mA
mult2active.fill(ActiveIndex()); // invalid
for (ActiveIndex aj(0); aj < m; ++aj) {
const MultiplierIndex mj = active[aj];
mult2active[mj] = aj;
}
printf("fillMult2Active:\n");
cout << ": active=" << active << endl;
cout << ": mult2active=" << mult2active << endl;
}
// Initialize for a Newton iteration. Fill in the part of the Jacobian
// corresponding to linear equations since those won't change. Transfer
// previous impulses pi to new piActive. Assumes m_active and m_mult2active
// have been filled in.
void SuccessivePruning::
initializeNewton(const Vector& pi, // mA of these
const Array_<Bounded>& bounded) {
const int m = m_active.size();
const Matrix& A = *m_A;
m_JacActive.resize(m,m); m_verrActive.resize(m); m_piActive.resize(m);
m_errActive.resize(m);
for (ActiveIndex aj(0); aj < m; ++aj) {
const MultiplierIndex mj = m_active[aj];
for (ActiveIndex ai(0); ai < m; ++ai) {
const MultiplierIndex mi = m_active[ai];
m_JacActive(ai,aj) = A(mi,mj);
}
m_verrActive[aj] = m_verr[mj];
m_piActive[aj] = pi[mj];
}
// For impacters, guess a small separating impulse. This improves
// convergence because it puts the max() terms in the Jacobian on
// the right branch.
// TODO: should only do this for unilateral contacts, not general
// bounded constraints.
for (unsigned k=0; k < bounded.size(); ++k) {
const Bounded& bnd = bounded[k];
const MultiplierIndex mx = bnd.m_ix;
const ActiveIndex ax = m_mult2active[mx];
if (!ax.isValid())
continue; // not active
m_piActive[ax] = .01*sign(m_verr[mx]); //-1,0,1
printf(" active normal %d has v=%g; guess pi=%g\n",
(int)ax,m_verr[mx],m_piActive[ax]);
}
printf("initializeNewton:\n");
cout << ": verr was=" << m_verr << endl;
cout << ": verrActive=" << m_verrActive << endl;
cout << ": pi was=" << pi << endl;
cout << ": piActive=" << m_piActive << endl;
//cout << ": initialized Jacobian with all rolling: " << m_JacActive;
}
// Calculate Jacobian J= D err(pi) / D pi (see above for err(pi)). All rows
// of J corresponding to linear equations have already been filled in since
// they can't change during the iteration. Only sliding and impending friction
// rows are potentially nonlinear.
void SuccessivePruning::
updateJacobianForSliding(const Array_<Frictional>& frictional) {
int nPairsChanged = 0;
for (unsigned k=0; k < frictional.size(); ++k) {
const Frictional& fric = frictional[k];
const Array_<MultiplierIndex>& Fk = fric.m_Fk;
const Array_<MultiplierIndex>& Nk = fric.m_Nk;
assert(Fk.size()==2); //TODO: generalize
assert(Nk.size()==1); //TODO: generalize
const MultiplierIndex mx=Fk[0], my=Fk[1], mz=Nk[0];
if (!m_mult2active[mx].isValid())
continue;
if (!(m_fricCondition[k]==Slipping || m_fricCondition[k]==Impending))
continue;
// Handy abbreviations to better match equations.
const Real mu = fric.m_effMu;
const ActiveIndex ax=m_mult2active[mx], ay=m_mult2active[my],
az=m_mult2active[mz];
const Real pix = m_piActive[ax], piy=m_piActive[ay];
const Vec2 d = m_slipVel[k];
const Real dnorm = m_slipMag[k];
const Vec2 dhat = dnorm > TinyReal ? d/dnorm : Vec2(0);
m_JacActive[ax] = m_JacActive[ay] = 0; // zero the rows
if (m_fricCondition[k]==Impending) {
// Calculate terms for derivative of norm(d) w.r.t. pi.
const Matrix& A = (*m_A);
const RowVectorView Ax = A[mx], Ay = A[my];
if (az.isValid()) { // Impending normal is active
const Real piz=m_piActive[az], Axz=Ax(mz), Ayz=Ay(mz);
const Real minz = softmin0(piz, m_minSmoothness);
const Real dminz = dsoftmin0(piz, m_minSmoothness);
// errx=|d|pix + dx*mu*softmin0(piz) [erry similar]
// d/dpix errx = s*pix^2 + mu*Axx*softmin0(piz) + |d|
// d/dpiz errx = s*piz*pix + mu*Axz*softmin0(piz)
// + mu*dx*dsoftmin0(piz)
// d/dpii errx = s*pii*pix + mu*Axi*softmin0(piz)
// Fill in generic terms for unrelated constraints (not x,y,z)
for (ActiveIndex ai(0); ai<m_active.size(); ++ai) {
const MultiplierIndex mi = m_active[ai];
const Real pii=m_piActive[ai];
const Real Axi=Ax(mi), Ayi=Ay(mi);
const Real s = ~dhat*Vec2(Axi,Ayi);
m_JacActive(ax,ai) = s*pix + mu*Axi*minz;
m_JacActive(ay,ai) = s*piy + mu*Ayi*minz;
}
// Add additional terms for related rows.
m_JacActive(ax,ax) += dnorm; // d errx / dx
m_JacActive(ay,ay) += dnorm; // d erry / dy
m_JacActive(ax,az) += mu*d[0]*dminz; // d errx / dz
m_JacActive(ay,az) += mu*d[1]*dminz; // d erry / dz
} else { // Impending normal is an expander
const Real N = m_expImpulse[mz];
// errx=|d|pix + dx*mu*N [erry similar]
// d/dpix errx = s*pix^2 + mu*Axx*N + |d|
// d/dpii errx = s*pii*pix + mu*Axi*N, for i != x
// Fill in generic terms for unrelated constraints (not x,y)
for (ActiveIndex ai(0); ai<m_active.size(); ++ai) {
const MultiplierIndex mi = m_active[ai];
const Real pii=m_piActive[ai];
const Real Axi=Ax(mi), Ayi=Ay(mi);
const Real s = ~dhat*Vec2(Axi,Ayi);
m_JacActive(ax,ai) = s*pix + mu*Axi*N;
m_JacActive(ay,ai) = s*piy + mu*Ayi*N;
}
m_JacActive(ax,ax) += dnorm;
m_JacActive(ay,ay) += dnorm;
}
} else { // Slipping
m_JacActive(ax,ax) = m_JacActive(ay,ay) = dnorm;
// That's all for an expander; active also has z derivs.
if (az.isValid()) { // normal is active
const Real piz=m_piActive[az];
// errx=|v|pi_x + mu*vx*softmin0(piz) [erry similar]
// d/dpi_x errx = |v|
// d/dpi_z errx = mu*vx*dsoftmin0(piz)
const Real dminz = dsoftmin0(piz, m_minSmoothness);
m_JacActive(ax,az) = mu*d[0]*dminz;
m_JacActive(ay,az) = mu*d[1]*dminz;
}
}
++nPairsChanged;
}
if (nPairsChanged) {
printf("Updated %d pairs of rows in Jacobian:", nPairsChanged);
//cout << m_JacActive;
}
// Calculate Jacobian numerically.
//TODO: TURN THIS OFF!!!
Vector piActive = m_piActive;
Vector errActive0, errActive1;
Matrix numJac(piActive.size(), piActive.size());
for (int i=0; i < piActive.size(); ++i) {
const Real save = piActive[i];
piActive[i] = save - 1e-6;
updateDirectionsAndCalcCurrentError(frictional,piActive,errActive0);
piActive[i] = save + 1e-6;
updateDirectionsAndCalcCurrentError(frictional,piActive,errActive1);
numJac(i) = (errActive1-errActive0)/2e-6;
piActive[i] = save;
}
//cout << "JacErr=" << m_JacActive-numJac;
cout << "Jacobian num vs. analytic norm=" << (m_JacActive-numJac).norm() << endl;
}
//==============================================================================
// TIM'S BOX
//==============================================================================
TimsBox::TimsBox() {
// Abbreviations.
SimbodyMatterSubsystem& matter = updMatterSubsystem();
GeneralForceSubsystem& forces = updForceSubsystem();
MyUnilateralConstraintSet& unis = updUnis();
MobilizedBody& Ground = matter.updGround();
// Build the multibody system.
m_gravity = Force::Gravity(forces, matter, -YAxis, 9.8066);
m_damper = Force::GlobalDamper(forces, matter, .1);
// Predefine some handy rotations.
const Rotation Z90(Pi/2, ZAxis); // rotate +90 deg about z
const Vec3 BrickHalfDims(.1, .25, .5);
const Real BrickMass = /*10*/5;
#ifdef USE_TIMS_PARAMS
const Real RunTime=16; // Tim's time
const Real Stiffness = 2e7;
const Real Dissipation = 1;
const Real CoefRest = 0;
// Painleve problem with these friction coefficients.
//const Real mu_d = 1; /* compliant: .7*/
//const Real mu_s = 1; /* compliant: .7*/
const Real mu_d = .5;
const Real mu_s = .8;
const Real mu_v = /*0.05*/0;
const Real CaptureVelocity = 0.01;
const Real TransitionVelocity = 0.01;
const Inertia brickInertia(.1,.1,.1);
const Real Radius = .02;
#else
const Real RunTime=20;
const Real Stiffness = 1e6;
const Real CoefRest = 0.3;
const Real TargetVelocity = 3; // speed at which to match coef rest
// const Real Dissipation = (1-CoefRest)/TargetVelocity;
const Real Dissipation = 0.1;
const Real mu_d = .5;
const Real mu_s = 1.0;
const Real mu_v = 0*0.1;
const Real CaptureVelocity = 0.01;
const Real TransitionVelocity = 0.05;
const Inertia brickInertia(BrickMass*UnitInertia::brick(BrickHalfDims));
const Real Radius = BrickHalfDims[0]/3;
#endif
unis.setCaptureVelocity(CaptureVelocity);
unis.setTransitionVelocity(TransitionVelocity);
printf("\n******************** Tim's Box ********************\n");
printf("USING RIGID CONTACT\n");
#ifdef USE_TIMS_PARAMS
printf("Using Tim's parameters:\n");
#else
printf("Using Sherm's parameters:\n");
#endif
printf(" coef restitution=%g\n", CoefRest);
printf(" mu_d=%g mu_s=%g mu_v=%g\n", mu_d, mu_s, mu_v);
printf(" transition velocity=%g\n", TransitionVelocity);
printf(" radius=%g\n", Radius);
printf(" brick inertia=%g %g %g\n",
brickInertia.getMoments()[0], brickInertia.getMoments()[1],
brickInertia.getMoments()[2]);
printf("******************** Tim's Box ********************\n\n");
// ADD MOBILIZED BODIES AND CONTACT CONSTRAINTS
Body::Rigid brickBody =
Body::Rigid(MassProperties(BrickMass, Vec3(0), brickInertia));
brickBody.addDecoration(Transform(), DecorativeBrick(BrickHalfDims)
.setColor(Red).setOpacity(.3));
m_brick = MobilizedBody::Free(Ground, Vec3(0),
brickBody, Vec3(0));
m_brick2 = MobilizedBody::Ball(m_brick, BrickHalfDims,
brickBody, Vec3(-BrickHalfDims));
//m_brick3 = MobilizedBody::Ball(brick2, BrickHalfDims,
// brickBody, Vec3(-BrickHalfDims));
/*
1) t= 0.5, dt = 2 sec, pt = (0.05, 0.2, 0.4), fdir = (1,0,0), mag = 50N
2) t= 4.0, dt = 0.5 sec, pt = (0.03, 0.06, 0.09), fdir = (0.2,0.8,0), mag = 300N
3) t= 0.9, dt = 2 sec, pt = (0,0,0), fdir = (0,1,0), mag = 49.333N (half the weight of the block)
4) t= 13.0, dt = 1 sec, pt = (0 0 0), fdir = (-1,0,0), mag = 200N
*/
Force::Custom(forces, new MyPushForceImpl(m_brick, Vec3(0.05,0.2,0.4),
50 * Vec3(1,0,0),
0.5, 0.5+2));
Force::Custom(forces, new MyPushForceImpl(m_brick, Vec3(0.03, 0.06, 0.09),
300 * UnitVec3(0.2,0.8,0),
//300 * Vec3(0.2,0.8,0),
4, 4+0.5));
Force::Custom(forces, new MyPushForceImpl(m_brick, Vec3(0),
1.25*49.033 * Vec3(0,1,0),
9., 9.+2));
Force::Custom(forces, new MyPushForceImpl(m_brick, Vec3(0),
200 * Vec3(-1,0,0),
13, 13+1));
#ifndef USE_TIMS_PARAMS
// Extra late force.
Force::Custom(forces, new MyPushForceImpl(m_brick, Vec3(.1, 0, .45),
20 * Vec3(-1,-1,.5),
15, Infinity));
#endif
for (int i=-1; i<=1; i+=2)
for (int j=-1; j<=1; j+=2)
for (int k=-1; k<=1; k+=2) {
const Vec3 pt = Vec3(i,j,k).elementwiseMultiply(BrickHalfDims);
MyPointContact* contact = new MyPointContact
(Ground, YAxis, 0., m_brick, pt, CoefRest);
unis.addContactElement(contact);
unis.addFrictionElement(
new MyPointContactFriction(*contact, mu_d, mu_s, mu_v,
CaptureVelocity, // TODO: vtol?
forces));
if (i==-1 && j==-1 && k==-1)
continue;
MyPointContact* contact2 = new MyPointContact
(Ground, YAxis, 0., m_brick2, pt, CoefRest);
unis.addContactElement(contact2);
unis.addFrictionElement(
new MyPointContactFriction(*contact2, mu_d, mu_s, mu_v,
CaptureVelocity, // TODO: vtol?
forces));
//MyPointContact* contact3 = new MyPointContact
// (Ground, YAxis, 0., m_brick3, pt, CoefRest);
//unis.addContactElement(contact3);
//unis.addFrictionElement(
// new MyPointContactFriction(*contact3, mu_d, mu_s, mu_v,
// CaptureVelocity, // TODO: vtol?
// forces));
}
}
//---------------------------- CALC INITIAL STATE ------------------------------
void TimsBox::calcInitialState(State& s) const {
s = realizeTopology(); // returns a reference to the the default state
//matter.setUseEulerAngles(s, true);
realizeModel(s); // define appropriate states for this System
realize(s, Stage::Instance); // instantiate constraints if any
/*
rX_q = 0.7 rad
rX_u = 1.0 rad/sec
rY_q = 0.6 rad
rY_u = 0.0 rad/sec
rZ_q = 0.5 rad
rZ_u = 0.2 rad/sec
tX_q = 0.0 m
tX_u = 10 m/s
tY_q = 1.4 m
tY_u = 0.0 m/s
tZ_q = 0.0 m
tZ_u = 0.0 m/s
*/
#ifdef USE_TIMS_PARAMS
m_brick.setQToFitTranslation(s, Vec3(0,10,0));
m_brick.setUToFitLinearVelocity(s, Vec3(0,0,0));
#else
m_brick.setQToFitTranslation(s, Vec3(0,1.4,0));
m_brick.setUToFitLinearVelocity(s, Vec3(10,0,0));
const Rotation R_BC(SimTK::BodyRotationSequence,
0.7, XAxis, 0.6, YAxis, 0.5, ZAxis);
m_brick.setQToFitRotation(s, R_BC);
m_brick.setUToFitAngularVelocity(s, Vec3(1,0,.2));
#endif
realize(s, Stage::Position);
Assembler(*this).setErrorTolerance(1e-6).assemble(s);
}
//==============================================================================
// BOUNCING BALLS
//==============================================================================
BouncingBalls::BouncingBalls() {
m_tracker = new ContactTrackerSubsystem(*this);
m_contactForces = new CompliantContactSubsystem(*this, *m_tracker);
// Abbreviations.
SimbodyMatterSubsystem& matter = updMatterSubsystem();
GeneralForceSubsystem& forces = updForceSubsystem();
MyUnilateralConstraintSet& unis = updUnis();
MobilizedBody& Ground = matter.updGround();
// Build the multibody system.
m_gravity = Force::Gravity(forces, matter, -YAxis, 9.8066);
//m_damper = Force::GlobalDamper(forces, matter, .1);
const Real BallMass = 1;
const Real BallRadius = .25;
const Real CoefRest = 1;
const Real CaptureVelocity = .001;
const Real TransitionVelocity = .001;
// Rubber
const Real rubber_density = 1100.; // kg/m^3
const Real rubber_young = 0.01e9; // pascals (N/m)
const Real rubber_poisson = 0.5; // ratio
const Real rubber_planestrain =
ContactMaterial::calcPlaneStrainStiffness(rubber_young,rubber_poisson);
const Real rubber_dissipation = 0.1;
const ContactMaterial rubber(rubber_planestrain,rubber_dissipation,0,0,0);
// Nylon
const Real nylon_density = 1100.; // kg/m^3
const Real nylon_young = 10*2.5e9; // pascals (N/m)
const Real nylon_poisson = 0.4; // ratio
const Real nylon_planestrain =
ContactMaterial::calcPlaneStrainStiffness(nylon_young,nylon_poisson);
const Real nylon_dissipation = 0*0.1;
const ContactMaterial nylon(nylon_planestrain,nylon_dissipation,0,0,0);
const Rotation X2Y(Pi/2, ZAxis); // rotate +90 deg about z
const Rotation NegX2Y(-Pi/2,ZAxis); // -90
Ground.updBody().addContactSurface(Transform(NegX2Y,Vec3(0)),
ContactSurface(ContactGeometry::HalfSpace(),nylon));
unis.setCaptureVelocity(CaptureVelocity);
unis.setTransitionVelocity(TransitionVelocity);
// ADD MOBILIZED BODIES AND CONTACT CONSTRAINTS
Body::Rigid ballBody(MassProperties(BallMass, Vec3(0),
UnitInertia::sphere(BallRadius)));
ballBody.addDecoration(Transform(), DecorativeSphere(BallRadius));
const Vec3 HColor(Gray), PColor(Red), NColor(Orange);
#ifdef HERTZ
m_Hballs[0] = MobilizedBody::Slider
(Ground, Transform(X2Y,Vec3(-1,BallRadius,0)),
ballBody, X2Y);
m_Hballs[0].updBody().addContactSurface(Vec3(0),
ContactSurface(ContactGeometry::Sphere(BallRadius), nylon));
m_Hballs[0].updBody().updDecoration(0).setColor(HColor);
for (int i=1; i<NBalls; ++i) {
m_Hballs[i] = MobilizedBody::Slider
(m_Hballs[i-1],Transform(X2Y,Vec3(0,2*BallRadius,0)),ballBody, X2Y);
m_Hballs[i].updBody().updDecoration(0).setColor(HColor);
m_Hballs[i].updBody().addContactSurface(Vec3(0),
ContactSurface(ContactGeometry::Sphere(BallRadius), nylon));
}
#endif
#ifdef POISSON
m_Pballs[0] = MobilizedBody::Slider
(Ground, Transform(X2Y,Vec3(0,BallRadius,0)),
ballBody, X2Y);
m_Pballs[0].updBody().updDecoration(0).setColor(PColor);
unis.addContactElement(new MyPointContact
(Ground, YAxis, 0., m_Pballs[0], Vec3(0,-BallRadius,0), CoefRest));
for (int i=1; i<NBalls; ++i) {
m_Pballs[i] = MobilizedBody::Slider
(m_Pballs[i-1],Transform(X2Y,Vec3(0,2*BallRadius,0)),ballBody, X2Y);
m_Pballs[i].updBody().updDecoration(0).setColor(PColor);
Real cor = i==NBalls/2 ? .5 : CoefRest;
unis.addContactElement(new MyPointContact
(m_Pballs[i-1], YAxis, BallRadius,
m_Pballs[i], Vec3(0,-BallRadius,0), cor));
}
#endif
#ifdef NEWTON
m_Nballs[0] = MobilizedBody::Slider
(Ground, Transform(X2Y,Vec3(1,BallRadius,0)),
ballBody, X2Y);
m_Nballs[0].updBody().updDecoration(0).setColor(NColor);
unis.addContactElement(new MyPointContact
(Ground, YAxis, 0., m_Nballs[0], Vec3(0,-BallRadius,0), CoefRest));
for (int i=1; i<NBalls; ++i) {
m_Nballs[i] = MobilizedBody::Slider
(m_Nballs[i-1],Transform(X2Y,Vec3(0,2*BallRadius,0)),ballBody, X2Y);
m_Nballs[i].updBody().updDecoration(0).setColor(NColor);
unis.addContactElement(new MyPointContact
(m_Nballs[i-1], YAxis, BallRadius,
m_Nballs[i], Vec3(0,-BallRadius,0), CoefRest));
}
#endif
}
static const Real Separation = 0*.0011;
void BouncingBalls::calcInitialState(State& s) const {
const Real Height = 1;
const Real Speed = -2;
s = realizeTopology(); // returns a reference to the the default state
realizeModel(s); // define appropriate states for this System
realize(s, Stage::Instance); // instantiate constraints if any
realize(s, Stage::Position);
Assembler(*this).setErrorTolerance(1e-6).assemble(s);
#ifdef HERTZ
getHBall(0).setOneQ(s, MobilizerQIndex(0), Height);
getHBall(0).setOneU(s, MobilizerUIndex(0), Speed);
for (int i=1; i<NBalls; ++i)
getHBall(i).setOneQ(s, MobilizerQIndex(0), Separation);
#endif
#ifdef POISSON
getPBall(0).setOneQ(s, MobilizerQIndex(0), Height);
getPBall(0).setOneU(s, MobilizerUIndex(0), Speed);
for (int i=1; i<NBalls; ++i)
getPBall(i).setOneQ(s, MobilizerQIndex(0), Separation);
#endif
#ifdef NEWTON
getNBall(0).setOneQ(s, MobilizerQIndex(0), Height);
getNBall(0).setOneU(s, MobilizerUIndex(0), Speed);
for (int i=1; i<NBalls; ++i)
getNBall(i).setOneQ(s, MobilizerQIndex(0), Separation);
#endif
}
//==============================================================================
// PENCIL
//==============================================================================
Pencil::Pencil() {
m_tracker = new ContactTrackerSubsystem(*this);
m_contactForces = new CompliantContactSubsystem(*this, *m_tracker);
// Abbreviations.
SimbodyMatterSubsystem& matter = updMatterSubsystem();
GeneralForceSubsystem& forces = updForceSubsystem();
MyUnilateralConstraintSet& unis = updUnis();
MobilizedBody& Ground = matter.updGround();
// Build the multibody system.
m_gravity = Force::Gravity(forces, matter, -YAxis, 9.8066);
//m_damper = Force::GlobalDamper(forces, matter, .1);
const Real PencilMass = 1;
const Real PencilRadius = .25;
const Real PencilHLength = 5;
const Real CoefRest = 1;
const Real CaptureVelocity = .001;
const Real TransitionVelocity = .001;
//const Real mu_d=10, mu_s=10, mu_v=0;
const Real mu_d=1, mu_s=1, mu_v=0;
//const Real mu_d=.5, mu_s=.5, mu_v=0;
// Rubber
const Real rubber_density = 1100.; // kg/m^3
const Real rubber_young = 0.01e9; // pascals (N/m)
const Real rubber_poisson = 0.5; // ratio
const Real rubber_planestrain =
ContactMaterial::calcPlaneStrainStiffness(rubber_young,rubber_poisson);
const Real rubber_dissipation = 0.1;
const ContactMaterial rubber(rubber_planestrain,rubber_dissipation,0,0,0);
// Nylon
const Real nylon_density = 1100.; // kg/m^3
const Real nylon_young = 2.5e9; // pascals (N/m)
const Real nylon_poisson = 0.4; // ratio
const Real nylon_planestrain =
ContactMaterial::calcPlaneStrainStiffness(nylon_young,nylon_poisson);
const Real nylon_dissipation = 0*0.1;
const ContactMaterial nylon(nylon_planestrain,nylon_dissipation,0,0,0);
const Rotation X2Y(Pi/2, ZAxis); // rotate +90 deg about z
const Rotation NegX2Y(-Pi/2,ZAxis); // -90
Ground.updBody().addContactSurface(Transform(NegX2Y,Vec3(0)),
ContactSurface(ContactGeometry::HalfSpace(),nylon));
unis.setCaptureVelocity(CaptureVelocity);
unis.setTransitionVelocity(TransitionVelocity);
// ADD MOBILIZED BODIES AND CONTACT CONSTRAINTS
Body::Rigid pencilBody(MassProperties(PencilMass, Vec3(0),
UnitInertia::cylinderAlongY(PencilRadius,PencilHLength)));
pencilBody.addDecoration(Transform(),
DecorativeCylinder(PencilRadius,PencilHLength)
.setOpacity(.3));
m_pencil = MobilizedBody::Planar
(Ground, Vec3(0,PencilHLength,0), pencilBody, Vec3(0));
MyPointContact* pc1; MyPointContact* pc2;
unis.addContactElement(pc1=new MyPointContact
(Ground, YAxis, 0., m_pencil, Vec3(0,-PencilHLength,0), CoefRest));
unis.addContactElement(pc2=new MyPointContact
(Ground, YAxis, 0., m_pencil, Vec3(0,PencilHLength,0), CoefRest));
unis.addFrictionElement(
new MyPointContactFriction(*pc1, mu_d, mu_s, mu_v,
CaptureVelocity, // TODO: vtol?
forces));
unis.addFrictionElement(
new MyPointContactFriction(*pc2, mu_d, mu_s, mu_v,
CaptureVelocity, // TODO: vtol?
forces));
}
void Pencil::calcInitialState(State& s) const {
s = realizeTopology(); // returns a reference to the the default state
realizeModel(s); // define appropriate states for this System
realize(s, Stage::Instance); // instantiate constraints if any
realize(s, Stage::Position);
Assembler(*this).setErrorTolerance(1e-6).assemble(s);
getPencil().setOneQ(s, MobilizerQIndex(0), Pi/4);
getPencil().setOneQ(s, MobilizerQIndex(2), -1);
getPencil().setOneU(s, MobilizerUIndex(1), 2);
getPencil().setOneU(s, MobilizerUIndex(2), -2);
}
//-------------------------- SHOW CONSTRAINT STATUS ----------------------------
void MyUnilateralConstraintSet::
showConstraintStatus(const State& s, const String& place) const
{
#ifndef NDEBUG
printf("\n%s: uni status @t=%.15g\n", place.c_str(), s.getTime());
m_mbs.realize(s, Stage::Dynamics);
for (int i=0; i < getNumContactElements(); ++i) {
const MyContactElement& contact = getContactElement(i);
const bool isActive = !contact.isDisabled(s);
printf(" %6s %2d %s, h=%g dh=%g f=%g\n",
isActive?"ACTIVE":"off", i, contact.getContactType().c_str(),
contact.getPerr(s),contact.getVerr(s),
isActive?contact.getForce(s):Zero);
}
for (int i=0; i < getNumFrictionElements(); ++i) {
const MyFrictionElement& friction = getFrictionElement(i);
if (!friction.isMasterActive(s))
continue;
const bool isEnabled = friction.isEnabled(s);
printf(" %8s friction %2d\n",
isEnabled?"STICKING":"sliding", i);
friction.writeFrictionInfo(s, " ", std::cout);
}
printf("\n");
#endif
}
|