1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
|
/* -------------------------------------------------------------------------- *
* Simbody(tm) *
* -------------------------------------------------------------------------- *
* This is part of the SimTK biosimulation toolkit originating from *
* Simbios, the NIH National Center for Physics-Based Simulation of *
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody. *
* *
* Portions copyright (c) 2007-12 Stanford University and the Authors. *
* Authors: Michael Sherman *
* Contributors: *
* *
* Licensed under the Apache License, Version 2.0 (the "License"); you may *
* not use this file except in compliance with the License. You may obtain a *
* copy of the License at http://www.apache.org/licenses/LICENSE-2.0. *
* *
* Unless required by applicable law or agreed to in writing, software *
* distributed under the License is distributed on an "AS IS" BASIS, *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
* See the License for the specific language governing permissions and *
* limitations under the License. *
* -------------------------------------------------------------------------- */
/**@file
* This is a simple example of using a constraint.
* Here we have two independent pendulums hanging from ground pins.
* They can be connected by a spring or a distance constraint.
*/
#include "SimTKsimbody.h"
#include <cmath>
#include <cstdio>
#include <exception>
#include <vector>
using namespace std;
using namespace SimTK;
static const Real Deg2Rad = (Real)SimTK_DEGREE_TO_RADIAN,
Rad2Deg = (Real)SimTK_RADIAN_TO_DEGREE;
static const Transform GroundFrame;
static const Real m = 1; // kg
static const Real g = 9.8; // meters/s^2; apply in y direction
static const Real d = 0.5; // meters
class ShermsForce : public Force::Custom::Implementation {
public:
ShermsForce(const MobilizedBody& b1, const MobilizedBody& b2) : body1(b1), body2(b2) { }
ShermsForce* clone() const {return new ShermsForce(*this);}
void calcForce(const State& state,
Vector_<SpatialVec>& bodyForces,
Vector_<Vec3>& particleForces,
Vector& mobilityForces) const override
{
const Vec3& pos1 = body1.getBodyTransform(state).p();
const Vec3& pos2 = body2.getBodyTransform(state).p();
const Real d = (pos2-pos1).norm();
const Real k = 1000, d0 = 1;
const Vec3 f = k*(d-d0)*(pos2-pos1)/d;
body1.applyBodyForce(state, SpatialVec(Vec3(0), f), bodyForces);
body2.applyBodyForce(state, SpatialVec(Vec3(0), -f), bodyForces);
}
Real calcPotentialEnergy(const State& state) const override {
return 0;
}
private:
const MobilizedBody& body1;
const MobilizedBody& body2;
};
//template <class E> Vector_<E>
//operator*(const VectorView_<E>& l, const typename CNT<E>::StdNumber& r)
// { return Vector_<E>(l)*=r; }
void ff(Vector& v) {
v = 23.;
}
int main(int argc, char** argv) {
try { // If anything goes wrong, an exception will be thrown.
// CREATE MULTIBODY SYSTEM AND ITS SUBSYSTEMS
MultibodySystem mbs;
SimbodyMatterSubsystem twoPends(mbs);
GeneralForceSubsystem forces(mbs);
DecorationSubsystem viz(mbs);
Force::UniformGravity gravity(forces, twoPends, Vec3(0, -g, 0));
gravity.setDisabledByDefault(true);
// ADD BODIES AND THEIR MOBILIZERS
Body::Rigid pendulumBody = Body::Rigid(MassProperties(m, Vec3(0), Inertia(1)));
pendulumBody.addDecoration(Transform(),
DecorativeBrick(Vec3(.1,.0667,.05)).setOpacity(.5));
MobilizedBody:: Ball /*Gimbal*/ /*FreeLine*/ /*LineOrientation*/ /*Free*/
leftPendulum(twoPends.Ground(),
Transform(Vec3(-1, 0, 0)),
pendulumBody,
Transform(Vec3(0, d, 0)));
/*
MobilizedBody::Ball
leftPendulum2(leftPendulum,
Transform(Vec3(0.5, 0, 0)),
pendulumBody,
Transform(Vec3(0, d, 0)));
*/
// leftPendulum.setDefaultRadius(0.2); // for Ball artwork
Vec3 radii(1.5/2.,1/3.,1/4.); radii*=.5; //radii=Vec3(.333,.5,1);
MobilizedBody::Ellipsoid rightPendulum(twoPends.Ground(), pendulumBody);
rightPendulum.setDefaultRadii(radii)
.setDefaultInboardFrame(Transform(Rotation(),Vec3(1,0,0)))
.setDefaultOutboardFrame(Transform( Rotation( SpaceRotationSequence, Pi/2, XAxis, -Pi/2, YAxis ), Vec3(0,d-radii[1],0)));
//rightPendulum.setDefaultAngle(20*Deg2Rad);
// rightPendulum.setDefaultRotation( Rotation(60*Deg2Rad, Vec3(0,0,1)) );
// OPTIONALLY TIE TOGETHER WITH SPRING/DAMPER OR DISTANCE CONSTRAINT
const Real distance = /*2*/1.5; // nominal length for spring; length for constraint
const Real stiffness = 100; // only if spring is used
const Real damping = 10; // "
char c;
cout << "Constraint, spring, or nothing? c/s/n"; cin >> c;
ConstraintIndex cid;
const Vec3 leftAttachPt(.1,0.05,0);
if (c == 'c') {
cid =
//Constraint::PointInPlane(twoPends.Ground(), UnitVec3(0,1,0), -2*d,
// leftPendulum2, Vec3(0))
Constraint::Rod(leftPendulum, leftAttachPt,
rightPendulum, Vec3(0),
distance)
// Constraint::Ball(leftPendulum2, Vec3(.5,0,0),
// twoPends.Ground(), Vec3(0,-d,0))
.getConstraintIndex();
} else if (c == 's') {
Force::TwoPointLinearSpring(forces, leftPendulum, leftAttachPt,
rightPendulum, Vec3(0),
stiffness, distance);
Force::TwoPointLinearDamper(forces, leftPendulum, leftAttachPt,
rightPendulum, Vec3(0),
damping);
}
// Add visualization line for spring (Rod constraint has one automatically)
if (c=='s')
viz.addRubberBandLine(leftPendulum, leftAttachPt,
rightPendulum, Vec3(0),
DecorativeLine().setColor(Orange).setLineThickness(4));
//forces.addMobilityConstantForce(leftPendulum, 0, 20);
//forces.addCustomForce(ShermsForce(leftPendulum,rightPendulum));
//forces.addGlobalEnergyDrain(1);
mbs.setHasTimeAdvancedEvents(false);
cout << "HAS TIME ADVANCED EVENTS=" << mbs.hasTimeAdvancedEvents() << endl;
Measure::Constant meas1(twoPends, 20);
const Real amp = 3, freq = 100, phase = Pi/2;
Measure::Sinusoid sint(twoPends, amp, freq, phase);
Measure::Integrate twentyPlus10t(twoPends, Measure::Constant(twoPends, 10), meas1);
State s = mbs.realizeTopology(); // returns a reference to the the default state
//twoPends.setUseEulerAngles(s, true);
mbs.realizeModel(s); // define appropriate states for this System
gravity.enable(s);
twentyPlus10t.setValue(s, 20);
mbs.realize(s, Stage::Instance); // instantiate constraints
cout << "meas1=" << meas1.getValue(s) << endl;
if (cid.isValid()) {
int mp, mv, ma;
twoPends.getConstraint(cid).getNumConstraintEquationsInUse(s, mp, mv, ma);
cout << "CONSTRAINT ID " << cid << " mp,v,a=" << mp << ", " << mv << ", " << ma << endl;
cout << "CONSTRAINT -- " << twoPends.getConstraint(cid).getSubtree();
}
for (MobilizedBodyIndex i(0); i < twoPends.getNumBodies(); ++i) {
const MobilizedBody& mb = twoPends.getMobilizedBody(i);
cout << "Body " << i
<< " base=" << mb.getBaseMobilizedBody().getMobilizedBodyIndex()
<< endl;
}
SimbodyMatterSubtree sub(twoPends);
sub.addTerminalBody(leftPendulum); sub.addTerminalBody(rightPendulum);
sub.realizeTopology();
cout << "SUB -- " << sub;
SimbodyMatterSubtreeResults results;
sub.initializeSubtreeResults(s, results);
cout << "INIT RESULTS=" << results;
Visualizer display(mbs);
display.setBackgroundType(Visualizer::SolidColor);
// gravity.disable(s);
mbs.realize(s, Stage::Position);
display.report(s);
cout << "q=" << s.getQ() << endl;
cout << "qErr=" << s.getQErr() << endl;
cout << "p_MbM=" << rightPendulum.getMobilizerTransform(s).p() << endl;
Vector_<SpatialVec> bodyForces;
Vector_<Vec3> particleForces;
Vector mobilityForces;
gravity.calcForceContribution(s,bodyForces,particleForces,mobilityForces);
cout << "Gravity forces: body:" << bodyForces << endl;
cout << " particle:" << particleForces << endl;
cout << " mobility:" << mobilityForces << endl;
cout << " PE=" << gravity.calcPotentialEnergyContribution(s) << endl;
if (cid.isValid()) {
const Constraint& c = twoPends.getConstraint(cid);
cout << "CONSTRAINT perr=" << c.getPositionErrorsAsVector(s)
<< endl;
cout << " d(perrdot)/du=" << c.calcPositionConstraintMatrixP(s);
cout << " d(perr)/dq=" << c.calcPositionConstraintMatrixPNInv(s);
}
cout << "Default configuration shown. Ready? "; cin >> c;
sub.copyPositionsFromState(s, results);
cout << "POS RESULTS=" << results;
//leftPendulum.setAngle(s, -60*Deg2Rad);
//leftPendulum.setQToFitRotation(s, Rotation(-60*Deg2Rad,ZAxis));
//rightPendulum.setQToFitTranslation(s, Vec3(0,1,0));
leftPendulum.setQToFitRotation (s, Rotation(-.9*Pi/2,ZAxis));
rightPendulum.setQToFitRotation(s, Rotation(-.9*Pi/2,YAxis));
//TODO
//rightPendulum.setUToFitLinearVelocity(s, Vec3(1.1,0,1.2));
leftPendulum.setUToFitAngularVelocity(s, 10*Vec3(.1,.2,.3));
rightPendulum.setUToFitAngularVelocity(s, 10*Vec3(.1,.2,.3));
s.setTime(0);
mbs.realize(s, Stage::Velocity);
display.report(s);
cout << "q=" << s.getQ() << endl;
cout << "qErr=" << s.getQErr() << endl;
cout << "p_MbM=" << rightPendulum.getMobilizerTransform(s).p() << endl;
cout << "v_MbM=" << rightPendulum.getMobilizerVelocity(s)[1] << endl;
cout << "Unassembled configuration shown. Ready to assemble? "; cin >> c;
// These are the SimTK Simmath integrators:
RungeKuttaMersonIntegrator myStudy(mbs);
//CPodesIntegrator myStudy(mbs, CPodes::BDF, CPodes::Newton);
//myStudy.setOrderLimit(2); // cpodes only
//VerletIntegrator myStudy(mbs);
//myStudy.setMaximumStepSize(0.001);
myStudy.setAccuracy(1e-1);
//myStudy.setProjectEveryStep(true);
myStudy.setConstraintTolerance(1e-2);
//myStudy.setAllowInterpolation(false);
//myStudy.setMaximumStepSize(.1);
const Real dt = 1./60; // output intervals
const Real finalTime = 20;
myStudy.setFinalTime(finalTime);
// Peforms assembly if constraints are violated.
myStudy.initialize(s);
cout << "Using Integrator " << std::string(myStudy.getMethodName()) << ":\n";
cout << "ACCURACY IN USE=" << myStudy.getAccuracyInUse() << endl;
cout << "CTOL IN USE=" << myStudy.getConstraintToleranceInUse() << endl;
cout << "TIMESCALE=" << mbs.getDefaultTimeScale() << endl;
cout << "U WEIGHTS=" << s.getUWeights() << endl;
cout << "Z WEIGHTS=" << s.getZWeights() << endl;
cout << "1/QTOLS=" << s.getQErrWeights() << endl;
cout << "1/UTOLS=" << s.getUErrWeights() << endl;
{
const State& s = myStudy.getState();
display.report(s);
cout << "q=" << s.getQ() << endl;
cout << "qErr=" << s.getQErr() << endl;
cout << "p_MbM=" << rightPendulum.getMobilizerTransform(s).p() << endl;
cout << "Assembled configuration shown. Ready to simulate? "; cin >> c;
}
Integrator::SuccessfulStepStatus status;
int nextReport = 0;
int nextScheduledEvent = 0;
Real schedule[] = {1.234, 3.1415, 3.14159, 4.5, 9.090909, 100.};
while ((status=myStudy.stepTo(nextReport*dt,schedule[nextScheduledEvent]))
!= Integrator::EndOfSimulation)
{
const State& s = myStudy.getState();
mbs.realize(s);
const Real leftPendulumAngle = leftPendulum.getBodyRotation(s).convertRotationToAngleAxis()[0] * Rad2Deg;
if (status == Integrator::ReachedScheduledEvent
|| std::abs(std::floor(s.getTime()+0.5)-s.getTime())<1e-4)
{
printf("%5g %10.4g E=%10.8g h%3d=%g %s%s\n", s.getTime(),
leftPendulumAngle,
mbs.calcEnergy(s), myStudy.getNumStepsTaken(),
myStudy.getPreviousStepSizeTaken(),
Integrator::getSuccessfulStepStatusString(status).c_str(),
myStudy.isStateInterpolated()?" (INTERP)":"");
printf(" qerr=%10.8g uerr=%10.8g uderr=%10.8g\n",
twoPends.getQErr(s).normRMS(),
twoPends.getUErr(s).normRMS(),
twoPends.getUDotErr(s).normRMS());
cout << "t=" << s.getTime() << "sint=" << sint.getValue(s) << "a*sin(wt+p)="
<< amp*std::sin(freq*s.getTime() + phase) << endl;
cout << "20+10t=" << twentyPlus10t.getValue(s) << endl;
if (cid.isValid()) {
const Constraint& c = twoPends.getConstraint(cid);
cout << "CONSTRAINT perr=" << c.getPositionErrorsAsVector(s)
<< " verr=" << c.getVelocityErrorsAsVector(s)
<< " aerr=" << c.getAccelerationErrorsAsVector(s)
<< endl;
//cout << " d(perrdot)/du=" << c.calcPositionConstraintMatrixP(s);
//cout << " ~d(f)/d lambda=" << c.calcPositionConstraintMatrixPT(s);
//cout << " d(perr)/dq=" << c.calcPositionConstraintMatrixPQInverse(s);
}
}
Vector qdot;
twoPends.calcQDot(s, s.getU(), qdot);
// cout << "===> qdot =" << qdot << endl;
Vector qdot2;
twoPends.multiplyByN(s, false, s.getU(), qdot2);
// cout << "===> qdot2=" << qdot2 << endl;
Vector u1,u2;
twoPends.multiplyByNInv(s, false, qdot, u1);
twoPends.multiplyByNInv(s, false, qdot2, u2);
// cout << "===> u =" << s.getU() << endl;
// cout << "===> u1=" << u1 << endl;
// cout << "===> u2=" << u2 << endl;
// cout << " norm=" << (s.getU()-u2).normRMS() << endl;
//sub.copyPositionsFromState(s, results);
//sub.copyVelocitiesFromState(s, results);
// sub.copyAccelerationsFromState(s, results);
//cout << results;
display.report(s);
//if (s.getTime() >= finalTime)
// break;
//status = myStudy.stepTo(s.getTime() + dt);
//THIS CAN FAIL SOMETIMES
//if (s.getTime() >= nextReport*dt)
// ++nextReport;
if (status == Integrator::ReachedReportTime)
++nextReport;
if (s.getTime() >= schedule[nextScheduledEvent])
++nextScheduledEvent;
}
printf("Using Integrator %s:\n", myStudy.getMethodName());
printf("# STEPS/ATTEMPTS = %d/%d\n", myStudy.getNumStepsTaken(), myStudy.getNumStepsAttempted());
printf("# ERR TEST FAILS = %d\n", myStudy.getNumErrorTestFailures());
printf("# REALIZE/PROJECT = %d/%d\n", myStudy.getNumRealizations(), myStudy.getNumProjections());
}
catch (const exception& e) {
printf("EXCEPTION THROWN: %s\n", e.what());
exit(1);
}
catch (...) {
printf("UNKNOWN EXCEPTION THROWN\n");
exit(1);
}
}
|