1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
|
/* -------------------------------------------------------------------------- *
* Simbody(tm) - UnilateralPointContact Example *
* -------------------------------------------------------------------------- *
* This is part of the SimTK biosimulation toolkit originating from *
* Simbios, the NIH National Center for Physics-Based Simulation of *
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody. *
* *
* Portions copyright (c) 2012 Stanford University and the Authors. *
* Authors: Michael Sherman *
* Contributors: *
* *
* Licensed under the Apache License, Version 2.0 (the "License"); you may *
* not use this file except in compliance with the License. You may obtain a *
* copy of the License at http://www.apache.org/licenses/LICENSE-2.0. *
* *
* Unless required by applicable law or agreed to in writing, software *
* distributed under the License is distributed on an "AS IS" BASIS, *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
* See the License for the specific language governing permissions and *
* limitations under the License. *
* -------------------------------------------------------------------------- */
/*
This example shows a manual approach to dealing with unilateral constraints in
Simbody, which does not currently have built-in support but has sufficiently
general facilities. In this example we'll implement non-slipping point
contact, joint limit constraints, and a rope-like one-sided distance
constraint. We'll use Simbody bilateral constraints turned on and off with
manual switching conditions that are set by discrete event handlers.
For each designated contact point that is not in contact, we'll track the
vertical height over the ground plane and its first and second time derivatives
and use those to construct switching ("witness") functions to trigger an event
that may enable the constraint. For each enabled contact constraint, we'll
track the sign of the normal reaction force and use it as a witness to disable
the constraint.
Note that there are two separate conditions involving these constraints:
impact (collision) and contact. Impact occurs during an infinitesimal
interval and involves impulses and velocities, while contact persists over time
and involves forces and accelerations. Contact between rigid objects is a
simple, physically justifiable process in which contact constraints generate
forces if necessary to prevent interpenetration. Impact of rigid objects, on
the other hand, requires assumptions to be made about the non-modeled details
of collision behavior that is assumed to occur in an infinitesimal interval.
Just producing logically-consistent behavior during impact is very difficult;
justifying it physically even more so.
How we handle contact
---------------------
In this example each contact consists of a constraint that prevents penetration
of a point on a moving body normal to the ground plane, and constraints
that prevent slipping tangent to the plane. We implement non-penetration with
Simbody's "PointInPlane" constraint. We enable this
constraint when a contact begins, defined so
that its multiplier is the y component of the reaction force, with +y
being the ground plane normal. We monitor the reaction force y component, and
declare the contact broken if that component is negative. The no-slip condition
is enforced with two of Simbody's "NoSlip1D" constraints, one in the x
direction and one in the z direction.
A rope is implemented similarly using Simbody's "Rod" (distance) constraint,
and joint stops are implemented (somewhat inadequately) using the existing
ConstantSpeed constraint, with the speed set to zero.
How we handle impacts
---------------------
In this example, an impact is signaled by a contact point that reaches the
ground plane with a negative vertical speed vy, with similar conditions for
the other constraints. This requires a step change to
the system velocities to avoid penetration or constraint violation. We achieve
this step change by applying a constraint-space
impulse to the system, representing constraint-space contact
forces integrated over the assumed-infinitesimal impact interval. The system
equations of motion are used to ensure that the velocity changes produced by
the impulses satisfy Newton's laws. This can produce velocity changes anywhere
in the system and may result in other impacts or breaking of
existing contacts.
When an impact is signaled, we determine the subset of potential contacts that
may be involved in this event; those are called "proximal" contacts and are
just those whose contact points are at zero height, within a small tolerance.
The rest are ignored during handling of the impact.
We use Poisson's interpretation of coefficient of restitution as a ratio of
impulses, rather than Newton's more commonly known but inconsistent
interpretation as a ratio of velocities. To apply Poisson's interpretation, we
divide the impact into two distinct phases: compression and expansion.
During compression we determine what impulse is required to prevent any
penetration at the proximal contacts, by eliminating any negative speeds vy.
The task for expansion is to determine an expansion impulse, based
on the compression impulse, the coefficient of restitution e at each contact,
and a "capture velocity" vc that says when a rebound velocity is so small we
should consider a new persistent contact to be initiated.
0) Initialize: initialize the effective coefficients of restitution e(i) for
each of the proximal constraints. These can be constants associated with the
contact parameters, or can be calculated from the initial velocities. Set
the total applied impulse I=0, determine current velocity V. Activate all
proximal constraints.
1) Compression phase: Determine the nonnegative least squares constraint-space
impulse Ic that brings any impacting proximal contacts ("impacters") to a stop,
and leaves non-impacting ones ("rebounders") with a positive vertical speed
(however small). Note that the set of impacters might not end up being the same
ones as came in with negative vy; some new ones might be added and some of the
originals might turn out to be rebounders due to the effects of other impacts.
At the end we have for the i'th proximal constraint a compression impulse
Ic(i)>=0 and a post-compression velocity Vc(i)>=0, with contact constraint i
active (impacter) if Ic(i)>0 or Ic(i)==0 && Vc(i)==0 and inactive
(rebounder) otherwise, with Ic(i)==0 and Vc(i)>0. Although it may take a few
iterations to figure out what's going on, we consider everything to be
simultaneous during a compression phase -- there is a single impulse Ic
generated that modifies the original velocities to produce Vc. Increment the
total impulse I+=Ic (>=0), set V=Vc (>=0).
2) Expansion phase: Generate an expansion impulse Ie such that
Ie(i)=e(i)*Ic(i) for each of the impacters i from the compression phase.
If Ie==0 there is no expansion to do; go to step 4. Otherwise,
set e(i)=0 for each of the impacters; the material restitution has now been
consumed. Increment the total impulse I+=Ie. Apply the impulse Ie to produce a
velocity change dVe and a new velocity Ve=V+dVe, and update V=Ve. If Ve>=0 for
all proximal contacts, we are successful. In that case go to step 4 with the
total impulse I>=0, and velocity V=Ve>=0; active constraints are those where
V(k)=0.
3) Some contacts now have negative
vertical speeds vy (these may include both impacters and rebounders from the
compression phase). This requires a new compression phase, beginning with
these velocities and with the original impacters now having zero coefficients
of restitution. So return to step 1.
4) We have determined and applied the compression+expansion impulse I>=0 and
have the resulting velocities V>=0. Check all contacts for which V>0 (the
rebounders) to see if any is rebounding very slowly (<= vc). Enable those,
and calculate the impulse dI that just brings those to zero while maintaining
other contacts. Apply that impulse to get new velocities V. If that causes
any V(k)<0 or new V(k)<=vc, declare that a contact too and recalculate dI;
repeat until all inactive (rebounding) V(k)>vc. Then set the final I+=dI.
5) Now calculate accelerations. If any of the active proximal contacts
generate a zero or negative vertical reaction force they should be disabled;
otherwise we would miss the next break-free event.
*/
#include "Simbody.h"
#include <string>
#include <iostream>
#include <exception>
using std::cout;
using std::endl;
using namespace SimTK;
const Real ReportInterval=1./30;
const Real RunTime=20;
//==============================================================================
// MY UNILATERAL CONSTRAINT
//==============================================================================
// This abstract class hides the details about which kind of constraint
// we're dealing with, while giving us enough to work with for deciding what's
// on and off and generating impulses.
//
// There is always a scalar associated with the constraint for making
// decisions, although contact constraints may also have some additional
// constraint equations for stiction.
class MyUnilateralConstraint {
public:
enum ImpulseType {Compression,Expansion,Capture};
MyUnilateralConstraint(Constraint uni, Real multSign, Real coefRest)
: m_uni(uni), m_multSign(multSign), m_coefRest(coefRest),
m_restitutionDone(false)
{ m_uni.setDisabledByDefault(true); }
virtual ~MyUnilateralConstraint() {}
// These must be constructed so that a negative value means the
// unilateral constraint condition is violated.
virtual Real getPerr(const State& state) const = 0;
virtual Real getVerr(const State& state) const = 0;
virtual Real getAerr(const State& state) const = 0;
// This returns a point in the ground frame at which you might want to
// say the constraint is "located", for purposes of display. This should
// return something useful even if the constraint is currently off.
virtual Vec3 whereToDisplay(const State& state) const = 0;
// Returns zero if the constraint is not currently enabled.
Real getForce(const State& s) const {
if (isDisabled(s)) return 0;
const Vector mult = m_uni.getMultipliersAsVector(s);
assert(mult.size() == 1);
return m_multSign*mult[0];
}
// Override these if you have auxiliary constraints but be sure to
// invoke superclass method too.
virtual void enable(State& state) const {m_uni.enable(state);}
virtual void disable(State& state) const {m_uni.disable(state);}
virtual void setMyDesiredDeltaV(const State& s,
Vector& desiredDeltaV) const
{ Vector myDesiredDV(1); myDesiredDV[0] = m_multSign*getVerr(s);
m_uni.setMyPartInConstraintSpaceVector(s, myDesiredDV,
desiredDeltaV); }
virtual void recordImpulse(ImpulseType type, const State& state,
const Vector& lambda) {
Vector myImpulse(1);
m_uni.getMyPartFromConstraintSpaceVector(state, lambda, myImpulse);
const Real I = myImpulse[0];
if (type==Compression) m_Ic = I;
else if (type==Expansion) m_Ie = I;
m_I += I;
}
// This is used by some constraints to collect position information that
// may be used later to set instance variables when enabling the underlying
// Simbody constraint. All constraints zero impulses here.
virtual void initializeForImpact(const State& state)
{ setRestitutionDone(false); m_Ic = m_Ie = m_I = 0; }
// Impulse is accumulated internally.
Real getImpulse() const {return -m_multSign*m_I;}
Real getCompressionImpulse() const {return -m_multSign*m_Ic;}
Real getExpansionImpulse() const {return -m_multSign*m_Ie;}
Real getMyValueFromConstraintSpaceVector(const State& state,
const Vector& lambda) const
{ Vector myValue(1);
m_uni.getMyPartFromConstraintSpaceVector(state, lambda, myValue);
return -m_multSign*myValue[0]; }
void setMyExpansionImpulse(const State& state,
Real coefRest,
Vector& lambda) const
{ const Real I = coefRest * m_Ic;
Vector myImp(1); myImp[0] = I;
m_uni.setMyPartInConstraintSpaceVector(state, myImp, lambda); }
bool isDisabled(const State& state) const
{ return m_uni.isDisabled(state); }
Real getCoefRest() const {return m_coefRest;}
void setRestitutionDone(bool isDone) {m_restitutionDone=isDone;}
bool isRestitutionDone() const {return m_restitutionDone;}
protected:
Constraint m_uni;
const Real m_multSign; // 1 or -1
const Real m_coefRest;
// Runtime
bool m_restitutionDone;
Real m_Ic, m_Ie, m_I; // impulses
};
//==============================================================================
// SHOW CONTACT
//==============================================================================
// For each visualization frame, generate ephemeral geometry to show just
// during this frame, based on the current State.
class ShowContact : public DecorationGenerator {
public:
ShowContact(const Array_<MyUnilateralConstraint*>& unis)
: m_unis(unis) {}
void generateDecorations(const State& state,
Array_<DecorativeGeometry>& geometry) override
{
for (unsigned i=0; i < m_unis.size(); ++i) {
const MyUnilateralConstraint& uni = *m_unis[i];
const Vec3 loc = uni.whereToDisplay(state);
if (!uni.isDisabled(state)) {
geometry.push_back(DecorativeSphere(.5)
.setTransform(loc)
.setColor(Red).setOpacity(.25));
geometry.push_back(DecorativeText("LOCKED")
.setColor(White).setScale(.5)
.setTransform(loc+Vec3(0,.2,0)));
} else {
geometry.push_back(DecorativeText(String(i))
.setColor(White).setScale(.5)
.setTransform(loc+Vec3(0,.1,0)));
}
}
}
private:
const Array_<MyUnilateralConstraint*>& m_unis;
};
//==============================================================================
// STATE SAVER
//==============================================================================
// This reporter is called now and again to save the current state so we can
// play back a movie at the end.
class StateSaver : public PeriodicEventReporter {
public:
StateSaver(const MultibodySystem& system,
const Array_<MyUnilateralConstraint*>& unis,
const Integrator& integ,
Real reportInterval)
: PeriodicEventReporter(reportInterval),
m_system(system), m_unis(unis), m_integ(integ)
{ m_states.reserve(2000); }
~StateSaver() {}
void clear() {m_states.clear();}
int getNumSavedStates() const {return (int)m_states.size();}
const State& getState(int n) const {return m_states[n];}
void handleEvent(const State& s) const override {
const SimbodyMatterSubsystem& matter=m_system.getMatterSubsystem();
const SpatialVec PG = matter.calcSystemMomentumAboutGroundOrigin(s);
#ifndef NDEBUG
printf("%3d: %5g mom=%g,%g E=%g", m_integ.getNumStepsTaken(),
s.getTime(),
PG[0].norm(), PG[1].norm(), m_system.calcEnergy(s));
cout << " Triggers=" << s.getEventTriggers() << endl;
for (unsigned i=0; i < m_unis.size(); ++i) {
const MyUnilateralConstraint& uni = *m_unis[i];
const bool isLocked = !uni.isDisabled(s);
printf(" Uni constraint %d is %s, h=%g dh=%g\n", i,
isLocked?"LOCKED":"unlocked", uni.getPerr(s),uni.getVerr(s));
if (isLocked) {
m_system.realize(s, Stage::Acceleration);
cout << " force=" << uni.getForce(s) << endl;
}
}
#endif
m_states.push_back(s);
}
private:
const MultibodySystem& m_system;
const Array_<MyUnilateralConstraint*>& m_unis;
const Integrator& m_integ;
mutable Array_<State> m_states;
};
//==============================================================================
// CONTACT ON HANDLER
//==============================================================================
class ContactOn: public TriggeredEventHandler {
public:
ContactOn(const MultibodySystem& system,
const Array_<MyUnilateralConstraint*>& unis,
unsigned which,
Stage stage)
: TriggeredEventHandler(stage),
m_mbs(system), m_unis(unis), m_which(which),
m_stage(stage)
{
// Trigger only as height goes from positive to negative.
getTriggerInfo().setTriggerOnRisingSignTransition(false);
}
// This is the witness function.
Real getValue(const State& state) const override {
const SimbodyMatterSubsystem& matter = m_mbs.getMatterSubsystem();
const MyUnilateralConstraint& uni = *m_unis[m_which];
if (!uni.isDisabled(state))
return 0; // already locked
const Real height = uni.getPerr(state);
if (m_stage == Stage::Position)
return height;
// Velocity and acceleration triggers are not needed if we're
// above ground.
if (height > 0) return 0;
const Real dheight = uni.getVerr(state);
if (m_stage == Stage::Velocity)
return dheight;
// Acceleration trigger is not needed if velocity is positive.
if (dheight > 0) return 0;
const Real ddheight = uni.getAerr(state);
return ddheight;
}
// We're using Poisson's definition of the coefficient of
// restitution, relating impulses, rather than Newton's,
// relating velocities, since Newton's can produce non-physical
// results for a multibody system. For Poisson, calculate the impulse
// that would bring the velocity to zero, multiply by the coefficient
// of restitution to calculate the rest of the impulse, then apply
// both impulses to produce changes in velocity. In most cases this
// will produce the same rebound velocity as Newton, but not always.
void handleEvent(State& s, Real accuracy, bool& shouldTerminate) const override;
// Make a list of all the unilateral constraints that could conceivably
// receive an impulse. Any constraint that is currently enabled, or any
// currently disabled constraint that is within posTol of contact is
// included.
void findProximalConstraints(const State& state,
Real posTol,
Array_<int>& proximal) const;
// Given the set of proximal constraints, prevent penetration by applying
// a nonnegative least squares impulse generating a step change in
// velocity. On return, the applied impulse and new velocities are recorded
// in proximal, and state is updated to the new velocities and realized
// through Velocity stage. Constraints that were stopped are enabled, those
// that rebounded are disabled.
void processCompressionPhase(Array_<int>& proximal,
State& state) const;
// Given a solution to the compression phase, including the compression
// impulse, the set of impacters (enabled) and rebounders (disabled and
// with positive rebound velocity), apply an expansion impulse based on
// the effective coefficients of restitution of the impacters. Wherever
// restitution is applied, the effective coefficient is reset to zero so
// that further restitution will not be done for that contact. Returns
// true if any expansion was done; otherwise nothing has changed.
// Expansion may result in some negative velocities, in which case it has
// induced further compression so another compression phase is required.
bool processExpansionPhase(Array_<int>& proximal,
State& state) const;
// Examine the rebounders to see if any are rebounding with a speed at or
// below the capture velocity. If so, enable those constraints and apply a
// (hopefully small) negative impulse to eliminate that rebound velocity.
// Repeat if that induces any negative velocities or any further slow
// rebounders. This terminates will all rebounders leaving with velocities
// greater than vCapture, or else all constraints are enabled.
void captureSlowRebounders(Real vCapture,
Array_<int>& proximal,
State& state) const;
// This method is used at the start of compression phase to modify any
// constraint parameters as necessary, and then enable all the proximal
// constraints. Some or all of these will be disabled during the impact
// analysis in compression or expansion phases. On return the state has
// been updated and realized through Instance stage.
void enableAllProximalConstraints(Array_<int>& proximal,
State& state) const;
// Given only the subset of proximal constraints that are active, calculate
// the impulse that would eliminate all their velocity errors. No change is
// made to the set of active constraints. Some of the resulting impulses
// may be negative.
void calcStoppingImpulse(const Array_<int>& proximal,
const State& state,
Vector& lambda0) const;
// Given the initial generalized speeds u0, and a constraint-space impulse
// lambda, calculate the resulting step velocity change du, modify the
// generalized speeds in state to u0+du, and realize Velocity stage.
void updateVelocities(const Vector& u0,
const Vector& lambda,
State& state) const;
private:
const MultibodySystem& m_mbs;
const Array_<MyUnilateralConstraint*>& m_unis;
const unsigned m_which;
const Stage m_stage;
};
//==============================================================================
// CONTACT OFF HANDLER
//==============================================================================
// Allocate one of these for each unilateral constraint. This handler takes
// care of disabling an active constraint when its contact force crosses zero
// from positive to negative.
class ContactOff: public TriggeredEventHandler {
public:
ContactOff(const MultibodySystem& system,
const Array_<MyUnilateralConstraint*>& unis,
unsigned which)
: TriggeredEventHandler(Stage::Acceleration),
m_mbs(system), m_unis(unis), m_which(which)
{
getTriggerInfo().setTriggerOnRisingSignTransition(false);
}
// This is the witness function.
Real getValue(const State& state) const override {
const MyUnilateralConstraint& uni = *m_unis[m_which];
if (uni.isDisabled(state)) return 0;
const Real f = uni.getForce(state);
return f;
}
void handleEvent
(State& s, Real accuracy, bool& shouldTerminate) const override
{
SimTK_DEBUG("\n----------------------------------------------------\n");
SimTK_DEBUG2("LIFTOFF triggered by constraint %d @t=%.15g\n",
m_which, s.getTime());
m_mbs.realize(s, Stage::Acceleration);
#ifndef NDEBUG
cout << " triggers=" << s.getEventTriggers() << "\n";
#endif
disablePullingContacts(m_mbs,s,m_unis);
SimTK_DEBUG("LIFTOFF DONE.\n");
SimTK_DEBUG("----------------------------------------------------\n");
}
// This is also used by ContactOn at the end.
static void disablePullingContacts
(const MultibodySystem& mbs, State& s,
const Array_<MyUnilateralConstraint*>& unis);
private:
const MultibodySystem& m_mbs;
const Array_<MyUnilateralConstraint*>& m_unis;
const unsigned m_which; // one of the unis
};
//==============================================================================
// MY POINT CONTACT
//==============================================================================
// Define a unilateral constraint to represent contact of a point on a moving
// body with the ground plane. The ground normal is assumed to be +y. This
// contact constraint has "super friction" that always sticks if it contacts
// at all. Note: that can generate non-physical effects.
class MyPointContact : public MyUnilateralConstraint {
typedef MyUnilateralConstraint Super;
public:
MyPointContact(MobilizedBody& body, const Vec3& point,
Real coefRest)
: MyUnilateralConstraint
(Constraint::PointInPlane(updGround(body), UnitVec3(YAxis), Zero,
body, point),
Real(-1), // multiplier sign
coefRest),
m_body(body), m_point(point), m_groundPoint(0),
m_noslipX(updGround(body), Vec3(0), UnitVec3(XAxis),
updGround(body), body),
m_noslipZ(updGround(body), Vec3(0), UnitVec3(ZAxis),
updGround(body), body)
{
m_noslipX.setDisabledByDefault(true);
m_noslipZ.setDisabledByDefault(true);
}
Real getPerr(const State& s) const override {
const Vec3 p = m_body.findStationLocationInGround(s, m_point);
return p[YAxis];
}
Real getVerr(const State& s) const override {
const Vec3 v = m_body.findStationVelocityInGround(s, m_point);
return v[YAxis];
}
Real getAerr(const State& s) const override {
const Vec3 a = m_body.findStationAccelerationInGround(s, m_point);
return a[YAxis];
}
Vec3 whereToDisplay(const State& state) const override {
return m_body.findStationLocationInGround(state,m_point);
}
void recordImpulse(ImpulseType type, const State& state,
const Vector& lambda) override
{
Super::recordImpulse(type, state, lambda);
// Record translational impulse.
Vector myImpulseX(1), myImpulseZ(1);
m_noslipX.getMyPartFromConstraintSpaceVector(state, lambda, myImpulseX);
m_noslipZ.getMyPartFromConstraintSpaceVector(state, lambda, myImpulseZ);
const Vec2 tI(myImpulseX[0], myImpulseZ[0]);
if (type==Compression) m_tIc = tI;
else if (type==Expansion) m_tIe = tI;
m_tI += tI;
}
void setMyDesiredDeltaV(const State& s,
Vector& desiredDeltaV) const override
{
Super::setMyDesiredDeltaV(s, desiredDeltaV);
const Vec3 dv =
m_multSign*m_body.findStationVelocityInGround(s, m_point);
Vector myDesiredDV(1); // Nuke translational velocity also.
myDesiredDV[0] = dv[XAxis];
m_noslipX.setMyPartInConstraintSpaceVector(s, myDesiredDV, desiredDeltaV);
myDesiredDV[0] = dv[ZAxis];
m_noslipZ.setMyPartInConstraintSpaceVector(s, myDesiredDV, desiredDeltaV);
}
// Note that recordStartingLocation() must have been called first.
void enable(State& state) const override {
Super::enable(state);
m_noslipX.setContactPoint(state, m_groundPoint);
m_noslipZ.setContactPoint(state, m_groundPoint);
m_noslipX.enable(state); m_noslipZ.enable(state);
}
void disable(State& state) const override {
Super::disable(state);
m_noslipX.disable(state); m_noslipZ.disable(state);
}
// Set the ground point to be the projection of the follower point
// onto the ground plane. This will be used the next time this constraint
// is enabled.
void initializeForImpact(const State& s) override {
Super::initializeForImpact(s);
const Vec3 p = m_body.findStationLocationInGround(s, m_point);
m_groundPoint = p;
m_tI = m_tIe = m_tIc = Vec2(0);
}
private:
MobilizedBody& updGround(MobilizedBody& body) const {
SimbodyMatterSubsystem& matter = body.updMatterSubsystem();
return matter.updGround();
}
const MobilizedBody& m_body;
const Vec3 m_point;
Constraint::NoSlip1D m_noslipX, m_noslipZ;
// Runtime
Vec3 m_groundPoint;
Vec2 m_tIc; // most recent tangential compression impulse
Vec2 m_tIe; // most recent tangential expansion impulse
Vec2 m_tI; // accumulated tangential impulse
};
//==============================================================================
// MY STOP
//==============================================================================
// Define a unilateral constraint to represent a joint stop that limits
// the allowable motion of a single generalized coordinate. You can specify
// a coefficient of restitution and whether the given limit is the upper or
// lower limit.
class MyStop : public MyUnilateralConstraint {
public:
enum Side {Lower,Upper};
MyStop(Side side, MobilizedBody& body, int whichQ,
Real limit, Real coefRest)
: MyUnilateralConstraint
(Constraint::ConstantSpeed(body, MobilizerUIndex(whichQ), Real(0)),
Real(side==Lower?-1:1), coefRest),
m_body(body), m_whichq(whichQ), m_whichu(whichQ),
m_sign(side==Lower?1.:-1.), m_limit(limit)
{}
Real getPerr(const State& state) const override {
const Real q = m_body.getOneQ(state, m_whichq);
return m_sign*(q-m_limit);
}
Real getVerr(const State& state) const override {
const Real u = m_body.getOneU(state, m_whichu);
return m_sign*u;
}
Real getAerr(const State& state) const override {
const Real udot = m_body.getOneUDot(state, m_whichu);
return m_sign*udot;
}
Vec3 whereToDisplay(const State& state) const override {
const Vec3& p_B = m_body.getOutboardFrame(state).p();
return m_body.findStationLocationInGround(state,p_B);
}
private:
const MobilizedBody& m_body;
const MobilizerQIndex m_whichq;
const MobilizerUIndex m_whichu;
Real m_sign; // +1: lower, -1: upper
Real m_limit;
};
//==============================================================================
// MY ROPE
//==============================================================================
// Define a unilateral constraint to represent a "rope" that keeps the
// distance between two points at or smaller than some limit.
class MyRope : public MyUnilateralConstraint {
public:
MyRope(MobilizedBody& body1, const Vec3& pt1,
MobilizedBody& body2, const Vec3& pt2, Real d,
Real coefRest)
: MyUnilateralConstraint
(Constraint::Rod(body1, pt1, body2, pt2, d), Real(1), coefRest),
m_body1(body1), m_point1(pt1), m_body2(body2), m_point2(pt2), m_dist(d)
{}
Real getPerr(const State& s) const override {
const Vec3 p1 = m_body1.findStationLocationInGround(s,m_point1);
const Vec3 p2 = m_body2.findStationLocationInGround(s,m_point2);
const Vec3 p = p2-p1;
return (square(m_dist) - dot(p,p))/2;
}
Real getVerr(const State& s) const override {
Vec3 p1, v1, p2, v2;
m_body1.findStationLocationAndVelocityInGround(s,m_point1,p1,v1);
m_body2.findStationLocationAndVelocityInGround(s,m_point2,p2,v2);
const Vec3 p = p2 - p1, v = v2 - v1;
return -dot(v, p);
}
Real getAerr(const State& s) const override {
Vec3 p1, v1, a1, p2, v2, a2;
m_body1.findStationLocationVelocityAndAccelerationInGround
(s,m_point1,p1,v1,a1);
m_body2.findStationLocationVelocityAndAccelerationInGround
(s,m_point2,p2,v2,a2);
const Vec3 p = p2 - p1, v = v2 - v1, a = a2 - a1;
return -(dot(a, p) + dot(v, v));
}
Vec3 whereToDisplay(const State& state) const override {
return m_body2.findStationLocationInGround(state,m_point2);
}
private:
const MobilizedBody& m_body1;
const Vec3 m_point1;
const MobilizedBody& m_body2;
const Vec3 m_point2;
const Real m_dist;
};
//==============================================================================
// MAIN
//==============================================================================
int main(int argc, char** argv) {
try { // If anything goes wrong, an exception will be thrown.
// CREATE MULTIBODY SYSTEM AND ITS SUBSYSTEMS
MultibodySystem mbs;
SimbodyMatterSubsystem matter(mbs);
GeneralForceSubsystem forces(mbs);
Force::Gravity gravity(forces, matter, -YAxis, 9.81);
MobilizedBody& Ground = matter.updGround();
// Predefine some handy rotations.
const Rotation Z90(Pi/2, ZAxis); // rotate +90 deg about z
// ADD MOBILIZED BODIES AND CONTACT CONSTRAINTS
const Real CoefRest = 0.8;
Array_<MyUnilateralConstraint*> unis;
const Vec3 CubeHalfDims(3,2,1);
const Real CubeMass = 1;
Body::Rigid cubeBody =
Body::Rigid(MassProperties(CubeMass, Vec3(0),
UnitInertia::brick(CubeHalfDims)));
// First body: cube
MobilizedBody::Cartesian loc(Ground, MassProperties(0,Vec3(0),Inertia(0)));
MobilizedBody::Ball cube(loc, Vec3(0),
cubeBody, Vec3(0));
cube.addBodyDecoration(Transform(), DecorativeBrick(CubeHalfDims)
.setColor(Red).setOpacity(.3));
for (int i=-1; i<=1; i+=2)
for (int j=-1; j<=1; j+=2)
for (int k=-1; k<=1; k+=2) {
const Vec3 pt = Vec3(i,j,k).elementwiseMultiply(CubeHalfDims);
unis.push_back(new MyPointContact(cube, pt, CoefRest));
}
unis.push_back(new MyRope(Ground, Vec3(-5,10,0),
cube, Vec3(-CubeHalfDims[0],-CubeHalfDims[1],0),
5., .5*CoefRest));
//unis.push_back(new MyStop(MyStop::Upper,loc,1, 2.5,CoefRest));
const Vec3 WeightEdge(-CubeHalfDims[0],-CubeHalfDims[1],0);
//#ifdef NOTDEF
// Second body: weight
const Vec3 ConnectEdge1(CubeHalfDims[0],0,CubeHalfDims[2]);
MobilizedBody::Pin weight(cube,
Transform(Rotation(Pi/2,XAxis), ConnectEdge1),
cubeBody, Vec3(WeightEdge));
weight.addBodyDecoration(Transform(), DecorativeBrick(CubeHalfDims)
.setColor(Gray).setOpacity(.6));
//Force::MobilityLinearSpring(forces, weight, 0, 100, -Pi/4);
for (int i=-1; i<=1; i+=2)
for (int j=-1; j<=1; j+=2)
for (int k=-1; k<=1; k+=2) {
if (i==-1 && j==-1) continue;
const Vec3 pt = Vec3(i,j,k).elementwiseMultiply(CubeHalfDims);
unis.push_back(new MyPointContact(weight, pt, 0.5*CoefRest));
}
unis.push_back(new MyStop(MyStop::Upper,weight,0, Pi/9,0.1*CoefRest));
unis.push_back(new MyStop(MyStop::Lower,weight,0, -Pi/9,0.1*CoefRest));
//#endif
//#ifdef NOTDEF
// Third body: weight2
const Vec3 ConnectEdge2(CubeHalfDims[0],CubeHalfDims[1],0);
MobilizedBody::Pin weight2(cube,
Transform(Rotation(), ConnectEdge2),
cubeBody, Vec3(WeightEdge));
weight2.addBodyDecoration(Transform(), DecorativeBrick(CubeHalfDims)
.setColor(Cyan).setOpacity(.6));
Force::MobilityLinearSpring(forces, weight2, 0, 1000, Pi/4);
for (int i=-1; i<=1; i+=2)
for (int j=-1; j<=1; j+=2)
for (int k=-1; k<=1; k+=2) {
if (i==-1 && j==-1) continue;
const Vec3 pt = Vec3(i,j,k).elementwiseMultiply(CubeHalfDims);
unis.push_back(new MyPointContact(weight2, pt, CoefRest));
}
//#endif
Visualizer viz(mbs);
viz.setShowSimTime(true);
viz.addDecorationGenerator(new ShowContact(unis));
mbs.addEventReporter(new Visualizer::Reporter(viz, ReportInterval));
//ExplicitEulerIntegrator integ(mbs);
//CPodesIntegrator integ(mbs,CPodes::BDF,CPodes::Newton);
//RungeKuttaFeldbergIntegrator integ(mbs);
Real accuracy = 1e-2;
RungeKuttaMersonIntegrator integ(mbs);
//RungeKutta3Integrator integ(mbs);
//VerletIntegrator integ(mbs);
integ.setAccuracy(accuracy);
//integ.setAllowInterpolation(false);
integ.setMaximumStepSize(0.1);
StateSaver* stateSaver = new StateSaver(mbs,unis,integ,ReportInterval);
mbs.addEventReporter(stateSaver);
for (unsigned i=0; i < unis.size(); ++i) {
mbs.addEventHandler(new ContactOn(mbs, unis,i, Stage::Position));
mbs.addEventHandler(new ContactOn(mbs, unis,i, Stage::Velocity));
mbs.addEventHandler(new ContactOn(mbs, unis,i, Stage::Acceleration));
}
for (unsigned i=0; i < unis.size(); ++i)
mbs.addEventHandler(new ContactOff(mbs, unis,i));
State s = mbs.realizeTopology(); // returns a reference to the the default state
mbs.realizeModel(s); // define appropriate states for this System
mbs.realize(s, Stage::Instance); // instantiate constraints if any
// Set initial conditions so the -,-,- vertex is in the -y direction.
const Rotation R_BC(UnitVec3(CubeHalfDims+1e-7*Vec3(1,0,0)), YAxis, Vec3(1,0,0),XAxis);
loc.setQToFitTranslation(s, Vec3(0,10,0));
cube.setQToFitTransform(s, Transform(~R_BC, Vec3(0)));
cube.setUToFitAngularVelocity(s, Vec3(0,1,0));
cube.setUToFitLinearVelocity(s, Vec3(1,0,0));
mbs.realize(s, Stage::Velocity);
viz.report(s);
Array_<int> enableThese;
for (unsigned i=0; i < unis.size(); ++i) {
const Real perr = unis[i]->getPerr(s);
printf("uni constraint %d has perr=%g%s\n", i, perr,
perr<=0?" (ENABLING)":"");
if (perr <= 0)
enableThese.push_back(i);
}
cout << "Initial configuration shown. Next? ";
getchar();
for (unsigned i=0; i < enableThese.size(); ++i)
unis[enableThese[i]]->enable(s);
Assembler(mbs).assemble(s);
viz.report(s);
cout << "Assembled configuration shown. Ready? ";
getchar();
// Simulate it.
TimeStepper ts(mbs, integ);
ts.initialize(s);
const double startReal = realTime();
const double startCPU = cpuTime();
ts.stepTo(RunTime);
const double timeInSec = realTime()-startReal;
const double cpuInSec = cpuTime()-startCPU;
const int evals = integ.getNumRealizations();
cout << "Done -- took " << integ.getNumStepsTaken() << " steps in " <<
timeInSec << "s for " << ts.getTime() << "s sim (avg step="
<< (1000*ts.getTime())/integ.getNumStepsTaken() << "ms) "
<< (1000*ts.getTime())/evals << "ms/eval\n";
cout << "CPUtime " << cpuInSec << endl;
printf("Used Integrator %s at accuracy %g:\n",
integ.getMethodName(), integ.getAccuracyInUse());
printf("# STEPS/ATTEMPTS = %d/%d\n", integ.getNumStepsTaken(), integ.getNumStepsAttempted());
printf("# ERR TEST FAILS = %d\n", integ.getNumErrorTestFailures());
printf("# REALIZE/PROJECT = %d/%d\n", integ.getNumRealizations(), integ.getNumProjections());
// Instant replay.
while(true) {
for (int i=0; i < stateSaver->getNumSavedStates(); ++i) {
viz.report(stateSaver->getState(i));
}
getchar();
}
}
catch (const std::exception& e) {
printf("EXCEPTION THROWN: %s\n", e.what());
exit(1);
}
catch (...) {
printf("UNKNOWN EXCEPTION THROWN\n");
exit(1);
}
}
//==============================================================================
// IMPACT HANDLING (CONTACT ON)
//==============================================================================
//------------------------------ HANDLE EVENT ----------------------------------
void ContactOn::
handleEvent(State& s, Real accuracy, bool& shouldTerminate) const
{
const Real VCapture=1e-2;
Array_<int> proximal;
findProximalConstraints(s, accuracy, proximal);
SimTK_DEBUG4("\nIMPACT (%s) for uni constraint %d at t=%.16g; %d proximal\n",
m_stage.getName().c_str(), m_which, s.getTime(), proximal.size());
bool needMoreCompression = true;
while (needMoreCompression) {
processCompressionPhase(proximal, s);
needMoreCompression = false;
if (processExpansionPhase(proximal, s)) {
for (unsigned i=0; i<proximal.size(); ++i) {
const MyUnilateralConstraint& uni = *m_unis[proximal[i]];
if (uni.getVerr(s) < 0) {
needMoreCompression = true;
break;
}
}
}
}
// Some of the rebounders may be moving so slowly that we would like
// to be able to say they have stopped. If so, apply additional
// (negative) impulses necessary to stop them; enable their contact
// constraints.
captureSlowRebounders(VCapture, proximal, s);
// Make sure all enabled position and velocity constraints
// are satisfied.
m_mbs.project(s, accuracy);
// Finally, evaluate accelerations and reaction forces and check if
// any of the active contacts are generating negative ("pulling")
// forces; if so, inactivate them.
ContactOff::disablePullingContacts(m_mbs, s, m_unis);
#ifndef NDEBUG
printf("END OF IMPACT for %d proximal constraints:\n",proximal.size());
for (unsigned i=0; i < proximal.size(); ++i) {
const int which = proximal[i];
const MyUnilateralConstraint& uni = *m_unis[which];
printf(" %d %3s: I=%g H=%g V=%g A=%g F=%g\n",
which, uni.isDisabled(s) ? "off" : "ON",
uni.getImpulse(), uni.getPerr(s), uni.getVerr(s),
uni.getAerr(s), uni.getForce(s));
}
printf("DONE WITH IMPACT.\n\n");
#endif
}
//------------------------ FIND PROXIMAL CONSTRAINTS ---------------------------
void ContactOn::
findProximalConstraints(const State& s,
Real posTol,
Array_<int>& proximal) const
{
m_mbs.realize(s, Stage::Position);
proximal.clear();
for (unsigned i=0; i<m_unis.size(); ++i) {
MyUnilateralConstraint& uni = *m_unis[i];
if (!uni.isDisabled(s) || uni.getPerr(s) <= posTol)
{
uni.initializeForImpact(s);
proximal.push_back(i);
}
}
}
//------------------------ PROCESS COMPRESSION PHASE ---------------------------
//
// Strategy:
// (1) assume all normal & tangential constraints are on; calculate stopping
// impulse
// (2) look for negative normal impulses; try disabling those
// (3) recapture any constraints that would be violated after disabling
//
void ContactOn::
processCompressionPhase(Array_<int>& proximal,
State& s) const
{
SimTK_DEBUG("Entering processCompressionPhase() ...\n");
Vector lambda0, lambdaTry;
Array_<int> maybeDisabled, recapturing, turnOffStiction;
const Vector u0 = s.getU(); // save presenting velocity
// Assume at first that everyone will participate. This is necessary to
// ensure that we get a least squares solution for the impulse involving
// as many constraints as possible sharing the impulse.
enableAllProximalConstraints(proximal, s);
// First try drives all constraints to zero velocity; if that took some
// negative impulses we'll have to remove some participants and try again.
calcStoppingImpulse(proximal, s, lambda0);
while (true) {
// See if negative impulse was required to satisfy an active constraint.
// If so, that is a candidate to be inactivated.
maybeDisabled.clear();
for (unsigned i=0; i < proximal.size(); ++i) {
const int which = proximal[i];
const MyUnilateralConstraint& uni = *m_unis[which];
if (uni.isDisabled(s))
continue;
Real imp = uni.getMyValueFromConstraintSpaceVector(s, lambda0);
if (imp > 0)
continue;
maybeDisabled.push_back(which);
SimTK_DEBUG2(" uni constraint %d has negative compression impulse=%g\n",
which, imp);
}
if (maybeDisabled.empty())
break;
// Disable the candidates, then see if they rebound.
for (unsigned d=0; d < maybeDisabled.size(); ++d)
m_unis[maybeDisabled[d]]->disable(s);
m_mbs.realize(s, Stage::Instance);
calcStoppingImpulse(proximal, s, lambdaTry);
updateVelocities(u0, lambdaTry, s);
recapturing.clear();
for (unsigned i=0; i<maybeDisabled.size(); ++i) {
const int which = maybeDisabled[i];
const MyUnilateralConstraint& uni = *m_unis[which];
const Real newV = uni.getVerr(s);
SimTK_DEBUG2(" candidate uni constraint %d would have v=%g\n",
which, newV);
if (newV <= 0) {
recapturing.push_back(which);
SimTK_DEBUG2(" RECAPTURING uni constraint %d with v=%g\n",
which, newV);
}
}
// Re-enable the recaptured candidates.
if (!recapturing.empty()) {
for (unsigned c=0; c < recapturing.size(); ++c)
m_unis[recapturing[c]]->enable(s);
m_mbs.realize(s, Stage::Instance);
}
const int numDisabled = maybeDisabled.size()-recapturing.size();
if (numDisabled == 0) {
SimTK_DEBUG(" None of the candidates was actually disabled.\n");
// lambda0 is still correct
break;
}
if (recapturing.empty()) lambda0 = lambdaTry;
else calcStoppingImpulse(proximal, s, lambda0);
SimTK_DEBUG1(" RETRY with %d constraints disabled\n", numDisabled);
}
updateVelocities(u0, lambda0, s);
// Now update the entries for each proximal constraint to reflect the
// compression impulse and post-compression velocity.
SimTK_DEBUG(" Compression results:\n");
for (unsigned i=0; i < proximal.size(); ++i) {
const int which = proximal[i];
MyUnilateralConstraint& uni = *m_unis[which];
if (!uni.isDisabled(s))
uni.recordImpulse(MyUnilateralConstraint::Compression, s, lambda0);
SimTK_DEBUG4(" %d %3s: Ic=%g, V=%g\n",
which, uni.isDisabled(s) ? "off" : "ON",
uni.getCompressionImpulse(), uni.getVerr(s));
}
SimTK_DEBUG("... compression phase done.\n");
}
//------------------------- PROCESS EXPANSION PHASE ----------------------------
bool ContactOn::
processExpansionPhase(Array_<int>& proximal,
State& s) const
{
SimTK_DEBUG("Entering processExpansionPhase() ...\n");
// Generate an expansion impulse if there were any active contacts that
// still have some restitution remaining.
Vector expansionImpulse;
bool anyChange = false;
for (unsigned i=0; i<proximal.size(); ++i) {
const int which = proximal[i];
MyUnilateralConstraint& uni = *m_unis[which];
if (uni.isDisabled(s)||uni.isRestitutionDone()||uni.getCoefRest()==0
||uni.getCompressionImpulse()<=0)
continue;
uni.setMyExpansionImpulse(s, uni.getCoefRest(), expansionImpulse);
uni.recordImpulse(MyUnilateralConstraint::Expansion,s,expansionImpulse);
uni.setRestitutionDone(true);
anyChange = true;
}
if (!anyChange) {
SimTK_DEBUG("... no expansion impulse -- done.\n");
return false;
}
// We generated an expansion impulse. Apply it and update velocities.
updateVelocities(Vector(), expansionImpulse, s);
// Release any constraint that now has a positive velocity.
Array_<int> toDisable;
for (unsigned i=0; i < proximal.size(); ++i) {
const int which = proximal[i];
const MyUnilateralConstraint& uni = *m_unis[which];
if (!uni.isDisabled(s) && uni.getVerr(s) > 0)
toDisable.push_back(which);
}
// Now do the actual disabling (can't mix this with checking velocities)
// because disabling invalidates Instance stage.
for (unsigned i=0; i < toDisable.size(); ++i) {
const int which = toDisable[i];
const MyUnilateralConstraint& uni = *m_unis[which];
uni.disable(s);
}
SimTK_DEBUG(" Expansion results:\n");
m_mbs.realize(s, Stage::Velocity);
for (unsigned i=0; i < proximal.size(); ++i) {
const int which = proximal[i];
const MyUnilateralConstraint& uni = *m_unis[which];
SimTK_DEBUG4(" %d %3s: Ie=%g, V=%g\n",
which, uni.isDisabled(s) ? "off" : "ON",
uni.getExpansionImpulse(), uni.getVerr(s));
}
SimTK_DEBUG("... expansion phase done.\n");
return true;
}
//------------------------- CAPTURE SLOW REBOUNDERS ----------------------------
void ContactOn::
captureSlowRebounders(Real vCapture,
Array_<int>& proximal,
State& s) const
{
// Capture any rebounder whose velocity is too slow.
SimTK_DEBUG("Entering captureSlowRebounders() ...\n");
int nCaptured=0, nPasses=0;
while (true) {
++nPasses;
SimTK_DEBUG1(" start capture pass %d:\n", nPasses);
Array_<int> toCapture;
for (unsigned i=0; i < proximal.size(); ++i) {
const int which = proximal[i];
MyUnilateralConstraint& uni = *m_unis[which];
if (uni.isDisabled(s) && uni.getVerr(s) <= vCapture) {
toCapture.push_back(which);
++nCaptured;
SimTK_DEBUG2(" capturing constraint %d with v=%g\n",
which, uni.getVerr(s));
}
}
if (toCapture.empty()) {
if (nCaptured==0) SimTK_DEBUG("... done -- nothing captured.\n");
else SimTK_DEBUG2("... done -- captured %d rebounders in %d passes.\n",
nCaptured, nPasses);
return;
}
// Now do the actual capturing by enabling constraints.
for (unsigned i=0; i < toCapture.size(); ++i) {
const int which = toCapture[i];
MyUnilateralConstraint& uni = *m_unis[which];
uni.enable(s);
}
m_mbs.realize(s, Stage::Velocity);
Vector captureImpulse;
calcStoppingImpulse(proximal, s, captureImpulse);
updateVelocities(Vector(), captureImpulse, s);
// Now update the entries for each proximal constraint to reflect the
// capture impulse and post-capture velocity.
for (unsigned i=0; i < proximal.size(); ++i) {
const int which = proximal[i];
MyUnilateralConstraint& uni = *m_unis[which];
if (!uni.isDisabled(s))
uni.recordImpulse(MyUnilateralConstraint::Capture,
s, captureImpulse);
}
}
}
//---------------------- ENABLE ALL PROXIMAL CONSTRAINTS -----------------------
void ContactOn::
enableAllProximalConstraints(Array_<int>& proximal,
State& state) const
{
// Set the contact point and enable the constraints.
for (unsigned i=0; i < proximal.size(); ++i) {
const int which = proximal[i];
const MyUnilateralConstraint& uni = *m_unis[which];
if (uni.isDisabled(state))
uni.enable(state);
}
m_mbs.realize(state, Stage::Instance);
}
//------------------------- CALC COMPRESSION IMPULSE ---------------------------
// Calculate the impulse that eliminates all residual velocity for the
// current set of enabled constraints.
void ContactOn::
calcStoppingImpulse(const Array_<int>& proximal,
const State& s,
Vector& lambda0) const
{
const SimbodyMatterSubsystem& matter = m_mbs.getMatterSubsystem();
m_mbs.realize(s, Stage::Dynamics); // TODO: should only need Position
Vector desiredDeltaV; // in constraint space
SimTK_DEBUG(" Entering calcStoppingImpulse() ...\n");
bool gotOne = false;
for (unsigned i=0; i < proximal.size(); ++i) {
const int which = proximal[i];
const MyUnilateralConstraint& uni = *m_unis[which];
if (uni.isDisabled(s))
continue;
SimTK_DEBUG2(" uni constraint %d enabled, v=%g\n",
which, uni.getVerr(s));
uni.setMyDesiredDeltaV(s, desiredDeltaV);
gotOne = true;
}
if (gotOne) matter.solveForConstraintImpulses(s, desiredDeltaV, lambda0);
else lambda0.clear();
#ifndef NDEBUG
cout << " ... done. Stopping impulse=" << lambda0 << endl;
#endif
}
//---------------------------- UPDATE VELOCITIES -------------------------------
void ContactOn::
updateVelocities(const Vector& u0, const Vector& lambda, State& state) const {
const SimbodyMatterSubsystem& matter = m_mbs.getMatterSubsystem();
Vector f, deltaU;
assert(u0.size()==0 || u0.size() == state.getNU());
m_mbs.realize(state, Stage::Dynamics); // TODO: Position
matter.multiplyByGTranspose(state,lambda,f);
matter.multiplyByMInv(state,f,deltaU);
if (u0.size()) state.updU() = u0 + deltaU;
else state.updU() += deltaU;
m_mbs.realize(state, Stage::Velocity);
}
//==============================================================================
// CONTACT OFF
//==============================================================================
//-------------------------- DISABLE PULLING CONTACTS --------------------------
// This method checks the active contacts to see if any of them are generating
// "pulling" forces. In that case the contact is disabled unless that would
// lead to a negative acceleration.
// This is invoked by the ContactOff handler, and as the last step of the
// ContactOn (impact) handler.
// TODO: need to search for a consistent set of active constraints.
/*static*/ void ContactOff::disablePullingContacts
(const MultibodySystem& mbs, State& s,
const Array_<MyUnilateralConstraint*>& unis)
{
SimTK_DEBUG("Entering disablePullingContacts() ...\n");
mbs.realize(s, Stage::Acceleration);
// Check first, disable later because we don't want to invalidate
// the reaction forces in the state yet.
Array_<int> toBeDisabled;
for (unsigned i=0; i < unis.size(); ++i) {
const MyUnilateralConstraint& uni = *unis[i];
if (uni.isDisabled(s)) continue;
const Real f = uni.getForce(s);
if (f<0) {
SimTK_DEBUG2(" consider disabling uni %d because force=%g\n",
i, f);
toBeDisabled.push_back(i);
}
}
// OK, now tentatively disable the pulling contacts.
for (unsigned tbd=0; tbd < toBeDisabled.size(); ++tbd) {
const int i = toBeDisabled[tbd];
const MyUnilateralConstraint& uni = *unis[i];
uni.disable(s);
}
// Now see which of the disabled constraints is violated.
mbs.realize(s, Stage::Acceleration);
Array_<int> violated;
for (unsigned p=0; p < toBeDisabled.size(); ++p) {
const int which = toBeDisabled[p];
const MyUnilateralConstraint& uni = *unis[which];
const Real aerr = uni.getAerr(s);
if (aerr < 0) {
violated.push_back(which);
SimTK_DEBUG2(" RE-ENABLE constraint %d cuz aerr=%g\n",
which, aerr);
}
}
// Re-enable now.
for (unsigned v=0; v < violated.size(); ++v) {
const int which = violated[v];
const MyUnilateralConstraint& uni = *unis[which];
uni.enable(s);
}
// Always leave at acceleration stage.
mbs.realize(s, Stage::Acceleration);
SimTK_DEBUG1("... Done; %d contacts broken.\n",
toBeDisabled.size()-violated.size());
}
|