1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897
|
/* -------------------------------------------------------------------------- *
* Simbody(tm) - UnilateralPointContactWithFriction Example *
* -------------------------------------------------------------------------- *
* This is part of the SimTK biosimulation toolkit originating from *
* Simbios, the NIH National Center for Physics-Based Simulation of *
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody. *
* *
* Portions copyright (c) 2012 Stanford University and the Authors. *
* Authors: Michael Sherman *
* Contributors: *
* *
* Licensed under the Apache License, Version 2.0 (the "License"); you may *
* not use this file except in compliance with the License. You may obtain a *
* copy of the License at http://www.apache.org/licenses/LICENSE-2.0. *
* *
* Unless required by applicable law or agreed to in writing, software *
* distributed under the License is distributed on an "AS IS" BASIS, *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
* See the License for the specific language governing permissions and *
* limitations under the License. *
* -------------------------------------------------------------------------- */
/* This example extends the method used in the UnilateralPointContact example
to add sliding friction and transitions from sticking to sliding and vice
versa. See UnilateralPointContact for basic information.
Here we separate contact elements from friction elements, and introduce the
idea of associating a force element with each friction element that is used
to generate forces when the contact is sliding rather than sticking. Sticking
continues to be implemented using "no slip" constraints. For any active contact,
the associated friction element is either sticking (with active constraints) or
sliding (with an active force element).
Sliding introduces several new problems: (1) The magnitude of the applied force
mu_d*N depends on a normal force that may in turn depend on the applied force,
(2) the direction of that force normally opposes the slip direction but at very
small velocities that direction is essentially noise, (3) how to detect a
transition to sticking. To address these problems
the force element uses two discrete state variables, one to hold the most-
recently-calculated normal force prevN, and the other to hold the previous slip
direction prevSlipDir. When the velocity is high enough to be reliable we use
its direction for the force, and update prevSlipDir for next time. Otherwise we
use prevSlipDir as the direction and don't update it. For the force magnitude,
here we simply use mu_d*prevN, meaning we're one step out of date. In the
real Simbody implementation we will iterate if necessary until prevN and the
current N are the same to within a tolerance. However, when first switching to
sliding the event handler does converge the normal force using functional
iteration (that is, we replace prevN by N several times).
For the sliding to sticking transition, we generate a witness function that
watches for velocity reversal. Watching for zero velocity doesn't work because
the near-constant acceleration generated by the mu_d*N force will typically
reverse the velocity within a single integration step, so zero is unlikely to
be seen. We use the current velocity dotted with prevSlipDir instead, and then
the event isolation code can find where the zero crossing occurred and call the
event handler then.
Note: the impact handler here ignores sliding friction and only generates
tangential impulses for stiction constraints that were already enabled on
input. Those may get disabled if they would otherwise cause negative normal
impulses, but no new ones will get enabled.
*/
//#define NDEBUG 1
#include "Simbody.h"
#include <string>
#include <iostream>
#include <exception>
using std::cout;
using std::endl;
using namespace SimTK;
#define ANIMATE // off to get more accurate CPU time (you can still playback)
// Define this to run the simulation NTries times, saving the states and
// comparing them bitwise to see if the simulations are perfectly repeatable
// as they should be. You should see nothing but exact zeroes print out for
// second and subsequent runs.
//#define TEST_REPEATABILITY
static const int NTries=3;
const Real ReportInterval=1./30;
//==============================================================================
// MY CONTACT ELEMENT
//==============================================================================
// This abstract class hides the details about which kind of contact constraint
// we're dealing with, while giving us enough to work with for deciding what's
// on and off and generating impulses.
//
// There is always a scalar associated with the constraint for making
// decisions. There may be a friction element associated with this contact.
class MyFrictionElement;
class MyContactElement {
public:
enum ImpulseType {Compression,Expansion,Capture};
MyContactElement(Constraint uni, Real multSign, Real coefRest)
: m_uni(uni), m_multSign(multSign), m_coefRest(coefRest),
m_index(-1), m_friction(0),
m_velocityDependentCOR(NaN), m_restitutionDone(false)
{ m_uni.setDisabledByDefault(true); }
virtual ~MyContactElement() {}
// (Re)initialize base & concrete class. If overridden, be sure to
// invoke base class first.
virtual void initialize() {
setRestitutionDone(false);
m_velocityDependentCOR = NaN;
m_Ic = m_Ie = m_I = 0;
}
// Provide a human-readable string identifying the type of contact
// constraint.
virtual String getContactType() const = 0;
// These must be constructed so that a negative value means the
// unilateral constraint condition is violated.
virtual Real getPerr(const State& state) const = 0;
virtual Real getVerr(const State& state) const = 0;
virtual Real getAerr(const State& state) const = 0;
// This returns a point in the ground frame at which you might want to
// say the constraint is "located", for purposes of display. This should
// return something useful even if the constraint is currently off.
virtual Vec3 whereToDisplay(const State& state) const = 0;
// This is used by some constraints to collect position information that
// may be used later to set instance variables when enabling the underlying
// Simbody constraint. All constraints zero impulses here.
virtual void initializeForImpact(const State& state, Real captureVelocity) {
if (-captureVelocity <= getVerr(state) && getVerr(state) < 0) {
m_velocityDependentCOR = 0;
SimTK_DEBUG3("CAPTURING %d because %g <= v=%g < 0\n",
m_index, -captureVelocity, getVerr(state));
} else {
m_velocityDependentCOR = m_coefRest;
}
setRestitutionDone(false);
m_Ic = m_Ie = m_I = 0; }
// Returns zero if the constraint is not currently enabled. Otherwise
// return the signed constraint force, with a negative value indicating
// that the unilateral force condition is violated.
Real getForce(const State& s) const {
if (isDisabled(s)) return 0;
const Vector mult = m_uni.getMultipliersAsVector(s);
assert(mult.size() == 1);
if (isNaN(mult[0]))
printf("*** getForce(): mult is NaN\n");
return m_multSign*mult[0];
}
bool isProximal(const State& state, Real posTol) const
{ return !isDisabled(state) || getPerr(state) <= posTol; }
bool isCandidate(const State& state, Real posTol, Real velTol) const
{ return isProximal(state, posTol) && getVerr(state) <= velTol; }
void enable(State& state) const {m_uni.enable(state);}
void disable(State& state) const {m_uni.disable(state);}
bool isDisabled(const State& state) const {return m_uni.isDisabled(state);}
void setMyDesiredDeltaV(const State& s,
Vector& desiredDeltaV) const
{ Vector myDesiredDV(1); myDesiredDV[0] = m_multSign*getVerr(s);
m_uni.setMyPartInConstraintSpaceVector(s, myDesiredDV,
desiredDeltaV); }
void recordImpulse(ImpulseType type, const State& state,
const Vector& lambda) {
Vector myImpulse(1);
m_uni.getMyPartFromConstraintSpaceVector(state, lambda, myImpulse);
const Real I = myImpulse[0];
if (type==Compression) m_Ic = I;
else if (type==Expansion) m_Ie = I;
m_I += I;
}
// Impulse is accumulated internally.
Real getImpulse() const {return -m_multSign*m_I;}
Real getCompressionImpulse() const {return -m_multSign*m_Ic;}
Real getExpansionImpulse() const {return -m_multSign*m_Ie;}
Real getMyValueFromConstraintSpaceVector(const State& state,
const Vector& lambda) const
{ Vector myValue(1);
m_uni.getMyPartFromConstraintSpaceVector(state, lambda, myValue);
return -m_multSign*myValue[0]; }
void setMyExpansionImpulse(const State& state,
Real coefRest,
Vector& lambda) const
{ const Real I = coefRest * m_Ic;
Vector myImp(1); myImp[0] = I;
m_uni.setMyPartInConstraintSpaceVector(state, myImp, lambda); }
Real getMaxCoefRest() const {return m_coefRest;}
Real getEffectiveCoefRest() const {return m_velocityDependentCOR;}
void setRestitutionDone(bool isDone) {m_restitutionDone=isDone;}
bool isRestitutionDone() const {return m_restitutionDone;}
// Record position within the set of unilateral contact constraints.
void setContactIndex(int index) {m_index=index;}
int getContactIndex() const {return m_index;}
// If there is a friction element for which this is the master contact,
// record it here.
void setFrictionElement(MyFrictionElement& friction)
{ m_friction = &friction; }
// Return true if there is a friction element associated with this contact
// element.
bool hasFrictionElement() const {return m_friction != 0;}
// Get the associated friction element.
const MyFrictionElement& getFrictionElement() const
{ assert(hasFrictionElement()); return *m_friction; }
MyFrictionElement& updFrictionElement() const
{ assert(hasFrictionElement()); return *m_friction; }
protected:
Constraint m_uni;
const Real m_multSign; // 1 or -1
const Real m_coefRest;
int m_index; // contact index in unilateral constraint set
MyFrictionElement* m_friction; // if any (just a reference, not owned)
// Runtime -- initialized at start of impact handler.
Real m_velocityDependentCOR; // Calculated at start of impact
bool m_restitutionDone;
Real m_Ic, m_Ie, m_I; // impulses
};
//==============================================================================
// MY FRICTION ELEMENT
//==============================================================================
// A Coulomb friction element consists of both a sliding force and a stiction
// constraint, at most one of which is active. There is a boolean state variable
// associated with each element that says whether it is in sliding or stiction,
// and that state can only be changed during event handling.
//
// Generated forces depend on a scalar normal force N that comes from a
// separate "normal force master", which might be one of the following:
// - a unilateral constraint
// - a bilateral constraint
// - a mobilizer
// - a compliant force element
// If the master is an inactive unilateral constraint, or if N=0, then no
// friction forces are generated. In this example, we're only going to use
// a unilateral contact constraint as the "normal force master".
//
// For all but the compliant normal force master, the normal force N is
// acceleration-dependent and thus may be coupled to the force produced by a
// sliding friction element. This may require iteration to ensure consistency
// between the sliding friction force and its master contact's normal force.
//
// A Coulomb friction element depends on a scalar slip speed defined by the
// normal force master (this might be the magnitude of a generalized speed or
// slip velocity vector). When the slip velocity goes to zero, the stiction
// constraint is enabled if its constraint force magnitude can be kept to
// mu_s*|N| or less. Otherwise, or if the slip velocity is nonzero, the sliding
// force is enabled instead and generates a force of constant magnitude mu_d*|N|
// that opposes the slip direction, or impending slip direction, as defined by
// the master.
//
// There are two witness functions generated: (1) in slip mode, observes slip
// velocity reversal and triggers stiction, and (2) in stiction mode, observes
// stiction force increase past mu_s*|N| and triggers switch to sliding.
class MyFrictionElement {
public:
MyFrictionElement(Real mu_d, Real mu_s, Real mu_v)
: mu_d(mu_d), mu_s(mu_s), mu_v(mu_v), m_index(-1) {}
virtual ~MyFrictionElement() {}
// (Re)initialize base & concrete class. If overridden, be sure to
// invoke base class first.
virtual void initialize() {
}
Real getDynamicFrictionCoef() const {return mu_d;}
Real getStaticFrictionCoef() const {return mu_s;}
Real getViscousFrictionCoef() const {return mu_v;}
// Return true if the stiction constraint is enabled.
virtual bool isSticking(const State&) const = 0;
virtual void enableStiction(State&) const = 0;
virtual void disableStiction(State&) const = 0;
// When sticking, record -f/|f| as the previous slip direction, and
// max(N,0) as the previous normal force. Stiction
// must be currently active and constraint multipliers available.
virtual void recordImpendingSlipInfo(const State&) = 0;
// When sliding, record current slip velocity as the previous slip
// direction.
virtual void recordSlipDir(const State&) = 0;
// In an event handler or at initialization only, set the last recorded slip
// direction as the previous direction. This invalidates Velocity stage.
virtual void updatePreviousSlipDirFromRecorded(State& state) const = 0;
// This is the dot product of the current sliding velocity and the
// saved previous slip direction. This changes sign when a sliding friction
// force of mu_d*|N| would cause a reversal, meaning a switch to stiction is
// in order. State must be realized to Velocity stage.
virtual Real calcSlipSpeedWitness(const State&) const = 0;
// When in stiction, this calculates mu_s*|N| - |f|, which is negative if
// the stiction force exceeds its limit. (Not suitable for impacts where
// the dynamic coefficient should be used.) State must be realized to
// Acceleration stage.
virtual Real calcStictionForceWitness(const State&) const = 0;
// This is the magnitude of the current slip velocity. State must be
// realized to Velocity stage.
virtual Real getActualSlipSpeed(const State&) const = 0;
// This is the magnitude of the current friction force, whether sliding
// or sticking. State must be realized to Acceleration stage.
virtual Real getActualFrictionForce(const State&) const = 0;
// Return the scalar normal force N being generated by the contact master
// of this friction element. This may be negative if the master is a
// unilateral constraint whose "no-stick" condition is violated.
virtual Real getMasterNormalForce(const State&) const = 0;
// Return true if the normal force master *could* be involved in an
// impact event (because it is touching).
virtual bool isMasterProximal(const State&, Real posTol) const = 0;
// Return true if the normal force master *could* be involved in contact
// force generation (because it is touching and not separating).
virtual bool isMasterCandidate(const State&, Real posTol, Real velTol)
const = 0;
// Return true if the normal force master is currently generating a
// normal force (or impulse) so that this friction element might be
// generating a force also.
virtual bool isMasterActive(const State&) const = 0;
// This is used by some stiction constraints to collect position information
// that may be used later to set instance variables when enabling the
// underlying Simbody constraint. Recorded impulses should be zeroed.
virtual void initializeForStiction(const State& state) = 0;
// If this friction element's stiction constraint is enabled, set its
// constraint-space velocity entry(s) in desiredDeltaV to the current
// slip velocity (which might be a scalar or 2-vector).
virtual void setMyDesiredDeltaV(const State& s,
Vector& desiredDeltaV) const = 0;
// We just applied constraint-space impulse lambda to all active
// constraints. If this friction element's stiction constraint is enabled,
// save its part of the impulse internally for reporting.
virtual void recordImpulse(MyContactElement::ImpulseType type,
const State& state,
const Vector& lambda) = 0;
// Output the status, friction force, slip velocity, prev slip direction
// (scalar or vector) to the given ostream, indented as indicated and
// followed by a newline. May generate multiple lines.
virtual std::ostream& writeFrictionInfo(const State& state,
const String& indent,
std::ostream& o) const = 0;
// Optional: give some kind of visual representation for the friction force.
virtual void showFrictionForce(const State& state,
Array_<DecorativeGeometry>& geometry) const {}
void setFrictionIndex(int index) {m_index=index;}
int getFrictionIndex() const {return m_index;}
private:
Real mu_d, mu_s, mu_v;
int m_index; // friction index within unilateral constraint set
};
//==============================================================================
// MY UNILATERAL CONSTRAINT SET
//==============================================================================
// These are indices into the unilateral constraint set arrays.
struct MyElementSubset {
void clear() {m_contact.clear();m_friction.clear();m_sliding.clear();}
Array_<int> m_contact;
Array_<int> m_friction; // friction elements that might stick
Array_<int> m_sliding; // friction elements that can only slide
};
class MyUnilateralConstraintSet {
public:
// Capture velocity is used two ways: (1) if the normal approach velocity
// is smaller, the coefficient of restitution is set to zero for the
// upcoming impact, and (2) if a slip velocity is smaller than this the
// contact is a candidate for stiction.
MyUnilateralConstraintSet(const MultibodySystem& mbs, Real captureVelocity)
: m_mbs(mbs), m_captureVelocity(captureVelocity) {}
// This class takes over ownership of the heap-allocated contact element.
int addContactElement(MyContactElement* contact) {
const int index = (int)m_contact.size();
m_contact.push_back(contact);
contact->setContactIndex(index);
return index;
}
// This class takes over ownership of the heap-allocated friction element.
int addFrictionElement(MyFrictionElement* friction) {
const int index = (int)m_friction.size();
m_friction.push_back(friction);
friction->setFrictionIndex(index);
return index;
}
Real getCaptureVelocity() const {return m_captureVelocity;}
void setCaptureVelocity(Real v) {m_captureVelocity=v;}
int getNumContactElements() const {return (int)m_contact.size();}
int getNumFrictionElements() const {return (int)m_friction.size();}
const MyContactElement& getContactElement(int ix) const
{ return *m_contact[ix]; }
const MyFrictionElement& getFrictionElement(int ix) const
{ return *m_friction[ix]; }
// Allow writable access to elements from const set so we can record
// runtime results (e.g. impulses).
MyContactElement& updContactElement(int ix) const {return *m_contact[ix];}
MyFrictionElement& updFrictionElement(int ix) const {return *m_friction[ix];}
// Initialize all runtime fields in the contact & friction elements.
void initialize()
{
for (unsigned i=0; i < m_contact.size(); ++i)
m_contact[i]->initialize();
for (unsigned i=0; i < m_friction.size(); ++i)
m_friction[i]->initialize();
}
// Return the contact and friction elements that might be involved in an
// impact occurring in this configuration. They are the contact elements
// for which perr <= posTol, and friction elements whose normal force
// masters can be involved in the impact and whose slip velocities are
// below tolerance. State must be realized through Velocity stage.
void findProximalElements(const State& s,
Real posTol,
Real velTol,
MyElementSubset& proximals) const
{
proximals.clear();
for (unsigned i=0; i < m_contact.size(); ++i)
if (m_contact[i]->isProximal(s,posTol))
proximals.m_contact.push_back(i);
for (unsigned i=0; i < m_friction.size(); ++i) {
MyFrictionElement& fric = updFrictionElement(i);
if (!fric.isMasterProximal(s,posTol))
continue;
if (fric.isSticking(s) || fric.getActualSlipSpeed(s) <= velTol)
proximals.m_friction.push_back(i);
else proximals.m_sliding.push_back(i);
}
}
// Return the contact and friction elements that might be involved in
// generating contact forces at the current state. Candidate contact
// elements are those that are (a) already enabled, or (b) for which
// perr <= posTol and verr <= velTol. Candidate friction elements are those
// whose normal force master is unconditional or a candidate and (a) which
// are already sticking, or (b) for which vslip <= velTol, or (c) for which
// vslip opposes the previous slip direction, meaning it has reversed and
// must have passed through zero during the last step. These are the elements
// that can be activated without making any changes to the configuration or
// velocity state variables, except slightly for constraint projection.
//
// We also record the friction elements that, if their masters are active,
// can only slide because they have a significant slip velocity. State must
// be realized through Velocity stage.
void findCandidateElements(const State& s,
Real posTol,
Real velTol,
MyElementSubset& candidates) const
{
candidates.clear();
for (unsigned i=0; i < m_contact.size(); ++i)
if (m_contact[i]->isCandidate(s,posTol,velTol))
candidates.m_contact.push_back(i);
for (unsigned i=0; i < m_friction.size(); ++i) {
MyFrictionElement& fric = updFrictionElement(i);
if (!fric.isMasterCandidate(s,posTol,velTol))
continue;
if (fric.isSticking(s)
|| fric.getActualSlipSpeed(s) <= velTol
|| fric.calcSlipSpeedWitness(s) <= 0)
{
fric.initializeForStiction(s);
candidates.m_friction.push_back(i); // could stick or slide
} else {
fric.recordSlipDir(s);
candidates.m_sliding.push_back(i); // could only slide
}
}
}
// Look through the given constraint subset and enable any constraints
// that are currently disabled. Returns true if any change was made.
// If includeStiction==false, we'll only enable contact constraints.
bool enableConstraintSubset(const MyElementSubset& subset,
bool includeStiction,
State& state) const
{
bool changedSomething = false;
// Enable contact constraints.
for (unsigned i=0; i < subset.m_contact.size(); ++i) {
const int which = subset.m_contact[i];
const MyContactElement& cont = getContactElement(which);
if (cont.isDisabled(state)) {
cont.enable(state);
changedSomething = true;
}
}
if (includeStiction) {
// Enable all stiction constraints.
for (unsigned i=0; i < subset.m_friction.size(); ++i) {
const int which = subset.m_friction[i];
const MyFrictionElement& fric = getFrictionElement(which);
if (!fric.isSticking(state)) {
assert(fric.isMasterActive(state));
fric.enableStiction(state);
changedSomething = true;
}
}
}
m_mbs.realize(state, Stage::Instance);
return changedSomething;
}
// All event handlers call this method before returning. Given a state for
// which no (further) impulse is required, here we decide which contact and
// stiction constraints are active, and ensure that they satisfy the
// required constraint tolerances to the given accuracy. For sliding
// contacts, we will have recorded the slip or impending slip direction and
// converged the normal forces.
// TODO: in future this may return indicating that an impulse is required
// after all, as in Painleve's paradox.
void selectActiveConstraints(State& state, Real accuracy) const;
// This is the inner loop of selectActiveConstraints(). Given a set of
// candidates to consider, it finds an active subset and enables those
// constraints.
void findActiveCandidates(State& state,
const MyElementSubset& candidates) const;
// In Debug mode, produce a useful summary of the current state of the
// contact and friction elements.
void showConstraintStatus(const State& state, const String& place) const;
~MyUnilateralConstraintSet() {
for (unsigned i=0; i < m_contact.size(); ++i)
delete m_contact[i];
for (unsigned i=0; i < m_friction.size(); ++i)
delete m_friction[i];
}
const MultibodySystem& getMultibodySystem() const {return m_mbs;}
private:
const MultibodySystem& m_mbs;
Real m_captureVelocity;
Array_<MyContactElement*> m_contact;
Array_<MyFrictionElement*> m_friction;
};
//==============================================================================
// STATE SAVER
//==============================================================================
// This reporter is called now and again to save the current state so we can
// play back a movie at the end.
class StateSaver : public PeriodicEventReporter {
public:
StateSaver(const MultibodySystem& mbs,
const MyUnilateralConstraintSet& unis,
const Integrator& integ,
Real reportInterval)
: PeriodicEventReporter(reportInterval),
m_mbs(mbs), m_unis(unis), m_integ(integ)
{ m_states.reserve(2000); }
~StateSaver() {}
void clear() {m_states.clear();}
int getNumSavedStates() const {return (int)m_states.size();}
const State& getState(int n) const {return m_states[n];}
void handleEvent(const State& s) const override {
const SimbodyMatterSubsystem& matter=m_mbs.getMatterSubsystem();
const SpatialVec PG = matter.calcSystemMomentumAboutGroundOrigin(s);
m_mbs.realize(s, Stage::Acceleration);
#ifndef NDEBUG
printf("%3d: %5g mom=%g,%g E=%g", m_integ.getNumStepsTaken(),
s.getTime(),
PG[0].norm(), PG[1].norm(), m_mbs.calcEnergy(s));
cout << " Triggers=" << s.getEventTriggers() << endl;
m_unis.showConstraintStatus(s, "STATE SAVER");
#endif
m_states.push_back(s);
}
private:
const MultibodySystem& m_mbs;
const MyUnilateralConstraintSet& m_unis;
const Integrator& m_integ;
mutable Array_<State> m_states;
};
// A periodic event reporter that does nothing; useful for exploring the
// effects of interrupting the simulation.
class Nada : public PeriodicEventReporter {
public:
explicit Nada(Real reportInterval)
: PeriodicEventReporter(reportInterval) {}
void handleEvent(const State& s) const override {
#ifndef NDEBUG
printf("%7g NADA\n", s.getTime());
#endif
}
};
//==============================================================================
// CONTACT ON HANDLER
//==============================================================================
// Allocate three of these for each unilateral contact constraint, using
// a position, velocity, or acceleration witness function. When the associated
// contact constraint is inactive, the event triggers are:
// 1. separation distance goes from positive to negative
// 2. separation rate goes from positive to negative while distance is zero
// 3. separation acceleration goes from positive to negative while both
// distance and rate are zero
// The first two cases may require an impulse, since the velocities may have to
// change discontinuously to satisfy the constraints. Case 3 requires only
// recalculation of the active contacts. In any case the particular contact
// element that triggered the handler is irrelevant; all "proximal" contacts
// are solved simultaneously.
class ContactOn: public TriggeredEventHandler {
public:
ContactOn(const MultibodySystem& system,
const MyUnilateralConstraintSet& unis,
unsigned which,
Stage stage)
: TriggeredEventHandler(stage),
m_mbs(system), m_unis(unis), m_which(which),
m_stage(stage)
{
// Trigger only as height goes from positive to negative.
getTriggerInfo().setTriggerOnRisingSignTransition(false);
}
// This is the witness function.
Real getValue(const State& state) const override {
const SimbodyMatterSubsystem& matter = m_mbs.getMatterSubsystem();
const MyContactElement& uni = m_unis.getContactElement(m_which);
if (!uni.isDisabled(state))
return 0; // already locked
const Real height = uni.getPerr(state);
//printf("getValue %d(%.17g) perr=%g\n", m_which, state.getTime(), height);
if (m_stage == Stage::Position)
return height;
// Velocity and acceleration triggers are not needed if we're
// above ground.
if (height > 0) return 0;
const Real dheight = uni.getVerr(state);
//printf("... verr=%g\n", dheight);
if (m_stage == Stage::Velocity)
return dheight;
// Acceleration trigger is not needed if velocity is positive.
if (dheight > 0) return 0;
const Real ddheight = uni.getAerr(state);
//printf("... aerr=%g\n", ddheight);
return ddheight;
}
// We're using Poisson's definition of the coefficient of
// restitution, relating impulses, rather than Newton's,
// relating velocities, since Newton's can produce non-physical
// results for a multibody system. For Poisson, calculate the impulse
// that would bring the velocity to zero, multiply by the coefficient
// of restitution to calculate the rest of the impulse, then apply
// both impulses to produce changes in velocity. In most cases this
// will produce the same rebound velocity as Newton, but not always.
void handleEvent(State& s, Real accuracy, bool& shouldTerminate) const override;
// Given the set of proximal constraints, prevent penetration by applying
// a nonnegative least squares impulse generating a step change in
// velocity. On return, the applied impulse and new velocities are recorded
// in the proximal elements, and state is updated to the new velocities and
// realized through Velocity stage. Constraints that ended up in contact
// are enabled, those that rebounded are disabled.
void processCompressionPhase(MyElementSubset& proximal,
State& state) const;
// Given a solution to the compression phase, including the compression
// impulse, the set of impacters (enabled) and rebounders (disabled and
// with positive rebound velocity), apply an expansion impulse based on
// the effective coefficients of restitution of the impacters. Wherever
// restitution is applied, the effective coefficient is reset to zero so
// that further restitution will not be done for that contact. Returns
// true if any expansion was done; otherwise nothing has changed.
// Expansion may result in some negative velocities, in which case it has
// induced further compression so another compression phase is required.
bool processExpansionPhase(MyElementSubset& proximal,
State& state) const;
// Given only the subset of proximal constraints that are active, calculate
// the impulse that would eliminate all their velocity errors. No change is
// made to the set of active constraints. Some of the resulting impulses
// may be negative.
void calcStoppingImpulse(const MyElementSubset& proximal,
const State& state,
Vector& lambda0) const;
// Given the initial generalized speeds u0, and a constraint-space impulse
// lambda, calculate the resulting step velocity change du, modify the
// generalized speeds in state to u0+du, and realize Velocity stage.
void updateVelocities(const Vector& u0,
const Vector& lambda,
State& state) const;
private:
const MultibodySystem& m_mbs;
const MyUnilateralConstraintSet& m_unis;
const unsigned m_which;
const Stage m_stage;
};
//==============================================================================
// CONTACT OFF HANDLER
//==============================================================================
// Allocate one of these for each unilateral contact constraint. This handler
// is invoked when an active contact constraint's contact force crosses zero
// from positive to negative, meaning it has gone from pushing to sticking.
// This simply invokes recalculation of the active contacts; the particular
// source of the event trigger doesn't matter.
class ContactOff: public TriggeredEventHandler {
public:
ContactOff(const MultibodySystem& system,
const MyUnilateralConstraintSet& unis,
unsigned which)
: TriggeredEventHandler(Stage::Acceleration),
m_mbs(system), m_unis(unis), m_which(which)
{
getTriggerInfo().setTriggerOnRisingSignTransition(false);
}
// This is the witness function.
Real getValue(const State& state) const override {
const MyContactElement& uni = m_unis.getContactElement(m_which);
if (uni.isDisabled(state)) return 0;
const Real f = uni.getForce(state);
return f;
}
void handleEvent
(State& s, Real accuracy, bool& shouldTerminate) const override
{
SimTK_DEBUG2("\nhandle %d liftoff@%.17g\n", m_which, s.getTime());
SimTK_DEBUG("\n----------------------------------------------------\n");
SimTK_DEBUG2("LIFTOFF triggered by constraint %d @t=%.15g\n",
m_which, s.getTime());
m_mbs.realize(s, Stage::Acceleration);
#ifndef NDEBUG
cout << " triggers=" << s.getEventTriggers() << "\n";
#endif
m_unis.selectActiveConstraints(s, accuracy);
SimTK_DEBUG("LIFTOFF DONE.\n");
SimTK_DEBUG("----------------------------------------------------\n");
}
private:
const MultibodySystem& m_mbs;
const MyUnilateralConstraintSet& m_unis;
const unsigned m_which; // one of the contact elements
};
//==============================================================================
// MY POINT CONTACT
//==============================================================================
// Define a unilateral constraint to represent contact of a point on a moving
// body with the ground plane. The ground normal is assumed to be +y.
class MyPointContact : public MyContactElement {
typedef MyContactElement Super;
public:
MyPointContact(MobilizedBody& body, const Vec3& point,
Real coefRest)
: MyContactElement(
Constraint::PointInPlane(updGround(body), UnitVec3(YAxis), Zero,
body, point),
Real(-1), // multiplier sign
coefRest),
m_body(body), m_point(point)
{
}
Real getPerr(const State& s) const override {
const Vec3 p = m_body.findStationLocationInGround(s, m_point);
return p[YAxis];
}
Real getVerr(const State& s) const override {
const Vec3 v = m_body.findStationVelocityInGround(s, m_point);
return v[YAxis];
}
Real getAerr(const State& s) const override {
const Vec3 a = m_body.findStationAccelerationInGround(s, m_point);
return a[YAxis];
}
String getContactType() const override {return "Point";}
Vec3 whereToDisplay(const State& state) const override {
return m_body.findStationLocationInGround(state,m_point);
}
// Will be zero if the stiction constraints are on.
Vec2 getSlipVelocity(const State& s) const {
const Vec3 v = m_body.findStationVelocityInGround(s, m_point);
return Vec2(v[XAxis],v[ZAxis]);
}
// Will be zero if the stiction constraints are on.
Vec2 getSlipAcceleration(const State& s) const {
const Vec3 a = m_body.findStationAccelerationInGround(s, m_point);
return Vec2(a[XAxis],a[ZAxis]);
}
Vec3 getContactPointInPlaneBody(const State& s) const
{ return m_body.findStationLocationInGround(s, m_point); }
const MobilizedBody& getBody() const {return m_body;}
MobilizedBody& updBody() {return m_body;}
const Vec3& getBodyStation() const {return m_point;}
const MobilizedBody& getPlaneBody() const {
const SimbodyMatterSubsystem& matter = m_body.getMatterSubsystem();
return matter.getGround();
}
MobilizedBody& updPlaneBody() const {return updGround(m_body);}
private:
// For use during construction before m_body is set.
MobilizedBody& updGround(MobilizedBody& body) const {
SimbodyMatterSubsystem& matter = body.updMatterSubsystem();
return matter.updGround();
}
MobilizedBody& m_body;
const Vec3 m_point;
};
//==============================================================================
// MY SLIDING FRICTION FORCE -- Declaration
//==============================================================================
// A nice handle for the sliding friction force. The real code is in the Impl
// class defined at the bottom of this file.
class MySlidingFrictionForce : public Force::Custom {
public:
// Add a sliding friction force element to the given force subsystem,
// and associate it with a particular contact point.
MySlidingFrictionForce(GeneralForceSubsystem& forces,
const class MyPointContactFriction& ptFriction,
Real vtol);
void setPrevN(State& state, Real N) const;
// This should be a unit vector.
void setPrevSlipDir(State& state, const Vec2& slipDir) const;
Real getPrevN(const State& state) const;
Vec2 getPrevSlipDir(const State& state) const;
bool hasPrevSlipDir(const State& state) const;
Real calcSlidingForceMagnitude(const State& state) const;
Vec2 calcSlidingForce(const State& state) const;
private:
const class MySlidingFrictionForceImpl& getImpl() const;
};
//==============================================================================
// MY POINT CONTACT FRICTION
//==============================================================================
// This friction element expects its master to be a unilateral point contact
// constraint. It provides slipping forces or stiction constraint forces acting
// in the plane, based on the normal force being applied by the point contact
// constraint.
class MyPointContactFriction : public MyFrictionElement {
typedef MyFrictionElement Super;
public:
// The constructor allocates two NoSlip1D constraints and a sliding
// friction force element.
MyPointContactFriction(MyPointContact& contact,
Real mu_d, Real mu_s, Real mu_v, Real vtol, //TODO: shouldn't go here
GeneralForceSubsystem& forces)
: MyFrictionElement(mu_d,mu_s,mu_v), m_contact(contact),
m_noslipX(contact.updPlaneBody(), Vec3(0), UnitVec3(XAxis),
contact.updPlaneBody(), contact.updBody()),
m_noslipZ(contact.updPlaneBody(), Vec3(0), UnitVec3(ZAxis),
contact.updPlaneBody(), contact.updBody())
{
assert((0 <= mu_d && mu_d <= mu_s) && (0 <= mu_v));
contact.setFrictionElement(*this);
m_noslipX.setDisabledByDefault(true);
m_noslipZ.setDisabledByDefault(true);
m_sliding = new MySlidingFrictionForce(forces, *this, vtol);
initializeRuntimeFields();
}
~MyPointContactFriction() {delete m_sliding;}
void initialize() override {
Super::initialize();
initializeRuntimeFields();
}
// The way we constructed the NoSlip1D constraints makes the multipliers be
// the force on Ground; we negate here so we'll get the force on the sliding
// body instead.
Vec2 getStictionForce(const State& s) const {
assert(isSticking(s));
return Vec2(-m_noslipX.getMultiplier(s), -m_noslipZ.getMultiplier(s));
}
// Implement pure virtuals from MyFrictionElement base class.
bool isSticking(const State& s) const override
{ return !m_noslipX.isDisabled(s); } // X,Z always on or off together
// Note that initializeForStiction() must have been called first.
void enableStiction(State& s) const override
{ m_noslipX.setContactPoint(s, m_contactPointInPlane);
m_noslipZ.setContactPoint(s, m_contactPointInPlane);
m_noslipX.enable(s); m_noslipZ.enable(s); }
void disableStiction(State& s) const override
{ m_sliding->setPrevN(s, std::max(m_prevN, Real(0)));
m_sliding->setPrevSlipDir(s, m_prevSlipDir);
m_noslipX.disable(s); m_noslipZ.disable(s); }
// When sticking with stiction force f, record -f/|f| as the previous slip
// direction. If the force is zero we'll leave the direction unchanged.
// Also record the master's normal force as the previous normal force
// unless it is negative; in that case record zero.
// State must be realized through Acceleration stage.
void recordImpendingSlipInfo(const State& s) override {
const Vec2 f = getStictionForce(s);
SimTK_DEBUG3("%d: RECORD IMPENDING, f=%g %g\n",
getFrictionIndex(), f[0], f[1]);
const Real fmag = f.norm();
if (fmag > 0) // TODO: could this ever be zero?
m_prevSlipDir = -f/fmag;
const Real N = getMasterNormalForce(s); // might be negative
m_prevN = N;
}
// When sliding, record current slip velocity (normalized) as the previous
// slip direction. If there is no slip velocity we leave the slip direction
// unchanged. State must be realized through Velocity stage.
void recordSlipDir(const State& s) override {
assert(!isSticking(s));
Vec2 v = m_contact.getSlipVelocity(s);
Real vmag = v.norm();
if (vmag > 0)
m_prevSlipDir = v/vmag;
}
// Transfer the locally-stored previous slip direction to the state variable.
void updatePreviousSlipDirFromRecorded(State& s) const override {
m_sliding->setPrevSlipDir(s, m_prevSlipDir);
}
Real calcSlipSpeedWitness(const State& s) const override {
if (isSticking(s)) return 0;
const Vec2 vNow = m_contact.getSlipVelocity(s);
if (!m_sliding->hasPrevSlipDir(s)) return vNow.norm();
const Vec2 vPrev = m_sliding->getPrevSlipDir(s);
return dot(vNow, vPrev);
}
Real calcStictionForceWitness(const State& s) const override {
if (!isSticking(s)) return 0;
const Real mu_s = getStaticFrictionCoef();
const Real N = getMasterNormalForce(s); // might be negative
const Vec2 f = getStictionForce(s);
const Real fmag = f.norm();
return mu_s*N - fmag;
}
Real getActualSlipSpeed(const State& s) const override {
const Vec2 vNow = m_contact.getSlipVelocity(s);
return vNow.norm();
}
Real getActualFrictionForce(const State& s) const override {
const Real f = isSticking(s) ? getStictionForce(s).norm()
: m_sliding->calcSlidingForceMagnitude(s);
return f;
}
Real getMasterNormalForce(const State& s) const override {
const Real N = m_contact.getForce(s); // might be negative
return N;
}
bool isMasterProximal(const State& s, Real posTol) const override
{ return m_contact.isProximal(s, posTol); }
bool isMasterCandidate(const State& s, Real posTol, Real velTol) const
override
{ return m_contact.isCandidate(s, posTol, velTol); }
bool isMasterActive(const State& s) const override
{ return !m_contact.isDisabled(s); }
// Set the friction application point to be the projection of the contact
// point onto the contact plane. This will be used the next time stiction
// is enabled. Requires state realized to Position stage.
void initializeForStiction(const State& s) override {
const Vec3 p = m_contact.getContactPointInPlaneBody(s);
m_contactPointInPlane = p;
m_tIc = m_tIe = m_tI = Vec2(0);
}
void recordImpulse(MyContactElement::ImpulseType type, const State& state,
const Vector& lambda) override
{
if (!isSticking(state)) return;
// Record translational impulse.
Vector myImpulseX(1), myImpulseZ(1);
m_noslipX.getMyPartFromConstraintSpaceVector(state, lambda, myImpulseX);
m_noslipZ.getMyPartFromConstraintSpaceVector(state, lambda, myImpulseZ);
const Vec2 tI(myImpulseX[0], myImpulseZ[0]);
if (type==MyContactElement::Compression) m_tIc = tI;
else if (type==MyContactElement::Expansion) m_tIe = tI;
m_tI += tI;
}
// Fill in deltaV to eliminate slip velocity using the stiction
// constraints.
void setMyDesiredDeltaV(const State& s,
Vector& desiredDeltaV) const override
{
if (!isSticking(s)) return;
const Vec2 dv = -m_contact.getSlipVelocity(s); // X,Z
Vector myDesiredDV(1); // Nuke translational velocity also.
myDesiredDV[0] = dv[0];
m_noslipX.setMyPartInConstraintSpaceVector(s, myDesiredDV, desiredDeltaV);
myDesiredDV[0] = dv[1];
m_noslipZ.setMyPartInConstraintSpaceVector(s, myDesiredDV, desiredDeltaV);
}
Real getMyImpulseMagnitudeFromConstraintSpaceVector(const State& state,
const Vector& lambda) const
{ Vector myImpulseX(1), myImpulseZ(1);
m_noslipX.getMyPartFromConstraintSpaceVector(state, lambda, myImpulseX);
m_noslipZ.getMyPartFromConstraintSpaceVector(state, lambda, myImpulseZ);
const Vec2 tI(myImpulseX[0], myImpulseZ[0]);
return tI.norm();
}
std::ostream& writeFrictionInfo(const State& s, const String& indent,
std::ostream& o) const override
{
o << indent;
if (!isMasterActive(s)) o << "OFF";
else if (isSticking(s)) o << "STICK";
else o << "SLIP";
const Vec2 v = m_contact.getSlipVelocity(s);
const Vec2 pd = m_sliding->getPrevSlipDir(s);
const Vec2 f = isSticking(s) ? getStictionForce(s)
: m_sliding->calcSlidingForce(s);
o << " prevDir=" << ~pd << " V=" << ~v << " Vdot=" << ~v*pd
<< " F=" << ~f << endl;
return o;
}
void showFrictionForce(const State& s, Array_<DecorativeGeometry>& geometry)
const override
{
const Real Scale = 10;
const Vec2 f = isSticking(s) ? getStictionForce(s)
: m_sliding->calcSlidingForce(s);
if (f.normSqr() < square(SignificantReal))
return;
const MobilizedBody& bodyB = m_contact.getBody();
const Vec3& stationB = m_contact.getBodyStation();
const Vec3 stationG = bodyB.getBodyTransform(s)*stationB;
const Vec3 endG = stationG - Scale*Vec3(f[0], 0, f[1]);
geometry.push_back(DecorativeLine(endG + Vec3(0,.05,0),
stationG + Vec3(0,.05,0))
.setColor(isSticking(s)?Green:Orange));
}
const MyPointContact& getMyPointContact() const {return m_contact;}
const MySlidingFrictionForce& getMySlidingFrictionForce() const
{ return *m_sliding; }
private:
void initializeRuntimeFields() {
m_contactPointInPlane = Vec3(0);
m_tIc = m_tIe = m_tI = Vec2(NaN);
m_prevN = 0;
m_prevSlipDir = Vec2(NaN);
}
const MyPointContact& m_contact;
Constraint::NoSlip1D m_noslipX, m_noslipZ; // stiction
MySlidingFrictionForce* m_sliding; // sliding friction force element
// Runtime
Vec3 m_contactPointInPlane; // point on plane body where friction will act
Vec2 m_tIc, m_tIe, m_tI; // impulses
Real m_prevN; // master's recorded normal force (could be negative)
Vec2 m_prevSlipDir; // master's last recording slip or impending direction
};
//==============================================================================
// SHOW CONTACT
//==============================================================================
// For each visualization frame, generate ephemeral geometry to show just
// during this frame, based on the current State.
class ShowContact : public DecorationGenerator {
public:
ShowContact(const MyUnilateralConstraintSet& unis)
: m_unis(unis) {}
void generateDecorations(const State& state,
Array_<DecorativeGeometry>& geometry) override
{
for (int i=0; i < m_unis.getNumContactElements(); ++i) {
const MyContactElement& contact = m_unis.getContactElement(i);
const Vec3 loc = contact.whereToDisplay(state);
if (!contact.isDisabled(state)) {
geometry.push_back(DecorativeSphere(.5)
.setTransform(loc)
.setColor(Red).setOpacity(.25));
String text = "LOCKED";
if (contact.hasFrictionElement()) {
const MyFrictionElement& friction = contact.getFrictionElement();
text = friction.isSticking(state) ? "STICKING"
: "CONTACT";
m_unis.getMultibodySystem().realize(state, Stage::Acceleration);
friction.showFrictionForce(state, geometry);
}
geometry.push_back(DecorativeText(String(i)+"-"+text)
.setColor(White).setScale(.5)
.setTransform(loc+Vec3(0,.2,0)));
} else {
geometry.push_back(DecorativeText(String(i))
.setColor(White).setScale(.5)
.setTransform(loc+Vec3(0,.1,0)));
}
}
}
private:
const MyUnilateralConstraintSet& m_unis;
};
//==============================================================================
// STICTION ON HANDLER
//==============================================================================
// Allocate one of these for each contact constraint that has friction. This
// handler takes care of turning on the stiction constraints when the sliding
// velocity drops to zero.
class StictionOn: public TriggeredEventHandler {
public:
StictionOn(const MultibodySystem& system,
const MyUnilateralConstraintSet& unis,
unsigned which)
: TriggeredEventHandler(Stage::Velocity),
m_mbs(system), m_unis(unis), m_which(which)
{
getTriggerInfo().setTriggerOnRisingSignTransition(false);
}
// This is the witness function.
Real getValue(const State& state) const override {
const MyFrictionElement& friction = m_unis.getFrictionElement(m_which);
if (!friction.isMasterActive(state)) return 0;
const Real signedSlipSpeed = friction.calcSlipSpeedWitness(state);
return signedSlipSpeed;
}
void handleEvent
(State& s, Real accuracy, bool& shouldTerminate) const override
{
SimTK_DEBUG2("\nhandle %d slide->stick@%.17g\n", m_which, s.getTime());
SimTK_DEBUG("\n----------------------------------------------------\n");
SimTK_DEBUG2("STICTION ON triggered by friction element %d @t=%.15g\n",
m_which, s.getTime());
m_mbs.realize(s, Stage::Acceleration);
#ifndef NDEBUG
m_unis.showConstraintStatus(s, "ENTER STICTION ON");
cout << " triggers=" << s.getEventTriggers() << "\n";
#endif
m_unis.selectActiveConstraints(s, accuracy);
SimTK_DEBUG("STICTION ON done.\n");
SimTK_DEBUG("----------------------------------------------------\n");
}
private:
const MultibodySystem& m_mbs;
const MyUnilateralConstraintSet& m_unis;
const int m_which; // one of the friction elements
};
//==============================================================================
// STICTION OFF HANDLER
//==============================================================================
// Allocate one of these for each contact constraint. This handler takes
// care of turning off stiction constraints when the stiction force magnitude
// exceeds mu*N.
class StictionOff: public TriggeredEventHandler {
public:
StictionOff(const MultibodySystem& system,
const MyUnilateralConstraintSet& unis,
unsigned which)
: TriggeredEventHandler(Stage::Acceleration),
m_mbs(system), m_unis(unis), m_which(which)
{
getTriggerInfo().setTriggerOnRisingSignTransition(false);
}
// This is the witness function. It is positive as long as mu_s*N is greater
// than the friction force magnitude.
Real getValue(const State& state) const override {
const MyFrictionElement& friction = m_unis.getFrictionElement(m_which);
if (!friction.isMasterActive(state)) return 0;
const Real forceMargin = friction.calcStictionForceWitness(state);
return forceMargin; // how much stiction capacity is left
}
void handleEvent
(State& s, Real accuracy, bool& shouldTerminate) const override
{
SimTK_DEBUG2("\nhandle %d stick->slide@%.17g\n", m_which, s.getTime());
SimTK_DEBUG("\n----------------------------------------------------\n");
SimTK_DEBUG2("STICTION OFF triggered by friction element %d @t=%.15g\n",
m_which, s.getTime());
m_mbs.realize(s, Stage::Acceleration);
#ifndef NDEBUG
cout << " triggers=" << s.getEventTriggers() << "\n";
#endif
m_unis.selectActiveConstraints(s, accuracy);
SimTK_DEBUG("STICTION OFF done.\n");
SimTK_DEBUG("----------------------------------------------------\n");
}
private:
const MultibodySystem& m_mbs;
const MyUnilateralConstraintSet& m_unis;
const int m_which; // one of the friction elements
};
//==============================================================================
// MY STOP
//==============================================================================
// Define a unilateral constraint to represent a joint stop that limits
// the allowable motion of a single generalized coordinate. You can specify
// a coefficient of restitution and whether the given limit is the upper or
// lower limit.
class MyStop : public MyContactElement {
public:
enum Side {Lower,Upper};
MyStop(Side side, MobilizedBody& body, int whichQ,
Real limit, Real coefRest)
: MyContactElement
(Constraint::ConstantSpeed(body, MobilizerUIndex(whichQ), Real(0)),
Real(side==Lower?-1:1), coefRest),
m_body(body), m_whichq(whichQ), m_whichu(whichQ),
m_sign(side==Lower?1.:-1.), m_limit(limit)
{}
String getContactType() const override {return "Stop";}
Real getPerr(const State& state) const override {
const Real q = m_body.getOneQ(state, m_whichq);
return m_sign*(q-m_limit);
}
Real getVerr(const State& state) const override {
const Real u = m_body.getOneU(state, m_whichu);
return m_sign*u;
}
Real getAerr(const State& state) const override {
const Real udot = m_body.getOneUDot(state, m_whichu);
return m_sign*udot;
}
Vec3 whereToDisplay(const State& state) const override {
const Vec3& p_B = m_body.getOutboardFrame(state).p();
return m_body.findStationLocationInGround(state,p_B);
}
private:
const MobilizedBody& m_body;
const MobilizerQIndex m_whichq;
const MobilizerUIndex m_whichu;
Real m_sign; // +1: lower, -1: upper
Real m_limit;
};
//==============================================================================
// MY ROPE
//==============================================================================
// Define a unilateral constraint to represent a "rope" that keeps the
// distance between two points at or smaller than some limit.
class MyRope : public MyContactElement {
public:
MyRope(MobilizedBody& body1, const Vec3& pt1,
MobilizedBody& body2, const Vec3& pt2, Real d,
Real coefRest)
: MyContactElement
(Constraint::Rod(body1, pt1, body2, pt2, d), Real(1), coefRest),
m_body1(body1), m_point1(pt1), m_body2(body2), m_point2(pt2), m_dist(d)
{}
String getContactType() const override {return "Rope";}
Real getPerr(const State& s) const override {
const Vec3 p1 = m_body1.findStationLocationInGround(s,m_point1);
const Vec3 p2 = m_body2.findStationLocationInGround(s,m_point2);
const Vec3 p = p2-p1;
return (square(m_dist) - dot(p,p))/2;
}
Real getVerr(const State& s) const override {
Vec3 p1, v1, p2, v2;
m_body1.findStationLocationAndVelocityInGround(s,m_point1,p1,v1);
m_body2.findStationLocationAndVelocityInGround(s,m_point2,p2,v2);
const Vec3 p = p2 - p1, v = v2 - v1;
return -dot(v, p);
}
Real getAerr(const State& s) const override {
Vec3 p1, v1, a1, p2, v2, a2;
m_body1.findStationLocationVelocityAndAccelerationInGround
(s,m_point1,p1,v1,a1);
m_body2.findStationLocationVelocityAndAccelerationInGround
(s,m_point2,p2,v2,a2);
const Vec3 p = p2 - p1, v = v2 - v1, a = a2 - a1;
return -(dot(a, p) + dot(v, v));
}
Vec3 whereToDisplay(const State& state) const override {
return m_body2.findStationLocationInGround(state,m_point2);
}
private:
const MobilizedBody& m_body1;
const Vec3 m_point1;
const MobilizedBody& m_body2;
const Vec3 m_point2;
const Real m_dist;
};
//==============================================================================
// MY PUSH FORCE
//==============================================================================
// This is a force element that generates a constant force on a body for a
// specified time interval. It is useful to perturb the system to force it
// to transition from sticking to sliding, for example.
class MyPushForceImpl : public Force::Custom::Implementation {
public:
MyPushForceImpl(const MobilizedBody& bodyB,
const Vec3& stationB,
const Vec3& forceG, // force direction in Ground!
Real onTime,
Real offTime)
: m_bodyB(bodyB), m_stationB(stationB), m_forceG(forceG),
m_on(onTime), m_off(offTime)
{ }
//--------------------------------------------------------------------------
// Custom force virtuals
void calcForce(const State& state, Vector_<SpatialVec>& bodyForces,
Vector_<Vec3>& particleForces, Vector& mobilityForces) const
override
{
if (!(m_on <= state.getTime() && state.getTime() <= m_off))
return;
m_bodyB.applyForceToBodyPoint(state, m_stationB, m_forceG, bodyForces);
//SimTK_DEBUG4("PUSHING @t=%g (%g,%g,%g)\n", state.getTime(),
// m_forceG[0], m_forceG[1], m_forceG[2]);
}
// No potential energy.
Real calcPotentialEnergy(const State& state) const override {return 0;}
void calcDecorativeGeometryAndAppend
(const State& state, Stage stage,
Array_<DecorativeGeometry>& geometry) const override
{
const Real ScaleFactor = 1.;
if (stage != Stage::Time) return;
if (!(m_on <= state.getTime() && state.getTime() <= m_off))
return;
const Vec3 stationG = m_bodyB.findStationLocationInGround(state, m_stationB);
geometry.push_back(DecorativeLine(stationG-ScaleFactor*m_forceG, stationG)
.setColor(Yellow)
.setLineThickness(3));
}
private:
const MobilizedBody& m_bodyB;
const Vec3 m_stationB;
const Vec3 m_forceG;
Real m_on;
Real m_off;
};
//==============================================================================
// MAIN
//==============================================================================
int main(int argc, char** argv) {
try { // If anything goes wrong, an exception will be thrown.
// CREATE MULTIBODY SYSTEM AND ITS SUBSYSTEMS
MultibodySystem mbs;
SimbodyMatterSubsystem matter(mbs);
GeneralForceSubsystem forces(mbs);
Force::Gravity gravity(forces, matter, -YAxis, 9.81);
MobilizedBody& Ground = matter.updGround();
// Predefine some handy rotations.
const Rotation Z90(Pi/2, ZAxis); // rotate +90 deg about z
const Real RunTime=16;
// ADD MOBILIZED BODIES AND CONTACT CONSTRAINTS
const Real CoefRest = 0.4; // TODO: per-contact
const Real mu_d = .5;
const Real mu_s = .7;
const Real mu_v = 0.05;
const Real CaptureVelocity = 0.01;
MyUnilateralConstraintSet unis(mbs, CaptureVelocity);
const Vec3 CubeHalfDims(3,2,1);
const Real CubeMass = 1;
Body::Rigid cubeBody =
Body::Rigid(MassProperties(CubeMass, Vec3(0),
UnitInertia::brick(CubeHalfDims)));
// First body: cube
MobilizedBody::Cartesian loc(Ground, MassProperties(0,Vec3(0),Inertia(0)));
MobilizedBody::Ball cube(loc, Vec3(0),
cubeBody, Vec3(0));
cube.addBodyDecoration(Transform(), DecorativeBrick(CubeHalfDims)
.setColor(Red).setOpacity(.3));
Force::Custom(forces, new MyPushForceImpl(cube,Vec3(1,1,0),2*Vec3(0,0,10),
4., 6.));
Force::Custom(forces, new MyPushForceImpl(cube,Vec3(1,1,0),Vec3(7,8,10),
11., 13.));
for (int i=-1; i<=1; i+=2)
for (int j=-1; j<=1; j+=2)
for (int k=-1; k<=1; k+=2) {
const Vec3 pt = Vec3(i,j,k).elementwiseMultiply(CubeHalfDims);
MyPointContact* contact = new MyPointContact(cube, pt, CoefRest);
unis.addContactElement(contact);
unis.addFrictionElement(
new MyPointContactFriction(*contact, mu_d, mu_s, mu_v,
CaptureVelocity, // TODO: vtol?
forces));
}
const Vec3 WeightEdge(-CubeHalfDims[0],-CubeHalfDims[1],0);
//#ifdef NOTDEF
// Second body: weight
const Vec3 ConnectEdge1(CubeHalfDims[0],0,CubeHalfDims[2]);
MobilizedBody::Pin weight(cube,
Transform(Rotation(Pi/2,XAxis), ConnectEdge1),
cubeBody, Vec3(WeightEdge));
weight.addBodyDecoration(Transform(), DecorativeBrick(CubeHalfDims)
.setColor(Gray).setOpacity(.6));
//Force::MobilityLinearSpring(forces, weight, 0, 100, -Pi/4);
for (int i=-1; i<=1; i+=2)
for (int j=-1; j<=1; j+=2)
for (int k=-1; k<=1; k+=2) {
if (i==-1 && j==-1) continue;
const Vec3 pt = Vec3(i,j,k).elementwiseMultiply(CubeHalfDims);
MyPointContact* contact = new MyPointContact(weight, pt, CoefRest);
unis.addContactElement(contact);
unis.addFrictionElement(
new MyPointContactFriction(*contact, mu_d, mu_s, mu_v,
CaptureVelocity, // TODO: vtol?
forces));
}
//#endif
//#ifdef NOTDEF
// Third body: weight2
const Vec3 ConnectEdge2(CubeHalfDims[0],CubeHalfDims[1],0);
MobilizedBody::Pin weight2(cube,
Transform(Rotation(), ConnectEdge2),
cubeBody, Vec3(WeightEdge));
weight2.addBodyDecoration(Transform(), DecorativeBrick(CubeHalfDims)
.setColor(Cyan).setOpacity(.6));
Force::MobilityLinearSpring(forces, weight2, 0, 500, Pi/4);
for (int i=-1; i<=1; i+=2)
for (int j=-1; j<=1; j+=2)
for (int k=-1; k<=1; k+=2) {
if (i==-1 && j==-1) continue;
const Vec3 pt = Vec3(i,j,k).elementwiseMultiply(CubeHalfDims);
MyPointContact* contact = new MyPointContact(weight2, pt, CoefRest);
unis.addContactElement(contact);
unis.addFrictionElement(
new MyPointContactFriction(*contact, mu_d, mu_s, mu_v,
CaptureVelocity, // TODO: vtol?
forces));
}
//#endif
// Add joint stops.
const Real StopAngle = Pi/6;
unis.addContactElement(new MyStop(MyStop::Upper,weight,0, StopAngle,CoefRest/2));
unis.addContactElement(new MyStop(MyStop::Lower,weight,0, -StopAngle,CoefRest/2));
// Add a rope.
unis.addContactElement(new MyRope(Ground, Vec3(-5,10,0),
cube, Vec3(-CubeHalfDims[0],-CubeHalfDims[1],0),
5., .5*CoefRest));
//unis.addContactElement(new MyStop(MyStop::Upper,loc,1, 2.5,CoefRest));
Visualizer viz(mbs);
viz.setShowSimTime(true);
viz.addDecorationGenerator(new ShowContact(unis));
#ifdef ANIMATE
mbs.addEventReporter(new Visualizer::Reporter(viz, ReportInterval));
#else
// This does nothing but interrupt the simulation.
mbs.addEventReporter(new Nada(ReportInterval));
#endif
//ExplicitEulerIntegrator integ(mbs);
//CPodesIntegrator integ(mbs,CPodes::BDF,CPodes::Newton);
Real accuracy = 1e-2;
//RungeKuttaFeldbergIntegrator integ(mbs);
//RungeKuttaMersonIntegrator integ(mbs);
RungeKutta3Integrator integ(mbs);
//VerletIntegrator integ(mbs);
integ.setAccuracy(accuracy);
//integ.setConstraintTolerance(1.);
//integ.setAllowInterpolation(false);
integ.setMaximumStepSize(0.1);
StateSaver* stateSaver = new StateSaver(mbs,unis,integ,ReportInterval);
mbs.addEventReporter(stateSaver);
for (int i=0; i < unis.getNumContactElements(); ++i) {
mbs.addEventHandler(new ContactOn(mbs, unis,i, Stage::Position));
mbs.addEventHandler(new ContactOn(mbs, unis,i, Stage::Velocity));
mbs.addEventHandler(new ContactOn(mbs, unis,i, Stage::Acceleration));
mbs.addEventHandler(new ContactOff(mbs, unis,i));
}
for (int i=0; i < unis.getNumFrictionElements(); ++i) {
mbs.addEventHandler(new StictionOn(mbs, unis, i));
mbs.addEventHandler(new StictionOff(mbs, unis, i));
}
State s = mbs.realizeTopology(); // returns a reference to the the default state
mbs.realizeModel(s); // define appropriate states for this System
mbs.realize(s, Stage::Instance); // instantiate constraints if any
// Set initial conditions so the -,-,- vertex is in the -y direction.
const Rotation R_BC(UnitVec3(CubeHalfDims+1e-7*Vec3(1,0,0)), YAxis, Vec3(1,0,0),XAxis);
loc.setQToFitTranslation(s, Vec3(0,10,0));
cube.setQToFitTransform(s, Transform(~R_BC, Vec3(0)));
cube.setUToFitAngularVelocity(s, Vec3(0,1,0));
cube.setUToFitLinearVelocity(s, Vec3(1,0,0));
mbs.realize(s, Stage::Velocity);
viz.report(s);
Array_<int> enableTheseContacts;
for (int i=0; i < unis.getNumContactElements(); ++i) {
const Real perr = unis.getContactElement(i).getPerr(s);
printf("contact constraint %d has perr=%g%s\n", i, perr,
perr<=0?" (ENABLING CONTACT)":"");
if (perr <= 0)
enableTheseContacts.push_back(i);
}
cout << "Initial configuration shown. Next? ";
getchar();
for (unsigned i=0; i < enableTheseContacts.size(); ++i)
unis.getContactElement(enableTheseContacts[i]).enable(s);
Assembler(mbs).setErrorTolerance(1e-6).assemble(s);
viz.report(s);
cout << "Assembled configuration shown. Ready? ";
getchar();
// Now look for enabled contacts that aren't sliding; turn on stiction
// for those.
mbs.realize(s, Stage::Velocity);
Array_<int> enableTheseStictions;
for (int i=0; i < unis.getNumFrictionElements(); ++i) {
MyFrictionElement& fric = unis.updFrictionElement(i);
const Real vSlip = fric.getActualSlipSpeed(s);
fric.initializeForStiction(s); // just in case
printf("friction element %d has v_slip=%g%s\n", i, vSlip,
vSlip==0?" (ENABLING STICTION)":"");
if (vSlip == 0)
enableTheseStictions.push_back(i);
}
for (unsigned i=0; i < enableTheseStictions.size(); ++i)
unis.getFrictionElement(enableTheseStictions[i]).enableStiction(s);
//State copyS = s;
//unis.getContactElement(0).enable(copyS);
//mbs.realize(copyS, Stage::Instance);
//mbs.realize(copyS, Stage::Dynamics);
//mbs.realize(copyS, Stage::Acceleration);
Matrix M(1,1); M(0,0)=1.23;
FactorLU Mlu(M);
//FactorQTZ Mqtz(M);
// Simulate it.
integ.setReturnEveryInternalStep(true);
//integ.setAllowInterpolation(false);
TimeStepper ts(mbs, integ);
ts.setReportAllSignificantStates(true);
#ifdef TEST_REPEATABILITY
const int tries = NTries;
#else
const int tries = 1;
#endif
Array_< Array_<State> > states(NTries);
Array_< Array_<Real> > timeDiff(NTries-1);
Array_< Array_<Vector> > yDiff(NTries-1);
cout.precision(18);
for (int ntry=0; ntry < tries; ++ntry) {
mbs.resetAllCountersToZero();
unis.initialize(); // reinitialize
ts.updIntegrator().resetAllStatistics();
ts.initialize(s);
int nStepsWithEvent = 0;
const double startReal = realTime();
const double startCPU = cpuTime();
Integrator::SuccessfulStepStatus status;
do {
status=ts.stepTo(RunTime);
#ifdef TEST_REPEATABILITY
states[ntry].push_back(ts.getState());
#endif
const int j = states[ntry].size()-1;
if (ntry>0 && j < (int)states[ntry-1].size()) {
int prev = ntry-1;
Real dt = states[ntry][j].getTime()
- states[prev][j].getTime();
volatile double vd;
const int ny = states[ntry][j].getNY();
Vector d(ny);
for (int i=0; i<ny; ++i) {
vd = states[ntry][j].getY()[i]
- states[prev][j].getY()[i];
d[i] = vd;
}
timeDiff[prev].push_back(dt);
yDiff[prev].push_back(d);
cout << "\n" << states[prev][j].getTime()
<< "+" << dt << ":" << d << endl;
}
const bool handledEvent = status==Integrator::ReachedEventTrigger;
if (handledEvent) {
++nStepsWithEvent;
SimTK_DEBUG3("EVENT %3d @%.17g status=%s\n\n",
nStepsWithEvent, ts.getTime(),
Integrator::getSuccessfulStepStatusString(status).c_str());
} else {
SimTK_DEBUG3("step %3d @%.17g status=%s\n", integ.getNumStepsTaken(),
ts.getTime(),
Integrator::getSuccessfulStepStatusString(status).c_str());
}
#ifndef NDEBUG
viz.report(ts.getState());
#endif
//stateSaver->handleEvent(ts.getState());
} while (ts.getTime() < RunTime);
const double timeInSec = realTime()-startReal;
const double cpuInSec = cpuTime()-startCPU;
const int evals = integ.getNumRealizations();
cout << "Done -- took " << integ.getNumStepsTaken() << " steps in " <<
timeInSec << "s for " << ts.getTime() << "s sim (avg step="
<< (1000*ts.getTime())/integ.getNumStepsTaken() << "ms) "
<< (1000*ts.getTime())/evals << "ms/eval\n";
cout << "CPUtime " << cpuInSec << endl;
printf("Used Integrator %s at accuracy %g:\n",
integ.getMethodName(), integ.getAccuracyInUse());
printf("# STEPS/ATTEMPTS = %d/%d\n", integ.getNumStepsTaken(), integ.getNumStepsAttempted());
printf("# ERR TEST FAILS = %d\n", integ.getNumErrorTestFailures());
printf("# REALIZE/PROJECT = %d/%d\n", integ.getNumRealizations(), integ.getNumProjections());
printf("# EVENT STEPS/HANDLER CALLS = %d/%d\n",
nStepsWithEvent, mbs.getNumHandleEventCalls()); }
for (int i=0; i<tries; ++i)
cout << "nstates " << i << " " << states[i].size() << endl;
// Instant replay.
while(true) {
printf("Hit ENTER for replay (%d states) ...",
stateSaver->getNumSavedStates());
getchar();
for (int i=0; i < stateSaver->getNumSavedStates(); ++i) {
mbs.realize(stateSaver->getState(i), Stage::Velocity);
viz.report(stateSaver->getState(i));
}
}
}
catch (const std::exception& e) {
printf("EXCEPTION THROWN: %s\n", e.what());
exit(1);
}
catch (...) {
printf("UNKNOWN EXCEPTION THROWN\n");
exit(1);
}
}
//==============================================================================
// IMPACT HANDLING (CONTACT ON)
//==============================================================================
//------------------------------ HANDLE EVENT ----------------------------------
// There are three different witness functions that cause this handler to get
// invoked. The position- and velocity-level ones require an impulse. The
// acceleration-level one just requires recalculating the active set, in the
// same manner as liftoff or friction transition events.
void ContactOn::
handleEvent(State& s, Real accuracy, bool& shouldTerminate) const
{
SimTK_DEBUG3("\nhandle %d impact@%.17g (%s)\n", m_which, s.getTime(),
m_stage.getName().c_str());
if (m_stage == Stage::Acceleration) {
SimTK_DEBUG("\n---------------CONTACT ON (ACCEL)--------------\n");
SimTK_DEBUG2("CONTACT triggered by element %d @t=%.15g\n",
m_which, s.getTime());
m_mbs.realize(s, Stage::Acceleration);
#ifndef NDEBUG
cout << " triggers=" << s.getEventTriggers() << "\n";
#endif
m_unis.selectActiveConstraints(s, accuracy);
SimTK_DEBUG("---------------CONTACT ON (ACCEL) done.--------------\n");
return;
}
MyElementSubset proximal;
m_unis.findProximalElements(s, accuracy, accuracy, proximal);
// Zero out accumulated impulses and perform any other necessary
// initialization of contact and friction elements.
for (unsigned i=0; i < proximal.m_contact.size(); ++i) {
const int which = proximal.m_contact[i];
m_unis.updContactElement(which)
.initializeForImpact(s, m_unis.getCaptureVelocity());
}
for (unsigned i=0; i < proximal.m_friction.size(); ++i) {
const int which = proximal.m_friction[i];
m_unis.updFrictionElement(which).initializeForStiction(s);
}
SimTK_DEBUG("\n---------------------CONTACT ON---------------------\n");
SimTK_DEBUG3("\nIMPACT (%s) for contact %d at t=%.16g\n",
m_stage.getName().c_str(), m_which, s.getTime());
SimTK_DEBUG2(" %d/%d proximal contact/friction elements\n",
proximal.m_contact.size(), proximal.m_friction.size());
m_unis.showConstraintStatus(s, "ENTER IMPACT (CONTACT ON)");
bool needMoreCompression = true;
while (needMoreCompression) {
processCompressionPhase(proximal, s);
needMoreCompression = false;
if (processExpansionPhase(proximal, s)) {
for (unsigned i=0; i < proximal.m_contact.size(); ++i) {
const int which = proximal.m_contact[i];
const MyContactElement& contact =
m_unis.getContactElement(which);
if (contact.getVerr(s) < 0) {
needMoreCompression = true;
break;
}
}
}
if (needMoreCompression) {
SimTK_DEBUG("EXPANSION CAUSED SECONDARY IMPACT: compressing again\n");
} else {
SimTK_DEBUG("All constraints satisfied after expansion: done.\n");
}
}
// Record new previous slip velocities for all the sliding friction
// since velocities have changed. First loop collects the velocities.
m_mbs.realize(s, Stage::Velocity);
for (unsigned i=0; i < proximal.m_friction.size(); ++i) {
const int which = proximal.m_friction[i];
MyFrictionElement& fric = m_unis.updFrictionElement(which);
if (!fric.isMasterActive(s) || fric.isSticking(s)) continue;
fric.recordSlipDir(s);
}
// Now update all the previous slip direction state variables from the
// recorded values.
for (unsigned i=0; i < proximal.m_friction.size(); ++i) {
const int which = proximal.m_friction[i];
const MyFrictionElement& fric = m_unis.getFrictionElement(which);
if (!fric.isMasterActive(s) || fric.isSticking(s)) continue;
fric.updatePreviousSlipDirFromRecorded(s);
}
m_unis.selectActiveConstraints(s, accuracy);
SimTK_DEBUG("\n-----------------END CONTACT ON---------------------\n");
}
//------------------------ PROCESS COMPRESSION PHASE ---------------------------
// Given a list of proximal unilateral constraints (contact and stiction),
// determine which ones are active in the least squares solution for the
// constraint impulses. Candidates are those constraints that meet the
// kinematic proximity condition -- for contacts, position less than
// tolerance; for stiction, master contact is proximal. Also, any
// constraint that is currently active is a candidate, regardless of its
// kinematics.
//
// TODO: stiction only enabled for contacts that aren't sliding; no other
// stiction will be enabled after the impact starts.
// TODO: sliding friction impulses
//
// Algorithm
// ---------
// We're given a set of candidates including contacts and stiction. If any are
// inactive, activate them.
// -- at this point all verr==0, some impulses f might be < 0
//
// loop
// - Calculate impulses with the current active set
// (iterate sliding impulses until f=mu_d*N to tol, where N is normal
// impulse)
// - Calculate f for active constraints, verr for inactive
// - If all f>=0, verr>=0 -> break loop
// - Check for verr < 0 [tol?]. Shouldn't happen but if it does must turn on the
// associated constraint for the worst violation, then -> continue loop
// - Find worst (most negative) offender:
// contact offense = fc < 0 ? fc : 0
// stiction offense = mu_d*max(0, fc) - |fs|
// - Choose constraint to deactivate:
// worst is a stiction constraint: choose it
// worst is a contact constraint: if it has stiction, chose that
// otherwise choose the contact constraint
// - Inactivate chosen constraint
// (if stiction, record impending slip direction & N for stick->slide)
// end loop
//
void ContactOn::
processCompressionPhase(MyElementSubset& proximal,
State& s) const
{
const int ReviseNormalNIters = 6;
SimTK_DEBUG2("Entering processCompressionPhase(): "
"%d/%d impact/stick candidates ...\n", proximal.m_contact.size(),
proximal.m_friction.size());
if (!proximal.m_friction.empty()) {
SimTK_DEBUG("**** STICTION IMPACT (possibly)\n");
}
if (proximal.m_contact.empty()) {
// Can't be any friction either, if there are no contacts.
SimTK_DEBUG("EXIT processCompressionPhase: no proximal candidates.\n");
return;
}
// If all the proximal contacts have positive normal
// velocities already then we won't need to generate any impulses.
// TODO: this needs to be reconsidered for handling Painleve situations
// in which the impact is caused by a sliding friction inconsistency.
SimTK_DEBUG("preliminary analysis of contact constraints ...\n");
bool anyUnsatisfiedContactConstraints = false;
for (unsigned i=0; i < proximal.m_contact.size(); ++i) {
const int which = proximal.m_contact[i];
SimTK_DEBUG1(" %d: ", which);
const MyContactElement& cont = m_unis.getContactElement(which);
const Real verr = cont.getVerr(s);
SimTK_DEBUG1("off verr=%g\n", verr);
if (verr < 0) {
anyUnsatisfiedContactConstraints = true;
break;
}
}
if (!anyUnsatisfiedContactConstraints) {
SimTK_DEBUG("... nothing to do -- all contact constraints satisfied.\n");
return;
} else {
SimTK_DEBUG("... an impulse is needed. Continuing.\n");
}
Vector lambda;
const Vector u0 = s.getU(); // save presenting velocity
// Assume at first that all proximal contacts will participate. This is
// necessary to ensure that we get a least squares solution for the impulse
// involving as many constraints as possible sharing the impulse.
m_unis.enableConstraintSubset(proximal, true, s);
int pass=0, nContactsDisabled=0, nStictionDisabled=0, nContactsReenabled=0;
while (true) {
++pass;
SimTK_DEBUG1("processCompressionPhase(): pass %d\n", pass);
// Given an active set, evaluate impulse multipliers & forces, and
// evaluate resulting constraint velocity errors.
calcStoppingImpulse(proximal, s, lambda);
// TODO: ignoring sliding impacts; should converge them here.
updateVelocities(u0, lambda, s);
// Scan all proximal contacts to find the active one that has the
// most negative normal force, and the inactive one that has the
// most negative velocity error (hopefully none will).
int worstActiveContact=-1; Real mostNegativeContactImpulse=0;
int worstInactiveContact=-1; Real mostNegativeVerr=0;
SimTK_DEBUG("analyzing impact constraints ...\n");
for (unsigned i=0; i < proximal.m_contact.size(); ++i) {
const int which = proximal.m_contact[i];
SimTK_DEBUG1(" %d: ", which);
const MyContactElement& cont = m_unis.getContactElement(which);
if (cont.isDisabled(s)) {
const Real verr = cont.getVerr(s);
SimTK_DEBUG1("off verr=%g\n", verr);
if (verr < mostNegativeVerr) {
worstInactiveContact = which;
mostNegativeVerr = verr;
}
} else {
const Real f =
cont.getMyValueFromConstraintSpaceVector(s, lambda);
SimTK_DEBUG1("on impulse=%g\n", f);
if (f < mostNegativeContactImpulse) {
worstActiveContact = which;
mostNegativeContactImpulse = f;
}
}
}
// This is bad and might cause cycling.
if (mostNegativeVerr < 0) {
SimTK_DEBUG2(" !!! Inactive contact %d violated, verr=%g\n",
worstInactiveContact, mostNegativeVerr);
const MyContactElement& cont =
m_unis.getContactElement(worstInactiveContact);
//TODO -- must use a tolerance or prevent looping
//++nContactsReenabled;
//cont.enable(s);
//continue;
}
SimTK_DEBUG(" All inactive contacts are satisfied.\n");
#ifndef NDEBUG
if (mostNegativeContactImpulse == 0)
printf(" All active contacts are satisfied.\n");
else
printf(" Active contact %d was worst violator with f=%g\n",
worstActiveContact, mostNegativeContactImpulse);
#endif
int worstActiveStiction=-1; Real mostNegativeStictionCapacity=0;
SimTK_DEBUG("analyzing stiction constraints ...\n");
for (unsigned i=0; i < proximal.m_friction.size(); ++i) {
const int which = proximal.m_friction[i];
SimTK_DEBUG1(" %d: ", which);
const MyFrictionElement& fric = m_unis.getFrictionElement(which);
if (!fric.isSticking(s)) {
SimTK_DEBUG("off\n");
continue;
}
// TODO: Kludge -- must be point contact.
const MyPointContactFriction& ptfric =
dynamic_cast<const MyPointContactFriction&>(fric);
const MyPointContact& cont = ptfric.getMyPointContact();
const Real N = cont.getMyValueFromConstraintSpaceVector(s, lambda);
const Real fsmag =
ptfric.getMyImpulseMagnitudeFromConstraintSpaceVector(s, lambda);
const Real mu_d = fric.getDynamicFrictionCoef();
const Real capacity = mu_d*std::max(N,Real(0)) - fsmag;
SimTK_DEBUG2("on capacity=%g (N=%g)\n", capacity, N);
if (capacity < mostNegativeStictionCapacity) {
worstActiveStiction = which;
mostNegativeStictionCapacity = capacity;
}
}
#ifndef NDEBUG
if (mostNegativeStictionCapacity == 0)
printf(" All active stiction constraints are satisfied.\n");
else
printf(" Active stiction %d was worst violator with capacity=%g\n",
worstActiveStiction, mostNegativeStictionCapacity);
#endif
if (mostNegativeContactImpulse==0 && mostNegativeStictionCapacity==0) {
SimTK_DEBUG("DONE. Current active set is a winner.\n");
break;
}
// Restore original velocity.
s.updU() = u0;
if (mostNegativeStictionCapacity <= mostNegativeContactImpulse) {
SimTK_DEBUG1(" Disable stiction %d\n", worstActiveStiction);
MyFrictionElement& fric =
m_unis.updFrictionElement(worstActiveStiction);
// TODO: need the impulse version of this
//fric.recordImpendingSlipInfo(s);
++nStictionDisabled;
fric.disableStiction(s);
continue;
}
// A contact constraint was the worst violator. If that contact
// constraint has an active stiction constraint, we have to disable
// the stiction constraint first.
SimTK_DEBUG1(" Contact %d was the worst violator.\n",
worstActiveContact);
const MyContactElement& cont =
m_unis.getContactElement(worstActiveContact);
assert(!cont.isDisabled(s));
if (cont.hasFrictionElement()) {
MyFrictionElement& fric = cont.updFrictionElement();
if (fric.isSticking(s)) {
SimTK_DEBUG1(" ... but must disable stiction %d first.\n",
fric.getFrictionIndex());
// TODO: need the impulse version of this
//fric.recordImpendingSlipInfo(s);
++nStictionDisabled;
fric.disableStiction(s);
continue;
}
}
SimTK_DEBUG1(" Disable contact %d\n", worstActiveContact);
++nContactsDisabled;
cont.disable(s);
// Go back for another pass.
}
// Now update the entries for each proximal constraint to reflect the
// compression impulse and post-compression velocity.
SimTK_DEBUG(" Compression results:\n");
for (unsigned i=0; i < proximal.m_contact.size(); ++i) {
const int which = proximal.m_contact[i];
MyContactElement& cont = m_unis.updContactElement(which);
if (!cont.isDisabled(s))
cont.recordImpulse(MyContactElement::Compression, s, lambda);
SimTK_DEBUG4(" %d %3s: Ic=%g, V=%g\n",
which, cont.isDisabled(s) ? "off" : "ON",
cont.getCompressionImpulse(), cont.getVerr(s));
}
SimTK_DEBUG("... compression phase done.\n");
}
//------------------------- PROCESS EXPANSION PHASE ----------------------------
bool ContactOn::
processExpansionPhase(MyElementSubset& proximal,
State& s) const
{
SimTK_DEBUG("Entering processExpansionPhase() ...\n");
// Generate an expansion impulse if there were any active contacts that
// still have some restitution remaining.
Vector expansionImpulse;
bool anyChange = false;
for (unsigned i=0; i<proximal.m_contact.size(); ++i) {
const int which = proximal.m_contact[i];
MyContactElement& uni = m_unis.updContactElement(which);
if (uni.isDisabled(s)||uni.isRestitutionDone()
||uni.getEffectiveCoefRest()==0
||uni.getCompressionImpulse()<=0)
continue;
uni.setMyExpansionImpulse(s, uni.getEffectiveCoefRest(),
expansionImpulse);
uni.recordImpulse(MyContactElement::Expansion,s,expansionImpulse);
uni.setRestitutionDone(true);
anyChange = true;
}
if (!anyChange) {
SimTK_DEBUG("... no expansion impulse -- done.\n");
return false;
}
// We generated an expansion impulse. Apply it and update velocities.
updateVelocities(Vector(), expansionImpulse, s);
// Release any constraint that now has a positive velocity.
Array_<int> toDisable;
for (unsigned i=0; i < proximal.m_contact.size(); ++i) {
const int which = proximal.m_contact[i];
const MyContactElement& uni = m_unis.getContactElement(which);
if (!uni.isDisabled(s) && uni.getVerr(s) > 0)
toDisable.push_back(which);
}
// Now do the actual disabling (can't mix this with checking velocities)
// because disabling invalidates Instance stage.
for (unsigned i=0; i < toDisable.size(); ++i) {
const int which = toDisable[i];
const MyContactElement& uni = m_unis.getContactElement(which);
uni.disable(s);
}
SimTK_DEBUG(" Expansion results:\n");
m_mbs.realize(s, Stage::Velocity);
for (unsigned i=0; i < proximal.m_contact.size(); ++i) {
const int which = proximal.m_contact[i];
const MyContactElement& uni = m_unis.getContactElement(which);
SimTK_DEBUG4(" %d %3s: Ie=%g, V=%g\n",
which, uni.isDisabled(s) ? "off" : "ON",
uni.getExpansionImpulse(), uni.getVerr(s));
}
SimTK_DEBUG("... expansion phase done.\n");
return true;
}
//-------------------------- CALC STOPPING IMPULSE -----------------------------
// Calculate the impulse that eliminates all residual velocity for the
// current set of enabled constraints.
// Note: if you have applied impulses also (like sliding friction),
// convert to generalized impulse f, then to desired delta V in constraint
// space like this: deltaV = G*M\f; add that to the verrs to get the total
// velocity change that must be produced by the impulse.
void ContactOn::
calcStoppingImpulse(const MyElementSubset& proximal,
const State& s,
Vector& lambda0) const
{
const SimbodyMatterSubsystem& matter = m_mbs.getMatterSubsystem();
m_mbs.realize(s, Stage::Dynamics); // TODO: should only need Position
Vector desiredDeltaV; // in constraint space
SimTK_DEBUG(" Entering calcStoppingImpulse() ...\n");
bool gotOne = false;
for (unsigned i=0; i < proximal.m_contact.size(); ++i) {
const int which = proximal.m_contact[i];
const MyContactElement& uni = m_unis.getContactElement(which);
if (uni.isDisabled(s))
continue;
SimTK_DEBUG2(" uni constraint %d enabled, v=%g\n",
which, uni.getVerr(s));
uni.setMyDesiredDeltaV(s, desiredDeltaV);
gotOne = true;
}
for (unsigned i=0; i < proximal.m_friction.size(); ++i) {
const int which = proximal.m_friction[i];
const MyFrictionElement& fric = m_unis.getFrictionElement(which);
if (!fric.isSticking(s))
continue;
SimTK_DEBUG2(" friction constraint %d enabled, |v|=%g\n",
which, fric.getActualSlipSpeed(s));
fric.setMyDesiredDeltaV(s, desiredDeltaV);
gotOne = true;
}
if (gotOne) matter.solveForConstraintImpulses(s, desiredDeltaV, lambda0);
else lambda0.clear();
#ifndef NDEBUG
cout << " ... done. Stopping impulse=" << lambda0 << endl;
#endif
}
//---------------------------- UPDATE VELOCITIES -------------------------------
void ContactOn::
updateVelocities(const Vector& u0, const Vector& lambda, State& state) const {
const SimbodyMatterSubsystem& matter = m_mbs.getMatterSubsystem();
Vector f, deltaU;
assert(u0.size()==0 || u0.size() == state.getNU());
m_mbs.realize(state, Stage::Dynamics); // TODO: Position
matter.multiplyByGTranspose(state,lambda,f);
matter.multiplyByMInv(state,f,deltaU);
if (u0.size()) state.updU() = u0 + deltaU;
else state.updU() += deltaU;
m_mbs.realize(state, Stage::Velocity);
}
//==============================================================================
// MY UNILATERAL CONSTRAINT SET
//==============================================================================
//------------------------ SELECT ACTIVE CONSTRAINTS ---------------------------
void MyUnilateralConstraintSet::
selectActiveConstraints(State& state, Real accuracy) const {
// Find all the contacts and stiction elements that might be active based
// on kinematics.
MyElementSubset candidates;
bool needRestart;
do {
//TODO: this (mis)use of accuracy needs to be revisited.
findCandidateElements(state, accuracy, accuracy, candidates);
// Evaluate accelerations and reaction forces and check if
// any of the active contacts are generating negative ("pulling")
// forces; if so, inactivate them.
findActiveCandidates(state, candidates);
Array_<Real> slipVels(candidates.m_friction.size());
for (unsigned i=0; i < candidates.m_friction.size(); ++i) {
const int which = candidates.m_friction[i];
const MyFrictionElement& fric = getFrictionElement(which);
slipVels[i] = fric.getActualSlipSpeed(state);
}
// Finally, project active constraints to the constraint manifolds.
const Real tol = accuracy/1000;
SimTK_DEBUG1("projecting active constraints to tol=%g\n", tol);
m_mbs.project(state, tol);
// It is possible that the projection above took some marginally-sliding
// friction and slowed it down enough to make it a stiction candidate.
needRestart = false;
for (unsigned i=0; i < candidates.m_sliding.size(); ++i) {
const int which = candidates.m_sliding[i];
const MyFrictionElement& fric = getFrictionElement(which);
if ( fric.getActualSlipSpeed(state) <= accuracy
|| fric.calcSlipSpeedWitness(state) <= 0)
{
SimTK_DEBUG3("***RESTART1** selectActiveConstraints() because "
"sliding velocity of friction %d is |v|=%g or witness=%g\n",
which, fric.getActualSlipSpeed(state),
fric.calcSlipSpeedWitness(state));
needRestart = true;
break;
}
}
if (needRestart) continue;
for (unsigned i=0; i < candidates.m_friction.size(); ++i) {
const int which = candidates.m_friction[i];
const MyFrictionElement& fric = getFrictionElement(which);
if (fric.isSticking(state)) continue;
if (slipVels[i] > accuracy
&& fric.getActualSlipSpeed(state) <= accuracy)
{
SimTK_DEBUG3("***RESTART2** selectActiveConstraints() because "
"sliding velocity of friction %d went from |v|=%g to |v|=%g\n",
which, slipVels[i], fric.getActualSlipSpeed(state));
needRestart = true;
break;
}
}
} while (needRestart);
}
//-------------------------- FIND ACTIVE CANDIDATES ---------------------------
// Given a list of candidate unilateral constraints (contact and stiction),
// determine which ones are active in the least squares solution for the
// constraint multipliers. Candidates are those constraints that meet all
// kinematic conditions -- for contacts, position and velocity errors less than
// tolerance; for stiction, sliding velocity less than tolerance. Also, any
// constraint that is currently active is a candidate, regardless of its
// kinematics.
//
// This method should be called only from within an event handler. For sliding
// friction it will have reset the "previous slip direction" to the current
// slip or impending slip direction, and converged the remembered normal force.
//
// Algorithm
// ---------
// We're given a set of candidates including contacts and stiction. If any are
// inactive, activate them.
// -- at this point all aerr==0, some ferr might be < 0
//
// loop
// - Realize(Acceleration) with the current active set
// (iterate sliding forces until f=mu_d*N to tol)
// - Calculate ferr for active constraints, aerr for inactive
// - If all ferr>=0, aerr>=0 -> break loop
// - Check for aerr < 0 [tol?]. Shouldn't happen but if it does must turn on the
// associated constraint for the worst violation, then -> continue loop
// - Find worst (most negative) offender:
// contact offense = fc < 0 ? fc : 0
// stiction offense = mu_s*max(0, fc) - |fs|
// - Choose constraint to deactivate:
// worst is a stiction constraint: choose it
// worst is a contact constraint: if it has stiction, chose that
// otherwise choose the contact constraint
// - Inactivate chosen constraint
// (if stiction, record impending slip direction & N for stick->slide)
// end loop
//
void MyUnilateralConstraintSet::
findActiveCandidates(State& s, const MyElementSubset& candidates) const
{
const int ReviseNormalNIters = 6;
showConstraintStatus(s, "ENTER findActiveCandidates()");
if (candidates.m_contact.empty()) {
// Can't be any friction either, if there are no contacts.
SimTK_DEBUG("EXIT findActiveCandidates: no candidates.\n");
m_mbs.realize(s, Stage::Acceleration);
return;
}
SimTK_DEBUG3(
"findActiveCandidates() for %d/%d/%d contact/stick/slip candidates ...\n",
candidates.m_contact.size(), candidates.m_friction.size(),
candidates.m_sliding.size());
// Enable all candidate contact and stiction constraints if any are
// currently disabled.
enableConstraintSubset(candidates, true, s);
int pass=0, nContactsDisabled=0, nStictionDisabled=0, nContactsReenabled=0;
while (true) {
++pass;
SimTK_DEBUG1("\nfindActiveCandidates(): pass %d\n", pass);
// Given an active set, evaluate multipliers and accelerations, and
// converge sliding forces.
m_mbs.realize(s, Stage::Acceleration);
SimTK_DEBUG("REVISE NORMAL #1\n");
for (int i=0; i < ReviseNormalNIters; ++i) {
s.autoUpdateDiscreteVariables();
s.invalidateAllCacheAtOrAbove(Stage::Dynamics);
m_mbs.realize(s, Stage::Acceleration);
}
// Scan all candidate contacts to find the active one that has the
// most negative normal force, and the inactive one that has the
// most negative acceleration error (hopefully none will).
int worstActiveContact=-1; Real mostNegativeContactForce=0;
int worstInactiveContact=-1; Real mostNegativeAerr=0;
SimTK_DEBUG("analyzing contact constraints ...\n");
for (unsigned i=0; i < candidates.m_contact.size(); ++i) {
const int which = candidates.m_contact[i];
SimTK_DEBUG1(" %d: ", which);
const MyContactElement& cont = getContactElement(which);
if (cont.isDisabled(s)) {
const Real aerr = cont.getAerr(s);
SimTK_DEBUG1("off aerr=%g\n", aerr);
if (aerr < mostNegativeAerr) {
worstInactiveContact = which;
mostNegativeAerr = aerr;
}
} else {
const Real f = cont.getForce(s);
SimTK_DEBUG1("on f=%g\n", f);
if (f < mostNegativeContactForce) {
worstActiveContact = which;
mostNegativeContactForce = f;
}
}
}
// This is bad and might cause cycling.
if (mostNegativeAerr < 0) {
SimTK_DEBUG2(" !!! Inactive contact %d violated, aerr=%g\n",
worstInactiveContact, mostNegativeAerr);
const MyContactElement& cont = getContactElement(worstInactiveContact);
//TODO -- must use a tolerance or prevent looping
//++nContactsReenabled;
//cont.enable(s);
//continue;
}
SimTK_DEBUG(" All inactive contacts are satisfied.\n");
#ifndef NDEBUG
if (mostNegativeContactForce == 0)
printf(" All active contacts are satisfied.\n");
else
printf(" Active contact %d was worst violator with f=%g\n",
worstActiveContact, mostNegativeContactForce);
#endif
int worstActiveStiction=-1; Real mostNegativeStictionCapacity=0;
SimTK_DEBUG("analyzing stiction constraints ...\n");
for (unsigned i=0; i < candidates.m_friction.size(); ++i) {
const int which = candidates.m_friction[i];
SimTK_DEBUG1(" %d: ", which);
const MyFrictionElement& fric = getFrictionElement(which);
if (!fric.isSticking(s)) {
SimTK_DEBUG("off\n");
continue;
}
const Real mu_s = fric.getStaticFrictionCoef();
const Real N = fric.getMasterNormalForce(s); // might be negative
const Real fsmag = fric.getActualFrictionForce(s);
const Real capacity = mu_s*std::max(N,Real(0)) - fsmag;
SimTK_DEBUG2("on capacity=%g (N=%g)\n", capacity, N);
if (capacity < mostNegativeStictionCapacity) {
worstActiveStiction = which;
mostNegativeStictionCapacity = capacity;
}
}
#ifndef NDEBUG
if (mostNegativeStictionCapacity == 0)
printf(" All active stiction constraints are satisfied.\n");
else
printf(" Active stiction %d was worst violator with capacity=%g\n",
worstActiveStiction, mostNegativeStictionCapacity);
#endif
if (mostNegativeContactForce==0 && mostNegativeStictionCapacity==0) {
SimTK_DEBUG("DONE. Current active set is a winner.\n");
break;
}
if (mostNegativeStictionCapacity <= mostNegativeContactForce) {
SimTK_DEBUG1(" Disable stiction %d\n", worstActiveStiction);
MyFrictionElement& fric = updFrictionElement(worstActiveStiction);
fric.recordImpendingSlipInfo(s);
++nStictionDisabled;
fric.disableStiction(s);
continue;
}
// A contact constraint was the worst violator. If that contact
// constraint has an active stiction constraint, we have to disable
// the stiction constraint first.
SimTK_DEBUG1(" Contact %d was the worst violator.\n", worstActiveContact);
const MyContactElement& cont = getContactElement(worstActiveContact);
assert(!cont.isDisabled(s));
if (cont.hasFrictionElement()) {
MyFrictionElement& fric = cont.updFrictionElement();
if (fric.isSticking(s)) {
SimTK_DEBUG1(" ... but must disable stiction %d first.\n",
fric.getFrictionIndex());
fric.recordImpendingSlipInfo(s);
++nStictionDisabled;
fric.disableStiction(s);
continue;
}
}
SimTK_DEBUG1(" Disable contact %d\n", worstActiveContact);
++nContactsDisabled;
cont.disable(s);
// Go back for another pass.
}
// Reset all the slip directions so that all slip->stick event witnesses
// will be positive when integration resumes.
for (unsigned i=0; i < candidates.m_sliding.size(); ++i) {
const int which = candidates.m_sliding[i];
const MyFrictionElement& fric = getFrictionElement(which);
if (!fric.isMasterActive(s)) continue;
fric.updatePreviousSlipDirFromRecorded(s);
}
// Always leave at acceleration stage.
m_mbs.realize(s, Stage::Acceleration);
SimTK_DEBUG3("... Done; %d contacts, %d stictions broken; %d re-enabled.\n",
nContactsDisabled, nStictionDisabled, nContactsReenabled);
showConstraintStatus(s, "EXIT findActiveCandidates()");
}
void MyUnilateralConstraintSet::
showConstraintStatus(const State& s, const String& place) const
{
#ifndef NDEBUG
printf("\n%s: uni status @t=%.15g\n", place.c_str(), s.getTime());
m_mbs.realize(s, Stage::Acceleration);
for (int i=0; i < getNumContactElements(); ++i) {
const MyContactElement& contact = getContactElement(i);
const bool isActive = !contact.isDisabled(s);
printf(" %6s %2d %s, h=%g dh=%g f=%g\n",
isActive?"ACTIVE":"off", i, contact.getContactType().c_str(),
contact.getPerr(s),contact.getVerr(s),
isActive?contact.getForce(s):Zero);
}
for (int i=0; i < getNumFrictionElements(); ++i) {
const MyFrictionElement& friction = getFrictionElement(i);
if (!friction.isMasterActive(s))
continue;
const bool isSticking = friction.isSticking(s);
printf(" %8s friction %2d, |v|=%g witness=%g\n",
isSticking?"STICKING":"sliding", i,
friction.getActualSlipSpeed(s),
isSticking?friction.calcStictionForceWitness(s)
:friction.calcSlipSpeedWitness(s));
friction.writeFrictionInfo(s, " ", std::cout);
}
printf("\n");
#endif
}
//==============================================================================
// MY SLIDING FRICTION FORCE -- Implementation
//==============================================================================
// This is used for friction when slipping or when slip is impending, so it
// will generate a force even if there is no slip velocity. Whenever the slip
// speed |v|<=vtol, or if it has reversed direction, we consider it unreliable
// and leave the applied force direction unchanged until the next transition
// event. At that point activating the stiction constraint will be attempted.
// If the stiction condition is violated, a new impending slip direction is
// recorded opposing the direction of the resulting constraint force.
//
// The friction force is a 2-vector F calculated at Dynamics stage, applied
// equal and opposite to the two contacting bodies at their mutual contact
// point:
// F = -mu*N_est*d_eff
// d_eff is the effective slip direction that is to be opposed by the force.
//
// This is composed of several functions:
// shouldUpdate(v) = ~v*d_prev > 0 && |v|>vtol
// d_eff(v) = shouldUpdate(v) ? v/|v| : d_prev
// v_eff(v) = ~v*d_eff
// mu(v) = mu_d + mu_v * max(v_eff,0)
// Fmag(v; N) = mu(v)*N
// F(v; N) = -Fmag(v,N)*d_eff(v)
// N_est = N_prev
//
// mu_d ... the dynamic coefficient of friction (a scalar constant >= 0)
// mu_v ... viscous coefficient of friction (>= 0)
// N_prev... previous normal force magnitude (a discrete state variable)
// d_prev... previous or impending slip direction (a discrete state variable)
// d_eff ... the effective slip direction, a unit length 2-vector
// v_eff ... slip speed in d_eff direction, for viscous friction
//
// There is a sliding-to-stiction event witness function
// e1(v)=dot(v, d_prev) velocity reversal
//
// TODO: other possible witness functions:
// e2(v)=|v|-vtol slowdown (would often be missed)
// e(v) = dot(v, d_prev) - vtol [signed]
//
// N_prev is an auto-update variable whose update value is set at Acceleration
// stage from the actual normal force magnitude N of this friction element's
// master contact element. N_prev is also set manually whenever sliding is
// enabled, to the current normal force. In general we have Ni=Ni(F) (where
// F={Fi} is a vector of all nf active sliding friction forces), and
// Fi=Fi(Ni_est), so the error in the magnitude of the i'th applied friction
// force is Fi_err=mu_i(v_i)*(Ni_est-Ni). If this is too large we have to
// iterate until Ni_est is close enough to Ni for all i (this has to be done
// simultaneously for the system as a whole).
//
// d_prev is an auto-update variable whose update value is set at Velocity
// stage, if shouldUpdate(v), otherwise it remains unchanged. It is also set
// manually when transitioning from sticking to sliding, to -F/|F| where F was
// the last stiction force vector.
//
class MySlidingFrictionForceImpl : public Force::Custom::Implementation {
public:
MySlidingFrictionForceImpl(const GeneralForceSubsystem& forces,
const MyPointContactFriction& ptFriction,
Real vtol)
: m_forces(forces), m_friction(ptFriction),
m_contact(ptFriction.getMyPointContact()), m_vtol(vtol)
{}
bool hasSlidingForce(const State& s) const
{ return m_friction.isMasterActive(s) && !m_friction.isSticking(s); }
// Calculate d_eff, the direction to be opposed by the sliding force.
Vec2 getEffectiveSlipDir(const State& s) const {
const Vec2 Vslip = m_contact.getSlipVelocity(s);
const Vec2 prevVslipDir = getPrevSlipDir(s);
if (shouldUpdate(Vslip, prevVslipDir, m_vtol)) { // TODO: tol?
const Real v = Vslip.norm();
return Vslip/v;
}
return prevVslipDir;
}
// This is useful for reporting.
Real calcSlidingForceMagnitude(const State& state) const {
if (!hasSlidingForce(state)) return 0;
const Real slipV = m_contact.getSlipVelocity(state).norm();
return calcSlidingForceMagnitude(state, slipV);
}
// This is the force that will be applied next.
Vec2 calcSlidingForce(const State& state) const {
if (!hasSlidingForce(state))
return Vec2(0);
Vec2 dEff = getEffectiveSlipDir(state);
if (dEff.isNaN()) {
SimTK_DEBUG("NO SLIDING DIRECTION AVAILABLE\n");
return Vec2(0);
}
const Vec2 Vslip = m_contact.getSlipVelocity(state);
const Real vEff = ~Vslip*dEff;
const Real FMag = calcSlidingForceMagnitude(state, std::max(vEff,Zero));
assert(!isNaN(FMag));
const Vec2 F = -FMag*dEff;
return F;
}
// Return the related contact constraint's normal force value and slip
// velocity as recorded at the end of the last time step. Will be zero if
// the contact was not active then.
Real getPrevN(const State& state) const {
const Real& prevN = Value<Real>::downcast
(m_forces.getDiscreteVariable(state, m_prevNix));
return prevN;
}
void setPrevN(State& state, Real N) const {
Real& prevN = Value<Real>::updDowncast
(m_forces.updDiscreteVariable(state, m_prevNix));
if (isNaN(N))
printf("*** setPrevN(): N is NaN\n");
prevN = N;
}
Vec2 getPrevSlipDir(const State& state) const {
const Vec2& prevSlipDir = Value<Vec2>::downcast
(m_forces.getDiscreteVariable(state, m_prevSlipDirIx));
return prevSlipDir;
}
void setPrevSlipDir(State& state, const Vec2& slipDir) const {
Vec2& prevSlipDir = Value<Vec2>::updDowncast
(m_forces.updDiscreteVariable(state, m_prevSlipDirIx));
prevSlipDir = slipDir;
SimTK_DEBUG3("STATE CHG %d: prevDir to %g %g\n",
m_friction.getFrictionIndex(), slipDir[0], slipDir[1]);
}
//--------------------------------------------------------------------------
// Custom force virtuals
// Apply the sliding friction force if this is enabled.
void calcForce(const State& state, Vector_<SpatialVec>& bodyForces,
Vector_<Vec3>& particleForces, Vector& mobilityForces) const
override
{
if (!hasSlidingForce(state))
return; // nothing to do
const MobilizedBody& bodyB = m_contact.getBody();
const MobilizedBody& bodyP = m_contact.getPlaneBody();
const Vec3& stationB = m_contact.getBodyStation();
const Vec3 stationP = bodyB.findStationLocationInAnotherBody
(state, stationB, bodyP);
const Vec2 fSlip = calcSlidingForce(state);
const Vec3 forceG(fSlip[0], 0, fSlip[1]); // only X,Z components
bodyB.applyForceToBodyPoint(state, stationB, forceG, bodyForces);
bodyP.applyForceToBodyPoint(state, stationP, -forceG, bodyForces);
}
// Sliding friction does not store energy.
Real calcPotentialEnergy(const State& state) const override {return 0;}
// Allocate state variables for storing the previous normal force and
// sliding direction.
void realizeTopology(State& state) const override {
// The previous normal force N is used as a first estimate for the
// mu*N sliding friction force calculated at Dynamics stage. However,
// the update value N cannot be determined until Acceleration stage.
m_prevNix = m_forces.allocateAutoUpdateDiscreteVariable
(state, Stage::Dynamics, new Value<Real>(0), Stage::Acceleration);
// The previous sliding direction is used in an event witness that
// is evaluated at Velocity stage.
m_prevSlipDirIx = m_forces.allocateAutoUpdateDiscreteVariable
(state, Stage::Velocity, new Value<Vec2>(Vec2(NaN)),
Stage::Velocity);
}
// If we're sliding, set the update value for the previous slip direction
// if the current slip velocity is usable.
void realizeVelocity(const State& state) const override {
if (!hasSlidingForce(state))
return; // nothing to do
const Vec2 Vslip = m_contact.getSlipVelocity(state);
const Vec2 prevVslipDir = getPrevSlipDir(state);
if (shouldUpdate(Vslip, prevVslipDir, m_vtol)) {
Vec2& prevSlipUpdate = Value<Vec2>::updDowncast
(m_forces.updDiscreteVarUpdateValue(state, m_prevSlipDirIx));
const Real v = Vslip.norm();
const Vec2 slipDir = Vslip / v;
prevSlipUpdate = slipDir;
m_forces.markDiscreteVarUpdateValueRealized(state, m_prevSlipDirIx);
#ifndef NDEBUG
//printf("UPDATE %d: prevSlipDir=%g %g; now=%g %g; |v|=%g dot=%g vdot=%g\n",
// m_friction.getFrictionIndex(),
// prevVslipDir[0],prevVslipDir[1],slipDir[0],slipDir[1],
// v, ~slipDir*prevVslipDir, ~Vslip*prevVslipDir);
#endif
} else {
#ifndef NDEBUG
printf("NO UPDATE %d: prevSlipDir=%g %g; Vnow=%g %g; |v|=%g vdot=%g\n",
m_friction.getFrictionIndex(),
prevVslipDir[0],prevVslipDir[1],Vslip[0],Vslip[1],
Vslip.norm(), ~Vslip*prevVslipDir);
#endif
}
}
// Regardless of whether we're sticking or sliding, as long as the master
// contact is active use its normal force scalar as the update for our
// saved normal force.
void realizeAcceleration(const State& state) const override {
if (!m_friction.isMasterActive(state))
return; // nothing to save
const Real N = m_contact.getForce(state); // normal force
const Real prevN = getPrevN(state);
if (N==prevN) return; // no need for an update
Real& prevNupdate = Value<Real>::updDowncast
(m_forces.updDiscreteVarUpdateValue(state, m_prevNix));
#ifndef NDEBUG
printf("UPDATE %d: N changing from %g -> %g (%.3g)\n",
m_friction.getFrictionIndex(),
prevN, N, std::abs(N-prevN)/std::max(N,prevN));
#endif
prevNupdate = N;
m_forces.markDiscreteVarUpdateValueRealized(state, m_prevNix);
}
//--------------------------------------------------------------------------
private:
// Given the norm of the slip velocity already calculated, determine the
// magnitude of the slip force. If there is no viscous friction you can
// pass a zero vEff since it won't otherwise affect the force.
// Don't call this unless you know there may be a sliding force.
Real calcSlidingForceMagnitude(const State& state, Real vEff) const {
assert(vEff >= 0);
const Real prevN = getPrevN(state);
if (prevN <= 0) return 0; // no normal force -> no friction force
const Real mu_d = m_friction.getDynamicFrictionCoef();
const Real mu_v = m_friction.getViscousFrictionCoef();
const Real fMag = (mu_d + mu_v*vEff)*prevN;
return fMag;
}
// Determine whether the current slip velocity is reliable enough that
// we should use it to replace the previous slip velocity.
static bool shouldUpdate(const Vec2& Vslip, const Vec2& prevVslipDir,
Real velTol) {
const Real v2 = Vslip.normSqr();
if (prevVslipDir.isNaN())
return v2 > 0; // we'll take anything
// Check for reversal.
bool reversed = (~Vslip*prevVslipDir < 0);
return !reversed && (v2 > square(velTol));
}
const GeneralForceSubsystem& m_forces;
const MyPointContactFriction& m_friction;
const MyPointContact& m_contact;
const Real m_vtol;
mutable DiscreteVariableIndex m_prevNix; // previous normal force
mutable DiscreteVariableIndex m_prevSlipDirIx; // previous slip direction
};
// This is the force handle's constructor; it just creates the force
// implementation object.
MySlidingFrictionForce::MySlidingFrictionForce
(GeneralForceSubsystem& forces,
const MyPointContactFriction& friction,
Real vtol)
: Force::Custom(forces, new MySlidingFrictionForceImpl(forces,friction,vtol))
{}
Real MySlidingFrictionForce::getPrevN(const State& state) const
{ return getImpl().getPrevN(state); }
void MySlidingFrictionForce::setPrevN(State& state, Real N) const
{ getImpl().setPrevN(state,N); }
Vec2 MySlidingFrictionForce::getPrevSlipDir(const State& state) const
{ return getImpl().getPrevSlipDir(state); }
bool MySlidingFrictionForce::hasPrevSlipDir(const State& state) const
{ return !getImpl().getPrevSlipDir(state).isNaN(); }
void MySlidingFrictionForce::
setPrevSlipDir(State& state, const Vec2& slipDir) const
{ getImpl().setPrevSlipDir(state, slipDir); }
Real MySlidingFrictionForce::calcSlidingForceMagnitude(const State& state) const
{ return getImpl().calcSlidingForceMagnitude(state); }
Vec2 MySlidingFrictionForce::calcSlidingForce(const State& state) const
{ return getImpl().calcSlidingForce(state); }
const MySlidingFrictionForceImpl& MySlidingFrictionForce::
getImpl() const {
return dynamic_cast<const MySlidingFrictionForceImpl&>(getImplementation());
}
|