File: ConstrainedNumericalDiffOptimization.cpp

package info (click to toggle)
simbody 3.7%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 72,896 kB
  • sloc: cpp: 248,827; ansic: 18,240; sh: 29; makefile: 24
file content (123 lines) | stat: -rw-r--r-- 4,423 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
/* -------------------------------------------------------------------------- *
 *     Simbody(tm) Example: Constrained Optimization w/Numerical Gradient     *
 * -------------------------------------------------------------------------- *
 * This is part of the SimTK biosimulation toolkit originating from           *
 * Simbios, the NIH National Center for Physics-Based Simulation of           *
 * Biological Structures at Stanford, funded under the NIH Roadmap for        *
 * Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody.  *
 *                                                                            *
 * Portions copyright (c) 2006-12 Stanford University and the Authors.        *
 * Authors: Jack Middleton                                                    *
 * Contributors:                                                              *
 *                                                                            *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may    *
 * not use this file except in compliance with the License. You may obtain a  *
 * copy of the License at http://www.apache.org/licenses/LICENSE-2.0.         *
 *                                                                            *
 * Unless required by applicable law or agreed to in writing, software        *
 * distributed under the License is distributed on an "AS IS" BASIS,          *
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.   *
 * See the License for the specific language governing permissions and        *
 * limitations under the License.                                             *
 * -------------------------------------------------------------------------- */

#include "SimTKmath.h"
#include <iostream>

using namespace SimTK;

static int  NumberOfParameters = 4; 
static int  NumberOfEqualityConstraints = 1; 
static int  NumberOfInequalityConstraints = 1; 

/*
 * Problem hs071 looks like this
 *
 *     min   x1*x4*(x1 + x2 + x3)  +  x3
 *     s.t.  x1*x2*x3*x4                   >=  25
 *           x1**2 + x2**2 + x3**2 + x4**2  =  40
 *           1 <=  x1,x2,x3,x4  <= 5
 *
 *     Starting point:
 *        x = (1, 5, 5, 1)
 *
 *     Optimal solution:
 *        x = (1.00000000, 4.74299963, 3.82114998, 1.37940829)
 *
 */

class ProblemSystem : public OptimizerSystem {
public:


   int objectiveFunc(  const Vector &coefficients, bool new_coefficients, Real& f ) const override {
      const Real *x;

      x = &coefficients[0];

      f = x[0] * x[3] * (x[0] + x[1] + x[2]) + x[2];
      return( 0 ); 
   }

  int constraintFunc( const Vector &coefficients, bool new_coefficients, Vector &constraints)  const override{
      const Real *x;

      x = &coefficients[0]; 
      constraints[0] = x[0]*x[0] + x[1]*x[1] + x[2]*x[2] + x[3]*x[3] - 40.0;
      constraints[1] = x[0] * x[1] * x[2] * x[3] - 25.0;

      return(0);
  }

    ProblemSystem( const int numParams, const int numEqualityConstraints, const int numInequalityConstraints ) :
        OptimizerSystem( numParams ) 
    {
        setNumEqualityConstraints( numEqualityConstraints );
        setNumInequalityConstraints( numInequalityConstraints );
    }

};


int main() {
    /* create the system to be optimized */
    ProblemSystem sys(NumberOfParameters, NumberOfEqualityConstraints, NumberOfInequalityConstraints);

    Vector results(NumberOfParameters);
    Vector lower_bounds(NumberOfParameters);
    Vector upper_bounds(NumberOfParameters);

    /* set initial conditions */
    results[0] = 1.0;
    results[1] = 5.0;
    results[2] = 5.0;
    results[3] = 1.0;

    /* set bounds */
    for(int i=0;i<NumberOfParameters;i++) {   
       lower_bounds[i] = 1.0;
       upper_bounds[i] = 5.0;
    }

    sys.setParameterLimits( lower_bounds, upper_bounds );

    Real f = NaN;
    try {
       Optimizer opt( sys ); 

       opt.setConvergenceTolerance( .0001 );
       opt.useNumericalGradient( true );
       opt.useNumericalJacobian( true );

       /* compute  optimization */ 
       f = opt.optimize( results );
    }
    catch (const std::exception& e) {
       std::cout << "ConstrainedNumericalDiffOptimization.cpp: Caught exception" << std::endl;
       std::cout << e.what() << std::endl;
    }

    printf("Optimal Solution: f = %f   parameters = %f %f %f %f \n",f, results[0],results[1],results[2],results[3]);

    return 0;
}