1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
|
/* -------------------------------------------------------------------------- *
* Simbody(tm) Example: Cable Path *
* -------------------------------------------------------------------------- *
* This is part of the SimTK biosimulation toolkit originating from *
* Simbios, the NIH National Center for Physics-Based Simulation of *
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody. *
* *
* Portions copyright (c) 2012 Stanford University and the Authors. *
* Authors: Michael Sherman *
* Contributors: *
* *
* Licensed under the Apache License, Version 2.0 (the "License"); you may *
* not use this file except in compliance with the License. You may obtain a *
* copy of the License at http://www.apache.org/licenses/LICENSE-2.0. *
* *
* Unless required by applicable law or agreed to in writing, software *
* distributed under the License is distributed on an "AS IS" BASIS, *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
* See the License for the specific language governing permissions and *
* limitations under the License. *
* -------------------------------------------------------------------------- */
/* Simbody ExampleCablePath
This example shows how to use a CableTrackerSubsystem to follow the motion of
a cable that connects two bodies and passes around obstacles. We'll then
create a force element that generates spring forces that result from the
stretching and stretching rate of the cable. The custom force element defined
here duplicates the Simbody built-in CableSpring force element, and you can
choose to use either one by changing a #define. */
#include "Simbody.h"
#include <cassert>
#include <iostream>
using std::cout; using std::endl;
using namespace SimTK;
//#define USE_MY_CABLE_SPRING
#ifdef USE_MY_CABLE_SPRING
#define CABLE_SPRING MyCableSpring // defined below
#else
#define CABLE_SPRING CableSpring // Simbody built-in
#endif
#ifdef USE_MY_CABLE_SPRING
// This force element implements an elastic cable of a given nominal length,
// and a stiffness k that generates a k*x force opposing stretch beyond
// the slack length. There is also a dissipation term (k*x)*c*xdot. We keep
// track of dissipated power here so we can use conservation of energy to check
// that the cable and force element aren't obviously broken.
class MyCableSpringImpl : public Force::Custom::Implementation {
public:
MyCableSpringImpl(const GeneralForceSubsystem& forces,
const CablePath& path,
Real stiffness, Real nominal, Real damping)
: forces(forces), path(path), k(stiffness), x0(nominal), c(damping)
{ assert(stiffness >= 0 && nominal >= 0 && damping >= 0); }
const CablePath& getCablePath() const {return path;}
// Must be at stage Velocity. Evalutes tension if necessary.
Real getTension(const State& state) const {
ensureTensionCalculated(state);
return Value<Real>::downcast(forces.getCacheEntry(state, tensionx));
}
// Must be at stage Velocity.
Real getPowerDissipation(const State& state) const {
const Real stretch = calcStretch(state);
if (stretch == 0) return 0;
const Real rate = path.getCableLengthDot(state);
return k*stretch*std::max(c*rate, -1.)*rate;
}
// This integral is always available.
Real getDissipatedEnergy(const State& state) const {
return forces.getZ(state)[workx];
}
//--------------------------------------------------------------------------
// Custom force virtuals
// Ask the cable to apply body forces given the tension calculated here.
void calcForce(const State& state, Vector_<SpatialVec>& bodyForces,
Vector_<Vec3>& particleForces, Vector& mobilityForces) const
override
{ path.applyBodyForces(state, getTension(state), bodyForces); }
// Return the potential energy currently stored by the stretch of the cable.
Real calcPotentialEnergy(const State& state) const override {
const Real stretch = calcStretch(state);
if (stretch == 0) return 0;
return k*square(stretch)/2;
}
// Allocate the state variable for tracking dissipated energy, and a
// cache entry to hold the calculated tension.
void realizeTopology(State& state) const override {
Vector initWork(1, 0.);
workx = forces.allocateZ(state, initWork);
tensionx = forces.allocateLazyCacheEntry(state, Stage::Velocity,
new Value<Real>(NaN));
}
// Report power dissipation as the derivative for the work variable.
void realizeAcceleration(const State& state) const override {
Real& workDot = forces.updZDot(state)[workx];
workDot = getPowerDissipation(state);
}
//--------------------------------------------------------------------------
private:
// Return the amount by which the cable is stretched beyond its nominal
// length or zero if the cable is slack. Must be at stage Position.
Real calcStretch(const State& state) const {
const Real stretch = path.getCableLength(state) - x0;
return std::max(stretch, 0.);
}
// Must be at stage Velocity to calculate tension.
Real calcTension(const State& state) const {
const Real stretch = calcStretch(state);
if (stretch == 0) return 0;
const Real rate = path.getCableLengthDot(state);
if (c*rate < -1)
cout << "c*rate=" << c*rate << "; limited to -1\n";
const Real tension = k*stretch*(1+std::max(c*rate,-1.));
return tension;
}
// If state is at stage Velocity, we can calculate and store tension
// in the cache if it hasn't already been calculated.
void ensureTensionCalculated(const State& state) const {
if (forces.isCacheValueRealized(state, tensionx))
return;
Value<Real>::updDowncast(forces.updCacheEntry(state, tensionx))
= calcTension(state);
forces.markCacheValueRealized(state, tensionx);
}
const GeneralForceSubsystem& forces;
CablePath path;
Real k, x0, c;
mutable ZIndex workx;
mutable CacheEntryIndex tensionx;
};
// A nice handle to hide most of the cable spring implementation. This defines
// a user's API.
class MyCableSpring : public Force::Custom {
public:
MyCableSpring(GeneralForceSubsystem& forces, const CablePath& path,
Real stiffness, Real nominal, Real damping)
: Force::Custom(forces, new MyCableSpringImpl(forces,path,
stiffness,nominal,damping))
{}
// Expose some useful methods.
const CablePath& getCablePath() const
{ return getImpl().getCablePath(); }
Real getTension(const State& state) const
{ return getImpl().getTension(state); }
Real getPowerDissipation(const State& state) const
{ return getImpl().getPowerDissipation(state); }
Real getDissipatedEnergy(const State& state) const
{ return getImpl().getDissipatedEnergy(state); }
private:
const MyCableSpringImpl& getImpl() const
{ return dynamic_cast<const MyCableSpringImpl&>(getImplementation()); }
};
#endif
// This gets called periodically to dump out interesting things about
// the cables and the system as a whole. It also saves states so that we
// can play back at the end.
static Array_<State> saveStates;
class ShowStuff : public PeriodicEventReporter {
public:
ShowStuff(const MultibodySystem& mbs,
const CABLE_SPRING& cable1,
const CABLE_SPRING& cable2, Real interval)
: PeriodicEventReporter(interval),
mbs(mbs), cable1(cable1), cable2(cable2) {}
static void showHeading(std::ostream& o) {
printf("%8s %10s %10s %10s %10s %10s %10s %10s %10s %12s\n",
"time", "length", "rate", "integ-rate", "unitpow", "tension", "disswork",
"KE", "PE", "KE+PE-W");
}
/** This is the implementation of the EventReporter virtual. **/
void handleEvent(const State& state) const override {
const CablePath& path1 = cable1.getCablePath();
const CablePath& path2 = cable2.getCablePath();
printf("%8g %10.4g %10.4g %10.4g %10.4g %10.4g %10.4g CPU=%g\n",
state.getTime(),
path1.getCableLength(state),
path1.getCableLengthDot(state),
path1.getIntegratedCableLengthDot(state),
path1.calcCablePower(state, 1), // unit power
cable1.getTension(state),
cable1.getDissipatedEnergy(state),
cpuTime());
printf("%8s %10.4g %10.4g %10.4g %10.4g %10.4g %10.4g %10.4g %10.4g %12.6g\n",
"",
path2.getCableLength(state),
path2.getCableLengthDot(state),
path2.getIntegratedCableLengthDot(state),
path2.calcCablePower(state, 1), // unit power
cable2.getTension(state),
cable2.getDissipatedEnergy(state),
mbs.calcKineticEnergy(state),
mbs.calcPotentialEnergy(state),
mbs.calcEnergy(state)
+ cable1.getDissipatedEnergy(state)
+ cable2.getDissipatedEnergy(state));
saveStates.push_back(state);
}
private:
const MultibodySystem& mbs;
CABLE_SPRING cable1, cable2;
};
int main() {
try {
// Create the system.
MultibodySystem system;
SimbodyMatterSubsystem matter(system);
CableTrackerSubsystem cables(system);
GeneralForceSubsystem forces(system);
system.setUseUniformBackground(true); // no ground plane in display
Force::UniformGravity gravity(forces, matter, Vec3(0, -9.8, 0));
//Force::GlobalDamper(forces, matter, 5);
Body::Rigid someBody(MassProperties(1.0, Vec3(0), Inertia(1)));
const Real Rad = .25;
Body::Rigid biggerBody(MassProperties(1.0, Vec3(0), Inertia(1)));
const Real BiggerRad = .5;
const Vec3 radii(.4, .25, .15);
Body::Rigid ellipsoidBody(MassProperties(1.0, Vec3(0),
1.*UnitInertia::ellipsoid(radii)));
const Real CylRad = .3, HalfLen = .5;
Body::Rigid cylinderBody(MassProperties(1.0, Vec3(0),
1.*UnitInertia::cylinderAlongX(Rad,HalfLen)));
Body::Rigid fancyBody = biggerBody; // NOT USING ELLIPSOID
MobilizedBody Ground = matter.Ground();
MobilizedBody::Ball body1(Ground, Transform(Vec3(0)),
someBody, Transform(Vec3(0, 1, 0)));
MobilizedBody::Ball body2(body1, Transform(Vec3(0)),
someBody, Transform(Vec3(0, 1, 0)));
MobilizedBody::Ball body3(body2, Transform(Vec3(0)),
someBody, Transform(Vec3(0, 1, 0)));
MobilizedBody::Ball body4(body3, Transform(Vec3(0)),
fancyBody, Transform(Vec3(0, 1, 0)));
MobilizedBody::Ball body5(body4, Transform(Vec3(0)),
someBody, Transform(Vec3(0, 1, 0)));
CablePath path1(cables, body1, Vec3(Rad,0,0), // origin
body5, Vec3(0,0,Rad)); // termination
CableObstacle::ViaPoint p1(path1, body2, Rad*UnitVec3(1,1,0));
//CableObstacle::ViaPoint p2(path1, body3, Rad*UnitVec3(0,1,1));
//CableObstacle::ViaPoint p3(path1, body3, Rad*UnitVec3(1,0,1));
CableObstacle::Surface obs4(path1, body3, Transform(),
ContactGeometry::Sphere(Rad));
//obs4.setContactPointHints(Rad*UnitVec3(-1,1,0),Rad*UnitVec3(-1,0,1));
obs4.setContactPointHints(Rad*UnitVec3(-.25,.04,0.08),
Rad*UnitVec3(-.05,-.25,-.04));
//CableObstacle::ViaPoint p4(path1, body4, Rad*UnitVec3(0,1,1));
//CableObstacle::ViaPoint p5(path1, body4, Rad*UnitVec3(1,0,1));
CableObstacle::Surface obs5(path1, body4,
// Transform(), ContactGeometry::Ellipsoid(radii));
//Rotation(Pi/2, YAxis), ContactGeometry::Cylinder(CylRad)); // along y
//Transform(), ContactGeometry::Sphere(Rad));
Transform(), ContactGeometry::Sphere(BiggerRad));
//obs5.setContactPointHints(Rad*UnitVec3(0,-1,-1),Rad*UnitVec3(0.1,-1,-1));
obs5.setContactPointHints(Rad*UnitVec3(.1,.125,-.2),
Rad*UnitVec3(0.1,-.1,-.2));
CABLE_SPRING cable1(forces, path1, 100., 3.5, 0.1);
CablePath path2(cables, Ground, Vec3(-3,0,0), // origin
Ground, Vec3(-2,1,0)); // termination
CableObstacle::ViaPoint(path2, body3, 2*Rad*UnitVec3(1,1,1));
CableObstacle::ViaPoint(path2, Ground, Vec3(-2.5,1,0));
CABLE_SPRING cable2(forces, path2, 100., 2, 0.1);
//obs1.setPathPreferencePoint(Vec3(2,3,4));
//obs1.setDecorativeGeometry(DecorativeSphere(0.25).setOpacity(.5));
Visualizer viz(system);
viz.setShowFrameNumber(true);
system.addEventReporter(new Visualizer::Reporter(viz, 0.1*1./30));
system.addEventReporter(new ShowStuff(system, cable1, cable2, 0.1*0.1));
// Initialize the system and state.
system.realizeTopology();
State state = system.getDefaultState();
Random::Gaussian random;
for (int i = 0; i < state.getNQ(); ++i)
state.updQ()[i] = random.getValue();
for (int i = 0; i < state.getNU(); ++i)
state.updU()[i] = 0.1*random.getValue();
system.realize(state, Stage::Position);
viz.report(state);
cout << "path1 init length=" << path1.getCableLength(state) << endl;
cout << "path2 init length=" << path2.getCableLength(state) << endl;
cout << "Hit ENTER ...";
getchar();
path1.setIntegratedCableLengthDot(state, path1.getCableLength(state));
path2.setIntegratedCableLengthDot(state, path2.getCableLength(state));
// Simulate it.
saveStates.clear(); saveStates.reserve(2000);
RungeKuttaMersonIntegrator integ(system);
//CPodesIntegrator integ(system);
integ.setAccuracy(1e-3);
//integ.setAccuracy(1e-6);
TimeStepper ts(system, integ);
ts.initialize(state);
ShowStuff::showHeading(cout);
const Real finalTime = 2;
const double startTime = realTime();
ts.stepTo(finalTime);
cout << "DONE with " << finalTime
<< "s simulated in " << realTime()-startTime
<< "s elapsed.\n";
while (true) {
cout << "Hit ENTER FOR REPLAY, Q to quit ...";
const char ch = getchar();
if (ch=='q' || ch=='Q') break;
for (unsigned i=0; i < saveStates.size(); ++i)
viz.report(saveStates[i]);
}
} catch (const std::exception& e) {
cout << "EXCEPTION: " << e.what() << "\n";
}
}
|