1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
|
/* -------------------------------------------------------------------------- *
* Simbody(tm) Example: Contact Playground *
* -------------------------------------------------------------------------- *
* This is part of the SimTK biosimulation toolkit originating from *
* Simbios, the NIH National Center for Physics-Based Simulation of *
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody. *
* *
* Portions copyright (c) 2010-13 Stanford University and the Authors. *
* Authors: Michael Sherman *
* Contributors: *
* *
* Licensed under the Apache License, Version 2.0 (the "License"); you may *
* not use this file except in compliance with the License. You may obtain a *
* copy of the License at http://www.apache.org/licenses/LICENSE-2.0. *
* *
* Unless required by applicable law or agreed to in writing, software *
* distributed under the License is distributed on an "AS IS" BASIS, *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
* See the License for the specific language governing permissions and *
* limitations under the License. *
* -------------------------------------------------------------------------- */
/* This example is for experimenting with the new Simbody contact implementation,
which was in beta test in the Simbody 2.1 release, with first official release
in Simbody 2.2. The previous contact implementation is still present and
functional but will be removed soon.
The example shows how the new system tracks contact events and how you can
extract contact forces. It also shows off a number of features of the new
Simbody Visualizer, new in release 2.2. also. Here we display the forces and
torques as colored lines which remain the same color as long as a particular
contact event continues. We also track the energy dissipated by the contacts
and use it to display an energy quantity that should be conserved throughout
the simulation (that is, the current energy plus the dissipated energy
should be a constant).
The simulation uses very expensive, detailed contact surfaces using dense
meshes and the elastic foundation model. Consequently it runs with highly
variable step sizes, and fails to keep up with real time for some short
periods. We use the Visualizer's RealTime mode to buffer up some frames and
smooth out these rough spots so the simulation appears to run at an almost
steady real time rate, displayed at 30fps (depending on how fast your
computer is). Then at the end you can watch the action replay.
You can use this example to see how the different integrators behave when
confronted with a very stiff problem; depending on material properties CPodes
can be *much* faster than the explicit integrators, and it also exhibits very
high stability after the motion damps out. However, by changing material
properties and accuracy setting you can get reasonably good performance out
of the explicit integrators here, which will scale better to large systems.
*/
#include "Simbody.h"
#include <cstdio>
#include <exception>
#include <algorithm>
#include <iostream>
#include <fstream>
using std::cout; using std::endl;
using namespace SimTK;
Array_<State> saveEm;
static const Real TimeScale = 1;
static const Real FrameRate = 30;
static const Real ReportInterval = TimeScale/FrameRate;
static const Real ForceScale = .25;
static const Real MomentScale = .5;
class ForceArrowGenerator : public DecorationGenerator {
public:
ForceArrowGenerator(const MultibodySystem& system,
const CompliantContactSubsystem& complCont)
: m_system(system), m_compliant(complCont) {}
virtual void generateDecorations(const State& state, Array_<DecorativeGeometry>& geometry) override {
const Vec3 frcColors[] = {Red,Orange,Cyan};
const Vec3 momColors[] = {Blue,Green,Purple};
m_system.realize(state, Stage::Velocity);
const int ncont = m_compliant.getNumContactForces(state);
for (int i=0; i < ncont; ++i) {
const ContactForce& force = m_compliant.getContactForce(state,i);
const ContactId id = force.getContactId();
const Vec3& frc = force.getForceOnSurface2()[1];
const Vec3& mom = force.getForceOnSurface2()[0];
Real frcMag = frc.norm(), momMag=mom.norm();
int frcThickness = 1, momThickness = 1;
Real frcScale = ForceScale, momScale = ForceScale;
while (frcMag > 10)
frcThickness++, frcScale /= 10, frcMag /= 10;
while (momMag > 10)
momThickness++, momScale /= 10, momMag /= 10;
DecorativeLine frcLine(force.getContactPoint(),
force.getContactPoint() + frcScale*frc);
DecorativeLine momLine(force.getContactPoint(),
force.getContactPoint() + momScale*mom);
frcLine.setColor(frcColors[id%3]);
momLine.setColor(momColors[id%3]);
frcLine.setLineThickness(2*frcThickness);
momLine.setLineThickness(2*momThickness);
geometry.push_back(frcLine);
geometry.push_back(momLine);
ContactPatch patch;
const bool found = m_compliant.calcContactPatchDetailsById(state,id,patch);
//cout << "patch for id" << id << " found=" << found << endl;
//cout << "resultant=" << patch.getContactForce() << endl;
//cout << "num details=" << patch.getNumDetails() << endl;
for (int i=0; i < patch.getNumDetails(); ++i) {
const ContactDetail& detail = patch.getContactDetail(i);
const Real peakPressure = detail.getPeakPressure();
// Make a black line from the element's contact point in the normal
// direction, with length proportional to log(peak pressure)
// on that element.
DecorativeLine normal(detail.getContactPoint(),
detail.getContactPoint()+ std::log10(peakPressure)
* detail.getContactNormal());
normal.setColor(Black);
geometry.push_back(normal);
// Make a red line that extends from the contact
// point in the direction of the slip velocity, of length 3*slipvel.
DecorativeLine slip(detail.getContactPoint(),
detail.getContactPoint()+3*detail.getSlipVelocity());
slip.setColor(Red);
geometry.push_back(slip);
}
}
}
private:
const MultibodySystem& m_system;
const CompliantContactSubsystem& m_compliant;
};
class MyReporter : public PeriodicEventReporter {
public:
MyReporter(const MultibodySystem& system,
const CompliantContactSubsystem& complCont,
Real reportInterval)
: PeriodicEventReporter(reportInterval), m_system(system),
m_compliant(complCont)
{}
~MyReporter() {}
void handleEvent(const State& state) const override {
m_system.realize(state, Stage::Dynamics);
cout << state.getTime() << ": E = " << m_system.calcEnergy(state)
<< " Ediss=" << m_compliant.getDissipatedEnergy(state)
<< " E+Ediss=" << m_system.calcEnergy(state)
+m_compliant.getDissipatedEnergy(state)
<< endl;
const int ncont = m_compliant.getNumContactForces(state);
cout << "Num contacts: " << m_compliant.getNumContactForces(state) << endl;
for (int i=0; i < ncont; ++i) {
const ContactForce& force = m_compliant.getContactForce(state,i);
//cout << force;
}
saveEm.push_back(state);
}
private:
const MultibodySystem& m_system;
const CompliantContactSubsystem& m_compliant;
};
// These are the item numbers for the entries on the Run menu.
static const int RunMenuId = 3, HelpMenuId = 7;
static const int GoItem = 1, ReplayItem=2, QuitItem=3;
// This is a periodic event handler that interrupts the simulation on a regular
// basis to poll the InputSilo for user input. If there has been some, process it.
// This one does nothing but look for the Run->Quit selection.
class UserInputHandler : public PeriodicEventHandler {
public:
UserInputHandler(Visualizer::InputSilo& silo, Real interval)
: PeriodicEventHandler(interval), m_silo(silo) {}
virtual void handleEvent(State& state, Real accuracy,
bool& shouldTerminate) const override
{
int menuId, item;
if (m_silo.takeMenuPick(menuId, item) && menuId==RunMenuId && item==QuitItem)
shouldTerminate = true;
}
private:
Visualizer::InputSilo& m_silo;
};
static void makeCube(Real h, PolygonalMesh& cube);
static void makeTetrahedron(Real r, PolygonalMesh& tet);
static void makePyramid(Real baseSideLength, PolygonalMesh& pyramid);
static void makeOctahedron(Real radius, PolygonalMesh& pyramid);
int main() {
try
{ // Create the system.
MultibodySystem system;
SimbodyMatterSubsystem matter(system);
GeneralForceSubsystem forces(system);
Force::Gravity gravity(forces, matter, UnitVec3(2,-10,0), 1);
ContactTrackerSubsystem tracker(system);
CompliantContactSubsystem contactForces(system, tracker);
contactForces.setTrackDissipatedEnergy(true);
contactForces.setTransitionVelocity(1e-3);
GeneralContactSubsystem OLDcontact(system);
const ContactSetIndex OLDcontactSet = OLDcontact.createContactSet();
//makeCube(1, pyramidMesh);
//makeTetrahedron(1, pyramidMesh);
//pyramidMesh.transformMesh(Rotation(Pi/4, UnitVec3(-1,0,1)));
//makePyramid(1, pyramidMesh);
//makeOctahedron(1, pyramidMesh);
PolygonalMesh sphereMesh;
sphereMesh = PolygonalMesh::createSphereMesh(1,4);
ContactGeometry::TriangleMesh sphere(sphereMesh);
DecorativeMesh showSphere(sphere.createPolygonalMesh());
Array_<DecorativeLine> normals;
const Real NormalLength = .02;
for (int fx=0; fx < sphere.getNumFaces(); ++fx)
normals.push_back(
DecorativeLine(sphere.findCentroid(fx),
sphere.findCentroid(fx)
+ NormalLength*sphere.getFaceNormal(fx)));
// not displaying mesh normals at the moment
ContactCliqueId clique1 = ContactSurface::createNewContactClique();
ContactCliqueId clique2 = ContactSurface::createNewContactClique();
ContactCliqueId clique3 = ContactSurface::createNewContactClique();
const Real fFac =1; // to turn off friction
const Real fDis = .5*0.2; // to turn off dissipation
const Real fVis = .1*.1; // to turn off viscous friction
const Real fK = 100*1e6; // pascals
// Right hand wall
matter.Ground().updBody().addDecoration(Vec3(.25+.01,0,0),
DecorativeBrick(Vec3(.01,4,8)).setColor(Gray).setOpacity(.2));
matter.Ground().updBody().addContactSurface(Vec3(.25,0,0),
ContactSurface(ContactGeometry::HalfSpace(),
ContactMaterial(fK*.01,fDis*.9,fFac*.8,fFac*.7,fVis*10))
.joinClique(clique3));
// Halfspace floor
const Rotation R_xdown(-Pi/2,ZAxis);
//matter.Ground().updBody().addDecoration(
// Transform(R_xdown, Vec3(0,-3-.01,0)),
// DecorativeBrick(Vec3(.01,4,8)).setColor(Gray).setOpacity(.1));
matter.Ground().updBody().addContactSurface(
Transform(R_xdown, Vec3(0,-3,0)),
ContactSurface(ContactGeometry::HalfSpace(),
ContactMaterial(fK*.1,fDis*.9,fFac*.8,fFac*.7,fVis*10))
//ContactMaterial(2e6,.01,.1,.05,.01))
.joinClique(clique1));
//// Big Sphere floor
//const Real FloorRadius = 10;
//matter.Ground().updBody().addDecoration(
// Vec3(0,-FloorRadius-3,0),
// DecorativeSphere(FloorRadius).setColor(Green));
//matter.Ground().updBody().addContactSurface(
// Vec3(0,-FloorRadius-3,0),
// ContactSurface(ContactGeometry::Sphere(FloorRadius),
// ContactMaterial(1e6,fDis*.9,fFac*.8,fFac*.7,fVis*10))
// //ContactMaterial(2e6,.01,.1,.05,.01))
// .joinClique(clique1));
const Real rad = .4;
Body::Rigid pendulumBody1(MassProperties(1.0, Vec3(0), Inertia(1)));
pendulumBody1.addDecoration(Transform(),
DecorativeSphere(rad).setOpacity(.4));
pendulumBody1.addContactSurface(Transform(),
ContactSurface(ContactGeometry::Sphere(rad),
ContactMaterial(fK*.01,fDis*.9,fFac*.8,fFac*.7,fVis*10))
.joinClique(clique2));
Body::Rigid pendulumBody2(MassProperties(1.0, Vec3(0), Inertia(1)));
pendulumBody2.addDecoration(Transform(),
DecorativeSphere(rad).setColor(Orange).setOpacity(.4));
pendulumBody2.addContactSurface(Transform(),
ContactSurface(ContactGeometry::Sphere(rad),
ContactMaterial(fK*.01,fDis*.9,fFac*.8,fFac*.7,fVis*10))
.joinClique(clique1));
MobilizedBody::Pin pendulum(matter.Ground(), Transform(Vec3(0)),
pendulumBody1, Transform(Vec3(0, 1, 0)));
MobilizedBody::Pin pendulum2(pendulum, Transform(Vec3(0)),
pendulumBody2, Transform(Vec3(0, 1, 0)));
Body::Rigid pendulumBody3(MassProperties(100.0, Vec3(0), 100*Inertia(1)));
PolygonalMesh body3contact = PolygonalMesh::createSphereMesh(rad,2);
ContactGeometry::TriangleMesh geo3(body3contact);
const DecorativeMesh mesh3(geo3.createPolygonalMesh());
pendulumBody3.addDecoration(Transform(),
DecorativeMesh(mesh3).setOpacity(.2));
pendulumBody3.addDecoration(Transform(),
DecorativeMesh(mesh3).setColor(Gray)
.setRepresentation(DecorativeGeometry::DrawWireframe)
.setOpacity(.1));
//ContactGeometry::Sphere geo3(rad);
pendulumBody3.addContactSurface(Transform(),
ContactSurface(geo3,
ContactMaterial(fK*.1,fDis*.9,fFac*.8,fFac*.7,fVis*10),
rad/2 /*thickness*/)
.joinClique(clique2));
MobilizedBody::Pin pendulum3(matter.Ground(), Transform(Vec3(-2,0,0)),
pendulumBody3, Transform(Vec3(0, 2, 0)));
Force::MobilityLinearSpring(forces, pendulum2, MobilizerUIndex(0),
10, 0*(Pi/180));
const Real ballMass = 200;
Body::Rigid ballBody(MassProperties(ballMass, Vec3(0),
ballMass*UnitInertia::sphere(1)));
//ballBody.addDecoration(Transform(), DecorativeSphere(.3).setColor(Cyan));
//ballBody.addContactSurface(Transform(),
// ContactSurface(ContactGeometry::Sphere(.3),
// ContactMaterial(1e7,.05,fFac*.8,fFac*.7,fVis*10))
// .joinClique(clique2));
ballBody.addDecoration(Transform(),
showSphere.setColor(Cyan).setOpacity(.2));
ballBody.addDecoration(Transform(),
showSphere.setColor(Gray)
.setRepresentation(DecorativeGeometry::DrawWireframe));
//Use this to display surface normals if you want to see them.
//for (unsigned i=0; i < normals.size(); ++i)
// ballBody.addDecoration(Transform(),
// normals[i].setColor(Gray));
ballBody.addDecoration(Transform(), DecorativeSphere(1).setColor(Gray)
.setOpacity(.1).setResolution(10));
ballBody.addContactSurface(Transform(),
ContactSurface(sphere,
ContactMaterial(fK*.1,fDis*.9,
.1*fFac*.8,.1*fFac*.7,fVis*1),
.5 /*thickness*/)
//ContactMaterial(2e6,.01,.1,.05,.01))
//.joinClique(clique2)
);
MobilizedBody::Free ball(matter.Ground(), Transform(Vec3(-2,0,0)),
ballBody, Transform(Vec3(0)));
//// The old way ...
//OLDcontact.addBody(OLDcontactSet, ball,
// pyramid, Transform());
//OLDcontact.addBody(OLDcontactSet, matter.updGround(),
// ContactGeometry::HalfSpace(), Transform(R_xdown, Vec3(0,-3,0)));
//ElasticFoundationForce ef(forces, OLDcontact, OLDcontactSet);
//Real stiffness = 1e6, dissipation = 0.01, us = 0.1,
// ud = 0.05, uv = 0.01, vt = 0.01;
////Real stiffness = 1e6, dissipation = 0.1, us = 0.8,
//// ud = 0.7, uv = 0.01, vt = 0.01;
//ef.setBodyParameters(ContactSurfaceIndex(0),
// stiffness, dissipation, us, ud, uv);
//ef.setTransitionVelocity(vt);
//// end of old way.
Visualizer viz(system);
viz.addDecorationGenerator(new ForceArrowGenerator(system,contactForces));
viz.setMode(Visualizer::RealTime);
viz.setDesiredBufferLengthInSec(1);
viz.setDesiredFrameRate(FrameRate);
viz.setGroundHeight(-3);
viz.setShowShadows(true);
Visualizer::InputSilo* silo = new Visualizer::InputSilo();
viz.addInputListener(silo);
Array_<std::pair<String,int> > runMenuItems;
runMenuItems.push_back(std::make_pair("Go", GoItem));
runMenuItems.push_back(std::make_pair("Replay", ReplayItem));
runMenuItems.push_back(std::make_pair("Quit", QuitItem));
viz.addMenu("Run", RunMenuId, runMenuItems);
Array_<std::pair<String,int> > helpMenuItems;
helpMenuItems.push_back(std::make_pair("TBD - Sorry!", 1));
viz.addMenu("Help", HelpMenuId, helpMenuItems);
system.addEventReporter(new MyReporter(system,contactForces,ReportInterval));
system.addEventReporter(new Visualizer::Reporter(viz, ReportInterval));
// Check for a Run->Quit menu pick every 1/4 second.
system.addEventHandler(new UserInputHandler(*silo, .25));
// Initialize the system and state.
system.realizeTopology();
// Show ContactSurfaceIndex for each contact surface
for (MobilizedBodyIndex mbx(0); mbx < matter.getNumBodies(); ++mbx) {
const MobilizedBody& mobod = matter.getMobilizedBody(mbx);
const int nsurfs = mobod.getBody().getNumContactSurfaces();
printf("mobod %d has %d contact surfaces\n", (int)mbx, nsurfs);
for (int i=0; i<nsurfs; ++i) {
printf("%2d: index %d\n", i,
(int)tracker.getContactSurfaceIndex(mbx,i));
}
}
State state = system.getDefaultState();
ball.setQToFitTransform(state, Transform(Rotation(Pi/2,XAxis),
Vec3(0,-1.8,0)));
pendulum.setOneQ(state, 0, -Pi/12);
pendulum3.setOneQ(state, 0, -Pi/4);
viz.report(state);
printf("Default state\n");
cout << "t=" << state.getTime()
<< " q=" << pendulum.getQAsVector(state) << pendulum2.getQAsVector(state)
<< " u=" << pendulum.getUAsVector(state) << pendulum2.getUAsVector(state)
<< endl;
cout << "\nChoose 'Go' from Run menu to simulate:\n";
int menuId, item;
do { silo->waitForMenuPick(menuId, item);
if (menuId != RunMenuId || item != GoItem)
cout << "\aDude ... follow instructions!\n";
} while (menuId != RunMenuId || item != GoItem);
pendulum.setOneU(state, 0, 5.0);
ball.setOneU(state, 2, -20);
ball.setOneU(state, 0, .05); // to break symmetry
// Simulate it.
// The system as parameterized is very stiff (mostly due to friction)
// and thus runs best with CPodes which is extremely stable for
// stiff problems. To get reasonable performance out of the explicit
// integrators (like the RKs) you'll have to run at a very loose
// accuracy like 0.1, or reduce the friction coefficients and
// maybe the stiffnesses.
//ExplicitEulerIntegrator integ(system);
CPodesIntegrator integ(system,CPodes::BDF,CPodes::Newton);
//RungeKuttaFeldbergIntegrator integ(system);
//RungeKuttaMersonIntegrator integ(system);
//RungeKutta3Integrator integ(system);
//VerletIntegrator integ(system);
//integ.setMaximumStepSize(1e-0001);
integ.setAccuracy(1e-3); // minimum for CPodes
//integ.setAccuracy(.01);
TimeStepper ts(system, integ);
ts.initialize(state);
double cpuStart = cpuTime();
double realStart = realTime();
ts.stepTo(20.0);
const double timeInSec = realTime() - realStart;
const int evals = integ.getNumRealizations();
cout << "Done -- took " << integ.getNumStepsTaken() << " steps in " <<
timeInSec << "s elapsed for " << ts.getTime() << "s sim (avg step="
<< (1000*ts.getTime())/integ.getNumStepsTaken() << "ms) "
<< (1000*ts.getTime())/evals << "ms/eval\n";
cout << " CPU time was " << cpuTime() - cpuStart << "s\n";
printf("Using Integrator %s at accuracy %g:\n",
integ.getMethodName(), integ.getAccuracyInUse());
printf("# STEPS/ATTEMPTS = %d/%d\n", integ.getNumStepsTaken(), integ.getNumStepsAttempted());
printf("# ERR TEST FAILS = %d\n", integ.getNumErrorTestFailures());
printf("# REALIZE/PROJECT = %d/%d\n", integ.getNumRealizations(), integ.getNumProjections());
viz.dumpStats(std::cout);
// Add as slider to control playback speed.
viz.addSlider("Speed", 1, 0, 4, 1);
viz.setMode(Visualizer::PassThrough);
silo->clear(); // forget earlier input
double speed = 1; // will change if slider moves
while(true) {
cout << "Choose Run/Replay to see that again ...\n";
int menuId, item;
silo->waitForMenuPick(menuId, item);
if (menuId != RunMenuId) {
cout << "\aUse the Run menu!\n";
continue;
}
if (item == QuitItem)
break;
if (item != ReplayItem) {
cout << "\aHuh? Try again.\n";
continue;
}
for (double i=0; i < (int)saveEm.size(); i += speed ) {
int slider; Real newValue;
if (silo->takeSliderMove(slider,newValue)) {
speed = newValue;
}
viz.report(saveEm[(int)i]);
}
}
} catch (const std::exception& e) {
std::printf("EXCEPTION THROWN: %s\n", e.what());
exit(1);
} catch (...) {
std::printf("UNKNOWN EXCEPTION THROWN\n");
exit(1);
}
return 0;
}
// Create a triangle mesh in the shape of a pyramid, with the
// square base in the x-z plane centered at 0,0,0 of given side length s.
// The base is split into two triangles. The apex will be at (0,s,0).
static void makePyramid(Real s, PolygonalMesh& pyramidMesh) {
const Real h = s/2;
Array_<Vec3> vertices;
vertices.push_back(Vec3(-h, 0, -h)); // base
vertices.push_back(Vec3( h, 0, -h));
vertices.push_back(Vec3( h, 0, h));
vertices.push_back(Vec3(-h, 0, h));
vertices.push_back(Vec3( 0, s, 0)); // apex
Array_<int> faceIndices;
int faces[6][3] = {{0, 1, 2}, {0, 2, 3}, {1, 0, 4},
{2, 1, 4}, {3, 2, 4}, {0, 3, 4}};
for (int i = 0; i < 6; i++)
for (int j = 0; j < 3; j++)
faceIndices.push_back(faces[i][j]);
for (unsigned i=0; i < vertices.size(); ++i)
pyramidMesh.addVertex(vertices[i]);
for (unsigned i=0; i < faceIndices.size(); i += 3) {
const Array_<int> verts(&faceIndices[i], &faceIndices[i]+3);
pyramidMesh.addFace(verts);
}
}
// Create a triangle mesh in the shape of a tetrahedron with the
// points in the corners of a cube inscribed in a sphere of radius r.
static void makeTetrahedron(Real r, PolygonalMesh& tet) {
const Real h = r/std::sqrt(Real(3)); // half-dim of cube
Array_<Vec3> vertices;
vertices.push_back(Vec3( h, h, h));
vertices.push_back(Vec3(-h,-h, h));
vertices.push_back(Vec3(-h, h, -h));
vertices.push_back(Vec3( h,-h, -h));
Array_<int> faceIndices;
int faces[4][3] = {{0, 2, 1}, {1, 3, 0}, {0, 3, 2}, {2, 3, 1}};
for (int i = 0; i < 4; i++)
for (int j = 0; j < 3; j++)
faceIndices.push_back(faces[i][j]);
for (unsigned i=0; i < vertices.size(); ++i)
tet.addVertex(vertices[i]);
for (unsigned i=0; i < faceIndices.size(); i += 3) {
const Array_<int> verts(&faceIndices[i], &faceIndices[i]+3);
tet.addFace(verts);
}
}
static void makeOctahedralMesh(const Vec3& r, Array_<Vec3>& vertices,
Array_<int>& faceIndices) {
vertices.push_back(Vec3( r[0], 0, 0)); //0
vertices.push_back(Vec3(-r[0], 0, 0)); //1
vertices.push_back(Vec3( 0, r[1], 0)); //2
vertices.push_back(Vec3( 0, -r[1], 0)); //3
vertices.push_back(Vec3( 0, 0, r[2])); //4
vertices.push_back(Vec3( 0, 0, -r[2])); //5
int faces[8][3] = {{0, 2, 4}, {4, 2, 1}, {1, 2, 5}, {5, 2, 0},
{4, 3, 0}, {1, 3, 4}, {5, 3, 1}, {0, 3, 5}};
for (int i = 0; i < 8; i++)
for (int j = 0; j < 3; j++)
faceIndices.push_back(faces[i][j]);
}
// Create a triangle mesh in the shape of an octahedron (like two
// pyramids stacked base-to-base, with the square base in the x-z plane
// centered at 0,0,0 of given "radius" r.
// The apexes will be at (0,+/-r,0).
static void makeOctahedron(Real r, PolygonalMesh& mesh) {
Array_<Vec3> vertices;
Array_<int> faceIndices;
makeOctahedralMesh(Vec3(r), vertices, faceIndices);
for (unsigned i=0; i < vertices.size(); ++i)
mesh.addVertex(vertices[i]);
for (unsigned i=0; i < faceIndices.size(); i += 3) {
const Array_<int> verts(&faceIndices[i], &faceIndices[i]+3);
mesh.addFace(verts);
}
}
static void makeCube(Real h, PolygonalMesh& cube) {
Array_<Vec3> vertices;
vertices.push_back(Vec3( h, h, h));
vertices.push_back(Vec3( h, h, -h));
vertices.push_back(Vec3( h,-h, h));
vertices.push_back(Vec3( h,-h, -h));
vertices.push_back(Vec3(-h, h, h));
vertices.push_back(Vec3(-h, h, -h));
vertices.push_back(Vec3(-h,-h, h));
vertices.push_back(Vec3(-h,-h, -h));
Array_<int> faceIndices;
int faces[6][4] = {{0,2,3,1},{1,5,4,0},{0,4,6,2},
{2,6,7,3},{3,7,5,1},{4,5,7,6}};
for (int i = 0; i < 6; i++)
for (int j = 0; j < 4; j++)
faceIndices.push_back(faces[i][j]);
for (unsigned i=0; i < vertices.size(); ++i)
cube.addVertex(vertices[i]);
for (unsigned i=0; i < faceIndices.size(); i += 4) {
const Array_<int> verts(&faceIndices[i], &faceIndices[i]+4);
cube.addFace(verts);
}
}
|