File: ExampleContactPlayground.cpp

package info (click to toggle)
simbody 3.7%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 72,896 kB
  • sloc: cpp: 248,827; ansic: 18,240; sh: 29; makefile: 24
file content (638 lines) | stat: -rw-r--r-- 27,132 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
/* -------------------------------------------------------------------------- *
 *                   Simbody(tm) Example: Contact Playground                  *
 * -------------------------------------------------------------------------- *
 * This is part of the SimTK biosimulation toolkit originating from           *
 * Simbios, the NIH National Center for Physics-Based Simulation of           *
 * Biological Structures at Stanford, funded under the NIH Roadmap for        *
 * Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody.  *
 *                                                                            *
 * Portions copyright (c) 2010-13 Stanford University and the Authors.        *
 * Authors: Michael Sherman                                                   *
 * Contributors:                                                              *
 *                                                                            *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may    *
 * not use this file except in compliance with the License. You may obtain a  *
 * copy of the License at http://www.apache.org/licenses/LICENSE-2.0.         *
 *                                                                            *
 * Unless required by applicable law or agreed to in writing, software        *
 * distributed under the License is distributed on an "AS IS" BASIS,          *
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.   *
 * See the License for the specific language governing permissions and        *
 * limitations under the License.                                             *
 * -------------------------------------------------------------------------- */

/* This example is for experimenting with the new Simbody contact implementation,
which was in beta test in the Simbody 2.1 release, with first official release 
in Simbody 2.2. The previous contact implementation is still present and 
functional but will be removed soon.

The example shows how the new system tracks contact events and how you can 
extract contact forces. It also shows off a number of features of the new
Simbody Visualizer, new in release 2.2. also. Here we display the forces and 
torques as colored lines which remain the same color as long as a particular 
contact event continues. We also track the energy dissipated by the contacts 
and use it to display an energy quantity that should be conserved throughout
the simulation (that is, the current energy plus the dissipated energy
should be a constant).
 
The simulation uses very expensive, detailed contact surfaces using dense
meshes and the elastic foundation model. Consequently it runs with highly
variable step sizes, and fails to keep up with real time for some short
periods. We use the Visualizer's RealTime mode to buffer up some frames and
smooth out these rough spots so the simulation appears to run at an almost
steady real time rate, displayed at 30fps (depending on how fast your 
computer is). Then at the end you can watch the action replay.

You can use this example to see how the different integrators behave when 
confronted with a very stiff problem; depending on material properties CPodes 
can be *much* faster than the explicit integrators, and it also exhibits very 
high stability after the motion damps out. However, by changing material 
properties and accuracy setting you can get reasonably good performance out
of the explicit integrators here, which will scale better to large systems.
*/

#include "Simbody.h"

#include <cstdio>
#include <exception>
#include <algorithm>
#include <iostream>
#include <fstream>
using std::cout; using std::endl;

using namespace SimTK;

Array_<State> saveEm;

static const Real TimeScale = 1;
static const Real FrameRate = 30;
static const Real ReportInterval = TimeScale/FrameRate;
static const Real ForceScale = .25;
static const Real MomentScale = .5;


class ForceArrowGenerator : public DecorationGenerator {
public:
    ForceArrowGenerator(const MultibodySystem& system,
                        const CompliantContactSubsystem& complCont) 
    :   m_system(system), m_compliant(complCont) {}

    virtual void generateDecorations(const State& state, Array_<DecorativeGeometry>& geometry) override {
        const Vec3 frcColors[] = {Red,Orange,Cyan};
        const Vec3 momColors[] = {Blue,Green,Purple};
        m_system.realize(state, Stage::Velocity);

        const int ncont = m_compliant.getNumContactForces(state);
        for (int i=0; i < ncont; ++i) {
            const ContactForce& force = m_compliant.getContactForce(state,i);
            const ContactId     id    = force.getContactId();
            const Vec3& frc = force.getForceOnSurface2()[1];
            const Vec3& mom = force.getForceOnSurface2()[0];
            Real  frcMag = frc.norm(), momMag=mom.norm();
            int frcThickness = 1, momThickness = 1;
            Real frcScale = ForceScale, momScale = ForceScale;
            while (frcMag > 10)
                frcThickness++, frcScale /= 10, frcMag /= 10;
            while (momMag > 10)
                momThickness++, momScale /= 10, momMag /= 10;
            DecorativeLine frcLine(force.getContactPoint(),
                force.getContactPoint() + frcScale*frc);
            DecorativeLine momLine(force.getContactPoint(),
                force.getContactPoint() + momScale*mom);
            frcLine.setColor(frcColors[id%3]);
            momLine.setColor(momColors[id%3]);
            frcLine.setLineThickness(2*frcThickness);
            momLine.setLineThickness(2*momThickness);
            geometry.push_back(frcLine);
            geometry.push_back(momLine);

            ContactPatch patch;
            const bool found = m_compliant.calcContactPatchDetailsById(state,id,patch);
            //cout << "patch for id" << id << " found=" << found << endl;
            //cout << "resultant=" << patch.getContactForce() << endl;
            //cout << "num details=" << patch.getNumDetails() << endl;
            for (int i=0; i < patch.getNumDetails(); ++i) {
                const ContactDetail& detail = patch.getContactDetail(i);
                const Real peakPressure = detail.getPeakPressure();
                // Make a black line from the element's contact point in the normal
                // direction, with length proportional to log(peak pressure)
                // on that element. 
                DecorativeLine normal(detail.getContactPoint(),
                    detail.getContactPoint()+ std::log10(peakPressure)
                                                * detail.getContactNormal());
                normal.setColor(Black);
                geometry.push_back(normal);
                // Make a red line that extends from the contact
                // point in the direction of the slip velocity, of length 3*slipvel.
                DecorativeLine slip(detail.getContactPoint(),
                    detail.getContactPoint()+3*detail.getSlipVelocity());
                slip.setColor(Red);
                geometry.push_back(slip);
            }
        }
    }
private:
    const MultibodySystem&              m_system;
    const CompliantContactSubsystem&    m_compliant;
};

class MyReporter : public PeriodicEventReporter {
public:
    MyReporter(const MultibodySystem& system, 
               const CompliantContactSubsystem& complCont,
               Real reportInterval)
    :   PeriodicEventReporter(reportInterval), m_system(system),
        m_compliant(complCont)
    {}

    ~MyReporter() {}

    void handleEvent(const State& state) const override {
        m_system.realize(state, Stage::Dynamics);
        cout << state.getTime() << ": E = " << m_system.calcEnergy(state)
             << " Ediss=" << m_compliant.getDissipatedEnergy(state)
             << " E+Ediss=" << m_system.calcEnergy(state)
                               +m_compliant.getDissipatedEnergy(state)
             << endl;
        const int ncont = m_compliant.getNumContactForces(state);
        cout << "Num contacts: " << m_compliant.getNumContactForces(state) << endl;
        for (int i=0; i < ncont; ++i) {
            const ContactForce& force = m_compliant.getContactForce(state,i);
            //cout << force;
        }
        saveEm.push_back(state);
    }
private:
    const MultibodySystem&           m_system;
    const CompliantContactSubsystem& m_compliant;
};

// These are the item numbers for the entries on the Run menu.
static const int RunMenuId = 3, HelpMenuId = 7;
static const int GoItem = 1, ReplayItem=2, QuitItem=3;

// This is a periodic event handler that interrupts the simulation on a regular
// basis to poll the InputSilo for user input. If there has been some, process it.
// This one does nothing but look for the Run->Quit selection.
class UserInputHandler : public PeriodicEventHandler {
public:
    UserInputHandler(Visualizer::InputSilo& silo, Real interval) 
    :   PeriodicEventHandler(interval), m_silo(silo) {}

    virtual void handleEvent(State& state, Real accuracy, 
                             bool& shouldTerminate) const override 
    {
        int menuId, item;
        if (m_silo.takeMenuPick(menuId, item) && menuId==RunMenuId && item==QuitItem)
            shouldTerminate = true;
    }

private:
    Visualizer::InputSilo& m_silo;
};


static void makeCube(Real h, PolygonalMesh& cube);
static void makeTetrahedron(Real r, PolygonalMesh& tet);
static void makePyramid(Real baseSideLength, PolygonalMesh& pyramid);
static void makeOctahedron(Real radius, PolygonalMesh& pyramid);


int main() {
  try
  { // Create the system.
    
    MultibodySystem         system;
    SimbodyMatterSubsystem  matter(system);
    GeneralForceSubsystem   forces(system);
    Force::Gravity   gravity(forces, matter, UnitVec3(2,-10,0), 1);

    ContactTrackerSubsystem  tracker(system);
    CompliantContactSubsystem contactForces(system, tracker);
    contactForces.setTrackDissipatedEnergy(true);
    contactForces.setTransitionVelocity(1e-3);

    GeneralContactSubsystem OLDcontact(system);
    const ContactSetIndex OLDcontactSet = OLDcontact.createContactSet();

    //makeCube(1, pyramidMesh);
    //makeTetrahedron(1, pyramidMesh);
    //pyramidMesh.transformMesh(Rotation(Pi/4, UnitVec3(-1,0,1)));
    //makePyramid(1, pyramidMesh);
    //makeOctahedron(1, pyramidMesh);
    PolygonalMesh sphereMesh;
    sphereMesh = PolygonalMesh::createSphereMesh(1,4);

    ContactGeometry::TriangleMesh sphere(sphereMesh);
    DecorativeMesh showSphere(sphere.createPolygonalMesh());
    Array_<DecorativeLine> normals;
    const Real NormalLength = .02;
    for (int fx=0; fx < sphere.getNumFaces(); ++fx)
        normals.push_back(
        DecorativeLine(sphere.findCentroid(fx),
                       sphere.findCentroid(fx)
                           + NormalLength*sphere.getFaceNormal(fx)));
    // not displaying mesh normals at the moment

    ContactCliqueId clique1 = ContactSurface::createNewContactClique();
    ContactCliqueId clique2 = ContactSurface::createNewContactClique();
    ContactCliqueId clique3 = ContactSurface::createNewContactClique();

    const Real fFac =1; // to turn off friction
    const Real fDis = .5*0.2; // to turn off dissipation
    const Real fVis =  .1*.1; // to turn off viscous friction
    const Real fK = 100*1e6; // pascals

    // Right hand wall
    matter.Ground().updBody().addDecoration(Vec3(.25+.01,0,0),
        DecorativeBrick(Vec3(.01,4,8)).setColor(Gray).setOpacity(.2));
    matter.Ground().updBody().addContactSurface(Vec3(.25,0,0),
        ContactSurface(ContactGeometry::HalfSpace(),
                       ContactMaterial(fK*.01,fDis*.9,fFac*.8,fFac*.7,fVis*10))
                       .joinClique(clique3));

    // Halfspace floor
    const Rotation R_xdown(-Pi/2,ZAxis);
    //matter.Ground().updBody().addDecoration(
    //    Transform(R_xdown, Vec3(0,-3-.01,0)),
    //    DecorativeBrick(Vec3(.01,4,8)).setColor(Gray).setOpacity(.1));
    matter.Ground().updBody().addContactSurface(
        Transform(R_xdown, Vec3(0,-3,0)),
        ContactSurface(ContactGeometry::HalfSpace(),
                       ContactMaterial(fK*.1,fDis*.9,fFac*.8,fFac*.7,fVis*10))
                       //ContactMaterial(2e6,.01,.1,.05,.01))
                       .joinClique(clique1));

    //// Big Sphere floor
    //const Real FloorRadius = 10;
    //matter.Ground().updBody().addDecoration(
    //    Vec3(0,-FloorRadius-3,0),
    //    DecorativeSphere(FloorRadius).setColor(Green));
    //matter.Ground().updBody().addContactSurface(
    //    Vec3(0,-FloorRadius-3,0),
    //    ContactSurface(ContactGeometry::Sphere(FloorRadius),
    //                   ContactMaterial(1e6,fDis*.9,fFac*.8,fFac*.7,fVis*10))
    //                   //ContactMaterial(2e6,.01,.1,.05,.01))
    //                   .joinClique(clique1));

    const Real rad = .4;
    Body::Rigid pendulumBody1(MassProperties(1.0, Vec3(0), Inertia(1)));
    pendulumBody1.addDecoration(Transform(), 
        DecorativeSphere(rad).setOpacity(.4));
    pendulumBody1.addContactSurface(Transform(),
        ContactSurface(ContactGeometry::Sphere(rad),
                       ContactMaterial(fK*.01,fDis*.9,fFac*.8,fFac*.7,fVis*10))
                       .joinClique(clique2));

    Body::Rigid pendulumBody2(MassProperties(1.0, Vec3(0), Inertia(1)));
    pendulumBody2.addDecoration(Transform(), 
        DecorativeSphere(rad).setColor(Orange).setOpacity(.4));
    pendulumBody2.addContactSurface(Transform(),
        ContactSurface(ContactGeometry::Sphere(rad),
                       ContactMaterial(fK*.01,fDis*.9,fFac*.8,fFac*.7,fVis*10))
                       .joinClique(clique1));

    MobilizedBody::Pin pendulum(matter.Ground(), Transform(Vec3(0)), 
                                pendulumBody1,    Transform(Vec3(0, 1, 0)));

    MobilizedBody::Pin pendulum2(pendulum, Transform(Vec3(0)), 
                                 pendulumBody2, Transform(Vec3(0, 1, 0)));

    Body::Rigid pendulumBody3(MassProperties(100.0, Vec3(0), 100*Inertia(1)));
    PolygonalMesh body3contact = PolygonalMesh::createSphereMesh(rad,2);
    ContactGeometry::TriangleMesh geo3(body3contact);
    const DecorativeMesh mesh3(geo3.createPolygonalMesh());
    pendulumBody3.addDecoration(Transform(), 
        DecorativeMesh(mesh3).setOpacity(.2));
    pendulumBody3.addDecoration(Transform(), 
        DecorativeMesh(mesh3).setColor(Gray)
                   .setRepresentation(DecorativeGeometry::DrawWireframe)
                   .setOpacity(.1));

    //ContactGeometry::Sphere geo3(rad);
    pendulumBody3.addContactSurface(Transform(),
        ContactSurface(geo3,
                       ContactMaterial(fK*.1,fDis*.9,fFac*.8,fFac*.7,fVis*10),
                       rad/2 /*thickness*/)
                       .joinClique(clique2));
    MobilizedBody::Pin pendulum3(matter.Ground(), Transform(Vec3(-2,0,0)), 
                                 pendulumBody3, Transform(Vec3(0, 2, 0)));

    Force::MobilityLinearSpring(forces, pendulum2, MobilizerUIndex(0),
        10, 0*(Pi/180));

    const Real ballMass = 200;
    Body::Rigid ballBody(MassProperties(ballMass, Vec3(0), 
                            ballMass*UnitInertia::sphere(1)));
    //ballBody.addDecoration(Transform(), DecorativeSphere(.3).setColor(Cyan));
    //ballBody.addContactSurface(Transform(),
    //    ContactSurface(ContactGeometry::Sphere(.3),
    //                   ContactMaterial(1e7,.05,fFac*.8,fFac*.7,fVis*10))
    //                   .joinClique(clique2));
    ballBody.addDecoration(Transform(), 
        showSphere.setColor(Cyan).setOpacity(.2));
    ballBody.addDecoration(Transform(), 
        showSphere.setColor(Gray)
                   .setRepresentation(DecorativeGeometry::DrawWireframe));
    //Use this to display surface normals if you want to see them.
    //for (unsigned i=0; i < normals.size(); ++i)
    //    ballBody.addDecoration(Transform(),
    //        normals[i].setColor(Gray));
    ballBody.addDecoration(Transform(), DecorativeSphere(1).setColor(Gray)
                                             .setOpacity(.1).setResolution(10));
    ballBody.addContactSurface(Transform(),
        ContactSurface(sphere,
                       ContactMaterial(fK*.1,fDis*.9,
                                       .1*fFac*.8,.1*fFac*.7,fVis*1),
                       .5 /*thickness*/)
                       //ContactMaterial(2e6,.01,.1,.05,.01))
                       //.joinClique(clique2)
                       );
    MobilizedBody::Free ball(matter.Ground(), Transform(Vec3(-2,0,0)),
        ballBody, Transform(Vec3(0)));

    //// The old way ...
    //OLDcontact.addBody(OLDcontactSet, ball,
    //    pyramid, Transform());

    //OLDcontact.addBody(OLDcontactSet, matter.updGround(),
    //    ContactGeometry::HalfSpace(), Transform(R_xdown, Vec3(0,-3,0)));
    //ElasticFoundationForce ef(forces, OLDcontact, OLDcontactSet);
    //Real stiffness = 1e6, dissipation = 0.01, us = 0.1, 
    //    ud = 0.05, uv = 0.01, vt = 0.01;
    ////Real stiffness = 1e6, dissipation = 0.1, us = 0.8, 
    ////    ud = 0.7, uv = 0.01, vt = 0.01;

    //ef.setBodyParameters(ContactSurfaceIndex(0), 
    //    stiffness, dissipation, us, ud, uv);
    //ef.setTransitionVelocity(vt);
    //// end of old way.

    Visualizer viz(system);
    viz.addDecorationGenerator(new ForceArrowGenerator(system,contactForces));
    viz.setMode(Visualizer::RealTime);
    viz.setDesiredBufferLengthInSec(1);
    viz.setDesiredFrameRate(FrameRate);
    viz.setGroundHeight(-3);
    viz.setShowShadows(true);

    Visualizer::InputSilo* silo = new Visualizer::InputSilo();
    viz.addInputListener(silo);
    Array_<std::pair<String,int> > runMenuItems;
    runMenuItems.push_back(std::make_pair("Go", GoItem));
    runMenuItems.push_back(std::make_pair("Replay", ReplayItem));
    runMenuItems.push_back(std::make_pair("Quit", QuitItem));
    viz.addMenu("Run", RunMenuId, runMenuItems);

    Array_<std::pair<String,int> > helpMenuItems;
    helpMenuItems.push_back(std::make_pair("TBD - Sorry!", 1));
    viz.addMenu("Help", HelpMenuId, helpMenuItems);

    system.addEventReporter(new MyReporter(system,contactForces,ReportInterval));
    system.addEventReporter(new Visualizer::Reporter(viz, ReportInterval));

    // Check for a Run->Quit menu pick every 1/4 second.
    system.addEventHandler(new UserInputHandler(*silo, .25));

    // Initialize the system and state.
    
    system.realizeTopology();

    // Show ContactSurfaceIndex for each contact surface
    for (MobilizedBodyIndex mbx(0); mbx < matter.getNumBodies(); ++mbx) {
        const MobilizedBody& mobod = matter.getMobilizedBody(mbx);
        const int nsurfs = mobod.getBody().getNumContactSurfaces();
        printf("mobod %d has %d contact surfaces\n", (int)mbx, nsurfs);
        for (int i=0; i<nsurfs; ++i) {
            printf("%2d: index %d\n", i, 
                   (int)tracker.getContactSurfaceIndex(mbx,i)); 
        }
    }

    State state = system.getDefaultState();
    ball.setQToFitTransform(state, Transform(Rotation(Pi/2,XAxis),
                                             Vec3(0,-1.8,0)));

    pendulum.setOneQ(state, 0, -Pi/12);
    pendulum3.setOneQ(state, 0, -Pi/4);

    viz.report(state);
    printf("Default state\n");
    cout << "t=" << state.getTime() 
         << " q=" << pendulum.getQAsVector(state) << pendulum2.getQAsVector(state) 
         << " u=" << pendulum.getUAsVector(state) << pendulum2.getUAsVector(state) 
         << endl;

    cout << "\nChoose 'Go' from Run menu to simulate:\n";
    int menuId, item;
    do { silo->waitForMenuPick(menuId, item);
         if (menuId != RunMenuId || item != GoItem) 
             cout << "\aDude ... follow instructions!\n";
    } while (menuId != RunMenuId || item != GoItem);



    pendulum.setOneU(state, 0, 5.0);
    ball.setOneU(state, 2, -20);

    ball.setOneU(state, 0, .05); // to break symmetry
    
    // Simulate it.

    // The system as parameterized is very stiff (mostly due to friction)
    // and thus runs best with CPodes which is extremely stable for
    // stiff problems. To get reasonable performance out of the explicit
    // integrators (like the RKs) you'll have to run at a very loose
    // accuracy like 0.1, or reduce the friction coefficients and
    // maybe the stiffnesses.

    //ExplicitEulerIntegrator integ(system);
    CPodesIntegrator integ(system,CPodes::BDF,CPodes::Newton);
    //RungeKuttaFeldbergIntegrator integ(system);
    //RungeKuttaMersonIntegrator integ(system);
    //RungeKutta3Integrator integ(system);
    //VerletIntegrator integ(system);
    //integ.setMaximumStepSize(1e-0001);
    integ.setAccuracy(1e-3); // minimum for CPodes
    //integ.setAccuracy(.01);
    TimeStepper ts(system, integ);


    ts.initialize(state);
    double cpuStart = cpuTime();
    double realStart = realTime();

    ts.stepTo(20.0);

    const double timeInSec = realTime() - realStart;
    const int evals = integ.getNumRealizations();
    cout << "Done -- took " << integ.getNumStepsTaken() << " steps in " <<
        timeInSec << "s elapsed for " << ts.getTime() << "s sim (avg step=" 
        << (1000*ts.getTime())/integ.getNumStepsTaken() << "ms) " 
        << (1000*ts.getTime())/evals << "ms/eval\n";
    cout << "  CPU time was " << cpuTime() - cpuStart << "s\n";

    printf("Using Integrator %s at accuracy %g:\n", 
        integ.getMethodName(), integ.getAccuracyInUse());
    printf("# STEPS/ATTEMPTS = %d/%d\n", integ.getNumStepsTaken(), integ.getNumStepsAttempted());
    printf("# ERR TEST FAILS = %d\n", integ.getNumErrorTestFailures());
    printf("# REALIZE/PROJECT = %d/%d\n", integ.getNumRealizations(), integ.getNumProjections());

    viz.dumpStats(std::cout);

    // Add as slider to control playback speed.
    viz.addSlider("Speed", 1, 0, 4, 1);
    viz.setMode(Visualizer::PassThrough);

    silo->clear(); // forget earlier input
    double speed = 1; // will change if slider moves
    while(true) {
        cout << "Choose Run/Replay to see that again ...\n";

        int menuId, item;
        silo->waitForMenuPick(menuId, item);


        if (menuId != RunMenuId) {
            cout << "\aUse the Run menu!\n";
            continue;
        }

        if (item == QuitItem)
            break;
        if (item != ReplayItem) {
            cout << "\aHuh? Try again.\n";
            continue;
        }

        for (double i=0; i < (int)saveEm.size(); i += speed ) {
            int slider; Real newValue;
            if (silo->takeSliderMove(slider,newValue)) {
                speed = newValue;
            }
            viz.report(saveEm[(int)i]);
        }
    }

  } catch (const std::exception& e) {
    std::printf("EXCEPTION THROWN: %s\n", e.what());
    exit(1);

  } catch (...) {
    std::printf("UNKNOWN EXCEPTION THROWN\n");
    exit(1);
  }

    return 0;
}


// Create a triangle mesh in the shape of a pyramid, with the
// square base in the x-z plane centered at 0,0,0 of given side length s. 
// The base is split into two triangles. The apex will be at (0,s,0).
static void makePyramid(Real s, PolygonalMesh& pyramidMesh) {
    const Real h = s/2;
    Array_<Vec3> vertices;
    vertices.push_back(Vec3(-h, 0, -h));     // base
    vertices.push_back(Vec3( h, 0, -h));
    vertices.push_back(Vec3( h, 0,  h));
    vertices.push_back(Vec3(-h, 0,  h));
    vertices.push_back(Vec3( 0, s,  0)); // apex
    Array_<int> faceIndices;
    int faces[6][3] = {{0, 1, 2}, {0, 2, 3}, {1, 0, 4}, 
                       {2, 1, 4}, {3, 2, 4}, {0, 3, 4}};
    for (int i = 0; i < 6; i++)
        for (int j = 0; j < 3; j++)
            faceIndices.push_back(faces[i][j]);

    for (unsigned i=0; i < vertices.size(); ++i)
        pyramidMesh.addVertex(vertices[i]);
    for (unsigned i=0; i < faceIndices.size(); i += 3) {
        const Array_<int> verts(&faceIndices[i], &faceIndices[i]+3);
        pyramidMesh.addFace(verts);
    }
}


// Create a triangle mesh in the shape of a tetrahedron with the
// points in the corners of a cube inscribed in a sphere of radius r.
static void makeTetrahedron(Real r, PolygonalMesh& tet) {
    const Real h = r/std::sqrt(Real(3)); // half-dim of cube
    Array_<Vec3> vertices;
    vertices.push_back(Vec3( h, h,  h)); 
    vertices.push_back(Vec3(-h,-h,  h));
    vertices.push_back(Vec3(-h, h, -h));
    vertices.push_back(Vec3( h,-h, -h));
    Array_<int> faceIndices;
    int faces[4][3] = {{0, 2, 1}, {1, 3, 0}, {0, 3, 2}, {2, 3, 1}};
    for (int i = 0; i < 4; i++)
        for (int j = 0; j < 3; j++)
            faceIndices.push_back(faces[i][j]);

    for (unsigned i=0; i < vertices.size(); ++i)
        tet.addVertex(vertices[i]);
    for (unsigned i=0; i < faceIndices.size(); i += 3) {
        const Array_<int> verts(&faceIndices[i], &faceIndices[i]+3);
        tet.addFace(verts);
    }
}

static void makeOctahedralMesh(const Vec3& r, Array_<Vec3>& vertices,
                               Array_<int>&  faceIndices) {
    vertices.push_back(Vec3( r[0],  0,  0));   //0
    vertices.push_back(Vec3(-r[0],  0,  0));   //1
    vertices.push_back(Vec3( 0,  r[1],  0));   //2
    vertices.push_back(Vec3( 0, -r[1],  0));   //3
    vertices.push_back(Vec3( 0,  0,  r[2]));   //4
    vertices.push_back(Vec3( 0,  0, -r[2]));   //5
    int faces[8][3] = {{0, 2, 4}, {4, 2, 1}, {1, 2, 5}, {5, 2, 0}, 
                       {4, 3, 0}, {1, 3, 4}, {5, 3, 1}, {0, 3, 5}};
    for (int i = 0; i < 8; i++)
        for (int j = 0; j < 3; j++)
            faceIndices.push_back(faces[i][j]);
}

// Create a triangle mesh in the shape of an octahedron (like two 
// pyramids stacked base-to-base, with the square base in the x-z plane 
// centered at 0,0,0 of given "radius" r. 
// The apexes will be at (0,+/-r,0).
static void makeOctahedron(Real r, PolygonalMesh& mesh) {
    Array_<Vec3> vertices;
    Array_<int> faceIndices;
    makeOctahedralMesh(Vec3(r), vertices, faceIndices);

    for (unsigned i=0; i < vertices.size(); ++i)
        mesh.addVertex(vertices[i]);
    for (unsigned i=0; i < faceIndices.size(); i += 3) {
        const Array_<int> verts(&faceIndices[i], &faceIndices[i]+3);
        mesh.addFace(verts);
    }
}

static void makeCube(Real h, PolygonalMesh& cube) {
    Array_<Vec3> vertices;
    vertices.push_back(Vec3( h, h,  h)); 
    vertices.push_back(Vec3( h, h, -h));
    vertices.push_back(Vec3( h,-h,  h));
    vertices.push_back(Vec3( h,-h, -h));
    vertices.push_back(Vec3(-h, h,  h)); 
    vertices.push_back(Vec3(-h, h, -h));
    vertices.push_back(Vec3(-h,-h,  h));
    vertices.push_back(Vec3(-h,-h, -h));

    Array_<int> faceIndices;
    int faces[6][4] = {{0,2,3,1},{1,5,4,0},{0,4,6,2},
                       {2,6,7,3},{3,7,5,1},{4,5,7,6}};
    for (int i = 0; i < 6; i++)
        for (int j = 0; j < 4; j++)
            faceIndices.push_back(faces[i][j]);

    for (unsigned i=0; i < vertices.size(); ++i)
        cube.addVertex(vertices[i]);
    for (unsigned i=0; i < faceIndices.size(); i += 4) {
        const Array_<int> verts(&faceIndices[i], &faceIndices[i]+4);
        cube.addFace(verts);
    }
}