File: ExampleCustomConstraint.cpp

package info (click to toggle)
simbody 3.7%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 72,896 kB
  • sloc: cpp: 248,827; ansic: 18,240; sh: 29; makefile: 24
file content (242 lines) | stat: -rw-r--r-- 11,152 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
/* -------------------------------------------------------------------------- *
 *                  Simbody(tm) Example: Custom Constraint                    *
 * -------------------------------------------------------------------------- *
 * This is part of the SimTK biosimulation toolkit originating from           *
 * Simbios, the NIH National Center for Physics-Based Simulation of           *
 * Biological Structures at Stanford, funded under the NIH Roadmap for        *
 * Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody.  *
 *                                                                            *
 * Portions copyright (c) 2012 Stanford University and the Authors.           *
 * Authors: Michael Sherman                                                   *
 * Contributors:                                                              *
 *                                                                            *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may    *
 * not use this file except in compliance with the License. You may obtain a  *
 * copy of the License at http://www.apache.org/licenses/LICENSE-2.0.         *
 *                                                                            *
 * Unless required by applicable law or agreed to in writing, software        *
 * distributed under the License is distributed on an "AS IS" BASIS,          *
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.   *
 * See the License for the specific language governing permissions and        *
 * limitations under the License.                                             *
 * -------------------------------------------------------------------------- */

// This is the Custom Constraint example from the Simbody Advanced Programming
// Guide.
//
// Here we'll make two pendulums hanging near one another, and connect their
// body origins together with the massless rod-like constraint given in
// the above example. This is a simplified version of Simbody's "Rod" (distance)
// constraint, which is not restricted to body origins.
//
// We're going to run and visualize a short simulation and show that energy
// is conserved by the constraint implementation.


#include "Simbody.h"

using namespace SimTK;
using std::cout; using std::endl;

// This constraint holds the body origins of two bodies apart at a given 
// distance, without constraining any other motion. This is like connecting
// the points with a massless rod with ball joints at each end. We will
// use the following equation for this holonomic (position-level) constraint:
//       perr(q) = 0
// where perr(q) = (dot(r, r) - d^2)/2
// with r(q) the vector from body1's origin to body2's origin, and d a given
// constant.
// We must supply the first and second time derivatives of perr here as a 
// velocity error function verr and acceleration error function aerr:
//       verr(q,u) = d/dt perr = dot(v, r)
//       aerr(q,u,udot) = d/dt verr = dot(a, r) + dot(v, v)
// where v = d/dt r is the relative velocity between the body origins and
// a = d/dt v is their relative acceleration.
// 
class ExampleConstraint : public Constraint::Custom::Implementation {
public:
    // Constructor takes two bodies and the desired separation distance
    // between their body frame origins. Tell the base class that this
    // constraint generates 1 holonomic (position level), 0 nonholonomic
    // (velocity level), and 0 acceleration-only constraint equations.
    ExampleConstraint(MobilizedBody& b1, MobilizedBody& b2, Real distance) 
    :   Implementation(b1.updMatterSubsystem(), 1, 0, 0), distance(distance) {
        body1 = addConstrainedBody(b1);
        body2 = addConstrainedBody(b2);
    }

    // Implement required pure virtual method.
    Implementation* clone () const override {return new ExampleConstraint(*this);}

    // Implement the Implementation virtuals required for a holonomic
    // (position level) constraint.

    // Simbody supplies position information in argument list; we calculate
    // the constraint error that represents here.
    void calcPositionErrors     
       (const State&                                    state,
        const Array_<Transform,ConstrainedBodyIndex>&   X_AB, 
        const Array_<Real,     ConstrainedQIndex>&      constrainedQ,
        Array_<Real>&                                   perr) const override
    {
        Vec3 r1 = getBodyOriginLocation(X_AB, body1);
        Vec3 r2 = getBodyOriginLocation(X_AB, body2);
        Vec3 r = r2-r1;
        perr[0] = (dot(r,r)-distance*distance)/2;
    }

    // Simbody supplies velocity information in argument list; position info
    // is in the state. Return time derivative of position constraint error.
    void calcPositionDotErrors   
       (const State&                                    state,
        const Array_<SpatialVec,ConstrainedBodyIndex>&  V_AB, 
        const Array_<Real,      ConstrainedQIndex>&     constrainedQDot,
        Array_<Real>&                                   pverr) const override
    {
        Vec3 r1 = getBodyOriginLocationFromState(state, body1);
        Vec3 r2 = getBodyOriginLocationFromState(state, body2);
        Vec3 r = r2-r1;
        Vec3 v1 = getBodyOriginVelocity(V_AB, body1);
        Vec3 v2 = getBodyOriginVelocity(V_AB, body2);
        Vec3 v = v2-v1;
        pverr[0] = dot(v, r);
    }

    // Simbody supplies acceleration information in argument list; position and
    // velocity info is in the state. Return second time derivative of position
    // constraint error.
    void calcPositionDotDotErrors
       (const State&                                    state,
        const Array_<SpatialVec,ConstrainedBodyIndex>&  A_AB, 
        const Array_<Real,      ConstrainedQIndex>&     constrainedQDotDot,
        Array_<Real>&                                   paerr) const override 
    {
        Vec3 r1 = getBodyOriginLocationFromState(state, body1);
        Vec3 r2 = getBodyOriginLocationFromState(state, body2);
        Vec3 r = r2-r1;
        Vec3 v1 = getBodyOriginVelocityFromState(state, body1);
        Vec3 v2 = getBodyOriginVelocityFromState(state, body2);
        Vec3 v = v2-v1;
        Vec3 a1 = getBodyOriginAcceleration(A_AB, body1);
        Vec3 a2 = getBodyOriginAcceleration(A_AB, body2);
        Vec3 a = a2-a1;
        paerr[0] = dot(a, r) + dot(v, v);
    }

    // Simbody provides calculated constraint multiplier in argument list; we 
    // turn that into forces here and apply them to the two bodies as point
    // forces at the origins.
    void addInPositionConstraintForces
       (const State&                                state, 
        const Array_<Real>&                         multipliers,
        Array_<SpatialVec,ConstrainedBodyIndex>&    bodyForcesInA,
        Array_<Real,      ConstrainedQIndex>&       qForces) const override 
    {
        Vec3 r1 = getBodyOriginLocationFromState(state, body1);
        Vec3 r2 = getBodyOriginLocationFromState(state, body2);
        Vec3 r = r2-r1;
        Vec3 force = multipliers[0]*r;
        addInStationForce(state, body2, Vec3(0),  force, bodyForcesInA);
        addInStationForce(state, body1, Vec3(0), -force, bodyForcesInA);
    }

private:
    ConstrainedBodyIndex    body1, body2;
    Real                    distance;
};

// This will be used to report energy periodically. See TextDataEventReporter
// for more information.
class MyEvaluateEnergy : public TextDataEventReporter::UserFunction<Real> {
public:
    Real evaluate(const System& system, const State& state) override {
        const MultibodySystem& mbs = MultibodySystem::downcast(system);
        mbs.realize(state, Stage::Dynamics);
        return mbs.calcEnergy(state);
    }
};

int main() {
  try {   
    // Create the system, with subsystems for the bodies and some forces.
    MultibodySystem system;
    SimbodyMatterSubsystem matter(system);
    GeneralForceSubsystem forces(system);

    // Hint to Visualizer: don't show ground plane.
    system.setUseUniformBackground(true);

    // Add gravity as a force element.
    Force::UniformGravity gravity(forces, matter, Vec3(0, -9.81, 0));

    // Create the body and some artwork for it.
    const Vec3 halfLengths(.5, .1, .25); // half-size of brick (m)
    const Real mass = 2; // total mass of brick (kg)
    Body::Rigid pendulumBody(MassProperties(mass, Vec3(0), 
                                mass*UnitInertia::brick(halfLengths)));
    pendulumBody.addDecoration(Transform(), 
        DecorativeBrick(halfLengths).setColor(Red));

    // Add an instance of the body to the multibody system by connecting
    // it to Ground via a Ball mobilizer.
    MobilizedBody::Ball pendulum1(matter.updGround(), Transform(Vec3(-1,-1, 0)), 
                                  pendulumBody,       Transform(Vec3( 0, 1, 0)));

    // Add a second instance of the pendulum nearby.
    MobilizedBody::Ball pendulum2(matter.updGround(), Transform(Vec3(1,-1, 0)), 
                                  pendulumBody,       Transform(Vec3(0, 1, 0)));

    // Connect the origins of the two pendulum bodies together with our
    // rod-like custom constraint.
    const Real d = 1.5; // desired separation distance
    Constraint::Custom rod(new ExampleConstraint(pendulum1, pendulum2, d));

    // Visualize with default options.
    Visualizer viz(system);

    // Add a rubber band line connecting the origins of the two bodies to
    // represent the rod constraint.
    viz.addRubberBandLine(pendulum1, Vec3(0), pendulum2, Vec3(0),
        DecorativeLine().setColor(Blue).setLineThickness(3));

    // Ask for a report every 1/30 of a second to match the Visualizer's 
    // default rate of 30 frames per second.
    system.addEventReporter(new Visualizer::Reporter(viz, 1./30));
    // Output total energy to the console once per second.
    system.addEventReporter(new TextDataEventReporter
                                   (system, new MyEvaluateEnergy(), 1.0));
    
    // Initialize the system and state.   
    State state = system.realizeTopology();

    // Orient the two pendulums asymmetrically so they'll do something more 
    // interesting than just hang there.
    pendulum1.setQToFitRotation(state, Rotation(Pi/4, ZAxis));
    pendulum2.setQToFitRotation(state, Rotation(BodyRotationSequence,
                                                Pi/4, ZAxis, Pi/4, YAxis));

    // Evaluate the system at the new state and draw one frame manually.
    system.realize(state);
    viz.report(state);

    // Simulate it.
    cout << "Hit ENTER to run a short simulation.\n";
    cout << "(Energy should be conserved to about four decimal places.)\n";
    getchar();

    RungeKuttaMersonIntegrator integ(system);
    integ.setAccuracy(1e-4); // ask for about 4 decimal places (default is 3)
    TimeStepper ts(system, integ);
    ts.initialize(state);
    ts.stepTo(10.0);

  } catch (const std::exception& e) {
      std::cout << "ERROR: " << e.what() << std::endl;
      return 1;
  } catch (...) {
      std::cout << "UNKNOWN EXCEPTION\n";
      return 1;
  }

    return 0;
}