1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
|
/* -------------------------------------------------------------------------- *
* Simbody(tm) ExampleGeodesic *
* -------------------------------------------------------------------------- *
* This is part of the SimTK biosimulation toolkit originating from *
* Simbios, the NIH National Center for Physics-Based Simulation of *
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody. *
* *
* Portions copyright (c) 2005-12 Stanford University and the Authors. *
* Authors: Ian Stavness, Michael Sherman, Andreas Scholz *
* Contributors: *
* *
* Licensed under the Apache License, Version 2.0 (the "License"); you may *
* not use this file except in compliance with the License. You may obtain a *
* copy of the License at http://www.apache.org/licenses/LICENSE-2.0. *
* *
* Unless required by applicable law or agreed to in writing, software *
* distributed under the License is distributed on an "AS IS" BASIS, *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
* See the License for the specific language governing permissions and *
* limitations under the License. *
* -------------------------------------------------------------------------- */
/**
* This example demonstrates finding the geodesic between two points on
* a ContactGeometry object.
**/
#include "Simbody.h"
using namespace SimTK;
using std::cos;
using std::sin;
using std::cout;
using std::endl;
const Real vizInterval = 1/30.; // set to 1/30. to vizualize shooting
class VizPeriodicReporter : public PeriodicEventReporter {
public:
VizPeriodicReporter(const Visualizer& viz, const State& dummyState, Real interval) :
PeriodicEventReporter(interval), viz(viz), dummyState(dummyState) {
}
void handleEvent(const State& state) const override {
viz.report(dummyState);
}
private:
const Visualizer& viz;
const State& dummyState;
};
class ExtremePointDecorator : public DecorationGenerator {
public:
ExtremePointDecorator(const ContactGeometry& geom,
const Vec3& startPoint)
: geom(geom), closestPoint(startPoint), startFrameOnly(false) {}
void setStartPoint(const Vec3& pt) {closestPoint=pt;}
const Vec3& getStartPoint() const {return closestPoint;}
void setShowStartFrameOnly(bool showStart) {startFrameOnly=showStart;}
void generateDecorations(const State& state,
Array_<DecorativeGeometry>& geometry) override
{
geometry.push_back(DecorativeLine(P,Q));
geometry.push_back(
DecorativePoint(closestPoint).setColor(Purple)
.setScale(2).setLineThickness(2));
const UnitVec3 startN = geom.calcSurfaceUnitNormal(closestPoint);
geometry.push_back(DecorativeLine(closestPoint,closestPoint+startN)
.setColor(Purple));
if (startFrameOnly) {
startFrameOnly = false;
return;
}
Vec3 newClosestPoint, closestPointOnLine;
Real height;
if (!geom.trackSeparationFromLine(P, d, closestPoint,
newClosestPoint, closestPointOnLine, height))
{
std::cout << "\n---TRACKER REPORTED FAILURE---\n\n";
}
std::cout << "HEIGHT=" << height << "\n";
const UnitVec3 n = geom.calcSurfaceUnitNormal(newClosestPoint);
geometry.push_back(DecorativeLine(newClosestPoint,closestPointOnLine)
.setColor(height>0?Blue:Red));
geometry.push_back(
DecorativePoint(newClosestPoint).setColor(Green));
geometry.push_back(DecorativeLine(newClosestPoint,newClosestPoint+n)
.setColor(Green));
geometry.push_back(
DecorativePoint(closestPointOnLine).setColor(Red));
closestPoint = newClosestPoint;
}
void moveLine(const Vec3& P, const Vec3& Q) {
cout << "...moveLine P=" << P << " Q=" << Q << "\n";
this->P = P; this->Q = Q; d = UnitVec3(Q-P);
}
private:
const ContactGeometry& geom;
Vec3 closestPoint;
Vec3 P, Q; // points on line
UnitVec3 d; // direction of line
bool startFrameOnly; // don't solve just show initial conditions
};
int main() {
try {
// Create geometry
Real r = 0.5;
//ContactGeometry::Sphere geom(r);
// ContactGeometry::Cylinder geom(r);
ContactGeometry::Torus geom(2*r, r);
Vec3 radii(0.2,0.4,0.6);
//ContactGeometry::Ellipsoid geom(radii);
Real startLength = 0.5;
//startLength=5;
Real phiP = 0.0*Pi;
Real thetaP = 0.0*Pi;
Real phiQ = 0.0*Pi;
Real thetaQ = 1.2*Pi;
Real heightP = 0.5;
Real heightQ = -0.5;
Vec3 P(r*sin(thetaP)*cos(phiP), r*sin(thetaP)*sin(phiP), r*cos(thetaP));
Vec3 Q(r*sin(thetaQ)*cos(phiQ), r*sin(thetaQ)*sin(phiQ), r*cos(thetaQ));
Vec3 O(-2, 0, heightP);
Vec3 I(-2, 0, heightQ);
// move points off surface for testing
Q(0) -= r/2;
Q(1) -= -r*0.5;
P(1) -= r*0.5;
P(0) -= r/2;
//Q=P+Vec3(1.25,-1,0); P+=Vec3(-1,-.9,0);
//Q=P+Vec3(1,-1,-1.5); P+=Vec3(-1,-.9,0);
// project back to surface for testing
Vec3 tmpPt;
tmpPt = geom.projectDownhillToNearestPoint(P);
P = tmpPt;
tmpPt = geom.projectDownhillToNearestPoint(Q);
Q = tmpPt;
Vec3 r_OP = P - O;
Vec3 r_IQ = Q - I;
UnitVec3 e_OP(r_OP);
UnitVec3 e_IQ(r_IQ);
Vec3 r_PQ = Q - P;
int n = 2; // problem size
Vector x(n), dx(n), Fx(n), xold(n);
Matrix J(n, n);
bool inside; UnitVec3 nP, nQ;
cout << "before P,Q=" << P << ", " << Q << " -- "
<< geom.calcSurfaceValue(P) << " " << geom.calcSurfaceValue(Q) << endl;
Vec3 newP = geom.findNearestPoint(P,inside,nP);
UnitVec3 tP = nP.perp();
Vec3 newQ = geom.findNearestPoint(Q,inside,nQ);
UnitVec3 tQ = nQ.perp();
cout << "after newP,Q=" << newP << ", " << newQ << " -- "
<< geom.calcSurfaceValue(newP)
<< " " << geom.calcSurfaceValue(newQ) << endl;
cout << "curvature at newP along " << tP << ": "
<< geom.calcSurfaceCurvatureInDirection(newP,tP) << "\n";
cout << "curvature at newQ along " << tQ << ": "
<< geom.calcSurfaceCurvatureInDirection(newQ,tQ) << "\n";
cout << "gradient at newP " << ": "
<< geom.calcSurfaceGradient(newP) << " |gP|=" <<
geom.calcSurfaceGradient(newP).norm() << "\n";
cout << "gradient at newQ " << ": "
<< geom.calcSurfaceGradient(newQ) << " |gQ|=" <<
geom.calcSurfaceGradient(newQ).norm() << "\n";
Rotation R_GP(nP, ZAxis, tP, XAxis);
for (int i=0; i <=10; ++i) {
Real a = i*(Pi/2)/10;
UnitVec3 u_P(-sin(a), cos(a), 0);
UnitVec3 dir = R_GP*u_P;
cout << a << ": " << geom.calcSurfaceCurvatureInDirection(newP,dir)
<< " 2*sin^2(a)=" << 2*square(sin(a)) << "\n";
}
cout << "Gaussian curvature P,Q="
<< geom.calcGaussianCurvature(newP) << ","
<< geom.calcGaussianCurvature(newQ) << endl;
Geodesic geod;
// Create a dummy mb system for visualization
MultibodySystem dummySystem;
SimbodyMatterSubsystem matter(dummySystem);
// matter.updGround().addBodyDecoration(Transform(), DecorativeEllipsoid(radii)
matter.updGround().addBodyDecoration(Transform(), geom.createDecorativeGeometry()
.setColor(Gray)
.setOpacity(0.5)
.setResolution(5));
matter.updGround().addBodyDecoration(Transform(),
DecorativeLine(Vec3(newP), Vec3(newP)+.5*tP).setColor(Green));
matter.updGround().addBodyDecoration(Transform(),
DecorativeLine(Vec3(newQ), Vec3(newQ)+.5*tQ).setColor(Red));
// Visualize with default options; ask for a report every 1/30 of a second
// to match the Visualizer's default 30 frames per second rate.
Visualizer viz(dummySystem);
viz.setBackgroundType(Visualizer::SolidColor);
// add vizualization callbacks for geodesics, contact points, etc.
Vector tmp(6); // tmp = ~[P Q]
tmp[0]=P[0]; tmp[1]=P[1]; tmp[2]=P[2]; tmp[3]=Q[0]; tmp[4]=Q[1]; tmp[5]=Q[2];
viz.addDecorationGenerator(new PathDecorator(tmp, O, I, Green));
//viz.addDecorationGenerator(new PlaneDecorator(geom.getPlane(), Gray));
viz.addDecorationGenerator(new GeodesicDecorator(geom.getGeodP(), Red));
viz.addDecorationGenerator(new GeodesicDecorator(geom.getGeodQ(), Blue));
viz.addDecorationGenerator(new GeodesicDecorator(geod, Orange));
//ExtremePointDecorator* expd = new ExtremePointDecorator(geom, P);
//viz.addDecorationGenerator(expd);
dummySystem.realizeTopology();
State dummyState = dummySystem.getDefaultState();
/* Sherm playing with separation tracking ...
expd->setStartPoint(Vec3(1,0,0));
for (int outer=0; ; ++outer) {
for (int i=0; i <10; ++i) {
Real x = i*.2;
expd->moveLine(Vec3(x,-3,-2), Vec3(0,3,1));
if (outer) expd->setStartPoint(expd->getStartPoint()-Vec3(.1,0,0));
expd->setShowStartFrameOnly(true);
viz.report(dummyState);
if (outer) getchar();
viz.report(dummyState);
if (outer) getchar(); else sleepInSec(.25);
//sleepInSec(.5);
}
for (int i=0; i <10; ++i) {
Real z = 1+i*.2;
Real x = 2-i*.2;
expd->moveLine(Vec3(x,-3,-2), Vec3(0,3,z));
expd->setShowStartFrameOnly(true);
viz.report(dummyState);
viz.report(dummyState); sleepInSec(.25);
//sleepInSec(.5);
}
for (int i=0; i <10; ++i) {
Real z = 3-i*.5;
expd->moveLine(Vec3(0,-3,-2), Vec3(0,3,z));
expd->setShowStartFrameOnly(true);
viz.report(dummyState);
viz.report(dummyState); sleepInSec(.25);
//sleepInSec(.5);
}
}
exit(0);
*/
// calculate the geodesic
//geom.addVizReporter(new VizPeriodicReporter(viz, dummyState, vizInterval));
viz.report(dummyState);
const Real startReal = realTime(), startCpu = cpuTime();
//geom.calcGeodesic(P, Q, e_OP, -e_IQ, geod);
//geom.calcGeodesicAnalytical(P, Q, e_OP, -e_IQ, geod);
//geom.calcGeodesicUsingOrthogonalMethod(P, Q, geod);
//geom.calcGeodesicUsingOrthogonalMethod(P, Q, e_OP, .5, geod);
Rotation R(-Pi/8*0, YAxis); // TODO: 2.7 vs. 2.78
geom.calcGeodesicUsingOrthogonalMethod(P, Q, R*Vec3(0.9,0,-.3),
startLength, geod);
//geom.makeStraightLineGeodesic(P, Q, e_OP, GeodesicOptions(), geod);
cout << "realTime=" << realTime()-startReal
<< " cpuTime=" << cpuTime()-startCpu << endl;
viz.report(dummyState);
printf("Geodesic has %d points; %d geodesics shot\n",
geod.getNumPoints(), geom.getNumGeodesicsShot());
const Array_<Real>& arcLength = geod.getArcLengths();
const Array_<Transform>& frenet = geod.getFrenetFrames();
const Array_<Vec2>& rotPtoQ = geod.getDirectionalSensitivityPtoQ();
const Array_<Vec2>& rotQtoP = geod.getDirectionalSensitivityQtoP();
const Array_<Vec2>& transPtoQ = geod.getPositionalSensitivityPtoQ();
const Array_<Vec2>& transQtoP = geod.getPositionalSensitivityQtoP();
const Array_<Real>& curvature = geod.getCurvatures();
bool showTrans = !transPtoQ.empty();
cout << "torsion at P=" << geod.getTorsionP()
<< " binormal curvature kb at P=" << geod.getBinormalCurvatureP() << endl;
for (int i=0; i < geod.getNumPoints(); ++i) {
cout << "\ns=" << arcLength[i] << " kt=" << curvature[i] << ":\n";
cout << "p=" << frenet[i].p() << "\n";
cout << "t=" << frenet[i].y() << "\n";
cout << "b=" << frenet[i].x() << "\n";
cout << "n=" << frenet[i].z() << "\n";
cout << "jrQ=" << rotPtoQ[i] << " jrP=" << rotQtoP[i] << "\n";
if (showTrans) cout << "jtQ=" << transPtoQ[i] << " jtP=" << transQtoP[i] << "\n";
}
cout << "torsion at Q=" << geod.getTorsionQ()
<< " binormal curvature kb at Q=" << geod.getBinormalCurvatureQ() << endl;
// geom.addVizReporter(new VizPeriodicReporter(viz, dummyState, 1/30.));
// viz.report(dummyState);
// GeodesicOptions opts;
// geom.shootGeodesicInDirectionUntilLengthReached(P, UnitVec3(tP), 20, opts, geod);
// geom.shootGeodesicInDirectionUntilPlaneHit(P, UnitVec3(tP), geom.getPlane(), opts, geod);
viz.report(dummyState);
cout << "geod shooting count = " << geom.getNumGeodesicsShot() << endl;
cout << "num geod pts = " << geod.getFrenetFrames().size() << endl;
} catch (const std::exception& e) {
std::printf("EXCEPTION THROWN: %s\n", e.what());
exit(1);
} catch (...) {
std::printf("UNKNOWN EXCEPTION THROWN\n");
exit(1);
}
return 0;
}
|