1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
|
/* -------------------------------------------------------------------------- *
* Simbody(tm) Example: MotorWithSpeedControl *
* -------------------------------------------------------------------------- *
* This is part of the SimTK biosimulation toolkit originating from *
* Simbios, the NIH National Center for Physics-Based Simulation of *
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody. *
* *
* Portions copyright (c) 2013 Stanford University and the Authors. *
* Authors: Michael Sherman *
* Contributors: *
* *
* Licensed under the Apache License, Version 2.0 (the "License"); you may *
* not use this file except in compliance with the License. You may obtain a *
* copy of the License at http://www.apache.org/licenses/LICENSE-2.0. *
* *
* Unless required by applicable law or agreed to in writing, software *
* distributed under the License is distributed on an "AS IS" BASIS, *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
* See the License for the specific language governing permissions and *
* limitations under the License. *
* -------------------------------------------------------------------------- */
#include "Simbody.h"
#include <iostream>
#include <algorithm>
using std::cout; using std::endl;
using namespace SimTK;
// This is an example that shows several things:
// 1. Integrating with a small maximum step size, using just an integrator
// without a time stepper.
// 2. Implementing a fixed-rate motor using a Motion (prescribed motion).
// 3. Changing motor speed externally from user input.
// 4. Creating sliders and menus in the Visualizer.
//
// Note: we are allowing the user to violently change motor speed, but we are
// not performing a momentum balance so the change is non-physical modeled
// this way. A momentum balance would allow us to calculate an impulse to be
// applied to the whole mechanism that would make the change momentum conserving
// as though the change had been implemented with a very large force over a very
// short duration.
const Real InitialMotorRate = 1; // rad/s
const Real InitialDissipation = 0.5; // damping in left joint stop
// Ids for the two sliders.
const int SliderIdMotorSpeed = 1, SliderIdDissipation = 2,
SliderIdTach = 3, SliderIdTorque = 4;
// Ids for things on the Run Menu.
const int MenuIdRun = 1;
static const int ResetItem=1, QuitItem=2;
#define USE_TORQUE_LIMITED_MOTOR
const Real MaxTorque = 100; // N-m
const Real MaxTorqueRate = .5; // s / MaxTorque change
const Real TorqueGain = 50000, DampingGain = 1000;
const Real TorqueDecay = 100;
#ifdef USE_TORQUE_LIMITED_MOTOR
// This Force element implements a torque-limited motor that runs at a user-
// selected speed unless that would require too much torque.
// trqDot = gain*(u_desired - u_actual)
// if (trq > MaxTorque) trqDot = min(0, trqDot)
// else if (trq < -MaxTorque) trqDot = max(0, trqDot)
//
class MyTorqueLimitedMotor : public Force::Custom::Implementation {
public:
MyTorqueLimitedMotor
(const MobilizedBody& mobod, MobilizerUIndex whichU,
Real gain, Real torqueLimit)
: m_matter(mobod.getMatterSubsystem()), m_mobod(mobod), m_whichU(whichU),
m_torqueGain(gain), m_torqueLimit(torqueLimit)
{ assert(gain >= 0 && torqueLimit >= 0); }
void setDesiredRate(State& state, Real speed) const {
Real& u_desired = Value<Real>::updDowncast(
m_matter.updDiscreteVariable(state, m_desiredUIx));
u_desired = speed;
}
// synonym to match name used by Motion
void setRate(State& state, Real speed) const {setDesiredRate(state,speed);}
// synonym to match name used by ConstantSpeed constraint
void setSpeed(State& state, Real speed) const {setDesiredRate(state,speed);}
Real getDesiredRate(const State& state) const {
const Real u_desired = Value<Real>::downcast(
m_matter.getDiscreteVariable(state, m_desiredUIx));
return u_desired;
}
Real getActualRate(const State& state) const {
const Real u_actual = m_mobod.getOneU(state, m_whichU);
return u_actual;
}
Real getRateError(const State& state) const {
return getActualRate(state) - getDesiredRate(state);
}
// Combine integrated torque and proportional torque, and clamp to limit.
Real getTorque(const State& state) const {
const Real integTrq = m_matter.getZ(state)[m_trqIx];
const Real proportionalTrq = -DampingGain*getRateError(state);
const Real totalTrq = clamp(-m_torqueLimit, integTrq+proportionalTrq,
m_torqueLimit);
return totalTrq;
}
// Force::Custom::Implementation virtuals:
void calcForce(const State& state,
Vector_<SpatialVec>& bodyForces,
Vector_<Vec3>& particleForces,
Vector& mobilityForces) const override
{
m_mobod.applyOneMobilityForce(state, m_whichU, getTorque(state),
mobilityForces);
}
Real calcPotentialEnergy(const State& state) const override {
return 0;
}
void realizeTopology(State& state) const override {
m_desiredUIx = m_matter.allocateDiscreteVariable
(state, Stage::Acceleration, new Value<Real>(0));
m_trqIx = m_matter.allocateZ(state, Vector(1,Real(0)));
}
void realizeAcceleration(const State& state) const override {
const Real integTrq = m_matter.getZ(state)[m_trqIx];
const Real abstrq=std::abs(integTrq), trqsign = sign(integTrq);
Real trqDot = -m_torqueGain*getRateError(state);
// Don't ask for more torque if we're already past the limit
if (abstrq >= m_torqueLimit && sign(trqDot)*trqsign >= 0)
trqDot = 0;
//const char* delay="WantLess: ";
//if (sign(trqDot)*trqsign >= 0) {
// // want more torque
// if (abstrq > m_torqueLimit) {
// trqDot = -trqsign*TorqueDecay*(abstrq-m_torqueLimit);
// delay = "TooBig: ";
// } else if (abstrq > 0.9*m_torqueLimit) {
// trqDot *= (m_torqueLimit-abstrq)/(0.9*m_torqueLimit);
// delay = "Limited: ";
// } else
// delay = "WantMore: ";
//}
//printf("%suerr=%g (actual=%g, des=%g) trq=%g trqdot=%g\n",
// delay, u_actual-u_desired,
// u_actual, u_desired, trq, trqDot);
Real rateLimit = m_torqueLimit/MaxTorqueRate; // full-scale change
//clampInPlace(-rateLimit, trqDot, rateLimit);
m_matter.updZDot(state)[m_trqIx] = trqDot;
}
private:
const SimbodyMatterSubsystem& m_matter;
MobilizedBody m_mobod;
MobilizerUIndex m_whichU;
Real m_torqueGain;
Real m_torqueLimit;
// Topology cache
mutable DiscreteVariableIndex m_desiredUIx;
mutable ZIndex m_trqIx;
};
#endif
const Real StopStiffness = 10000; // not changeable here
int main() {
try { // catch errors if any
// Create the system, with subsystems for the bodies and some forces.
MultibodySystem system;
SimbodyMatterSubsystem matter(system);
GeneralForceSubsystem forces(system);
Force::Gravity gravity(forces, matter, -YAxis, 9.8);
system.setUseUniformBackground(true); // request no ground & sky
// Describe a body with a point mass at (0, -3, 0) and draw a sphere there.
Real mass = 3; Vec3 pos(0,-3,0);
Body::Rigid bodyInfo(MassProperties(mass, pos, UnitInertia::pointMassAt(pos)));
bodyInfo.addDecoration(pos, DecorativeSphere(.2).setOpacity(.5));
// Create the tree of mobilized bodies, reusing the above body description.
MobilizedBody::Pin bodyT (matter.Ground(), Vec3(0), bodyInfo, Vec3(0));
MobilizedBody::Pin leftArm(bodyT, Vec3(-2, 0, 0), bodyInfo, Vec3(0));
MobilizedBody::Pin rtArm (bodyT, Vec3(2, 0, 0), bodyInfo, Vec3(0,-1,0));
// Add some damping.
Force::MobilityLinearDamper damper1(forces, bodyT, MobilizerUIndex(0), 10);
Force::MobilityLinearDamper damper2(forces, leftArm, MobilizerUIndex(0), 30);
Force::MobilityLinearDamper damper3(forces, rtArm, MobilizerUIndex(0), 10);
#ifdef USE_TORQUE_LIMITED_MOTOR
MyTorqueLimitedMotor* motorp =
new MyTorqueLimitedMotor(rtArm, MobilizerUIndex(0), TorqueGain, MaxTorque);
const MyTorqueLimitedMotor& motor = *motorp;
Force::Custom(forces, motorp); // takes over ownership
#else
// Use built-in Steady Motion as a low-budget motor model.
//Motion::Steady motor(rtArm, InitialMotorRate);
// Use built-in ConstantSpeed constraint as a low-budget motor model.
Constraint::ConstantSpeed motor(rtArm, InitialMotorRate);
#endif
// Add a joint stop to the left arm restricting it to q in [0,Pi/5].
Force::MobilityLinearStop stop(forces, leftArm, MobilizerQIndex(0),
StopStiffness,
InitialDissipation,
-Pi/8, // lower stop
Pi/8); // upper stop
Visualizer viz(system);
// Add sliders.
viz.addSlider("Motor speed", SliderIdMotorSpeed, -10, 10, InitialMotorRate);
viz.addSlider("Dissipation", SliderIdDissipation, 0, 10, InitialDissipation);
viz.addSlider("Tach", SliderIdTach, -20, 20, 0);
viz.addSlider("Torque", SliderIdTorque, -MaxTorque, MaxTorque, 0);
// Add Run menu.
Array_<std::pair<String,int> > runMenuItems;
runMenuItems.push_back(std::make_pair("Reset", ResetItem));
runMenuItems.push_back(std::make_pair("Quit", QuitItem));
viz.addMenu("Run", MenuIdRun, runMenuItems);
Visualizer::InputSilo* userInput = new Visualizer::InputSilo();
viz.addInputListener(userInput);
// Initialize the system and state.
State initState = system.realizeTopology();
// Simulate forever with a small max step size. Check for user input
// in between steps. Note: an alternate way to do this is to let the
// integrator take whatever steps it wants but use a TimeStepper to
// manage a periodic event handler to poll for user input. Here we're
// treating completion of a step as an event.
const Real MaxStepSize = 0.01*3; // 10ms
const int DrawEveryN = 3/3; // 3 steps = 30ms
//RungeKuttaMersonIntegrator integ(system);
//RungeKutta2Integrator integ(system);
SemiExplicitEuler2Integrator integ(system);
//SemiExplicitEulerIntegrator integ(system, .001);
integ.setAccuracy(1e-1);
//integ.setAccuracy(1e-3);
// Don't permit interpolation because we want the state returned after
// a step to be modifiable.
integ.setAllowInterpolation(false);
integ.initialize(initState);
int stepsSinceViz = DrawEveryN-1;
while (true) {
if (++stepsSinceViz % DrawEveryN == 0) {
const State& s = integ.getState();
viz.report(s);
const Real uActual = rtArm.getOneU(s, MobilizerUIndex(0));
viz.setSliderValue(SliderIdTach, uActual);
#ifdef USE_TORQUE_LIMITED_MOTOR
viz.setSliderValue(SliderIdTorque, motor.getTorque(s));
#else
system.realize(s); // taus are acceleration stage
//viz.setSliderValue(SliderIdTorque,
// rtArm.getOneTau(s, MobilizerUIndex(0)));
viz.setSliderValue(SliderIdTorque, motor.getMultiplier(s));
#endif
stepsSinceViz = 0;
}
// Advance time by MaxStepSize (might take multiple steps to get there).
integ.stepBy(MaxStepSize);
// Now poll for user input.
int whichSlider, whichMenu, whichItem; Real newValue;
// Did a slider move?
if (userInput->takeSliderMove(whichSlider, newValue)) {
State& state = integ.updAdvancedState();
switch(whichSlider) {
case SliderIdMotorSpeed:
// TODO: momentum balance?
//motor.setRate(state, newValue);
motor.setSpeed(state, newValue);
system.realize(state, Stage::Position);
system.prescribeU(state);
system.realize(state, Stage::Velocity);
system.projectU(state);
break;
case SliderIdDissipation:
stop.setMaterialProperties(state, StopStiffness, newValue);
system.realize(state, Stage::Position);
break;
}
}
// Was there a menu pick?
if (userInput->takeMenuPick(whichMenu, whichItem)) {
if (whichItem == QuitItem)
break; // done
// If Reset, stop the motor and restore default dissipation.
// Tell visualizer to update the sliders to match.
// Zero out all the q's and u's.
if (whichItem == ResetItem) {
State& state = integ.updAdvancedState();
//motor.setRate(state, 0);
motor.setSpeed(state, 0);
viz.setSliderValue(SliderIdMotorSpeed, 0);
stop.setMaterialProperties(state, StopStiffness, InitialDissipation);
viz.setSliderValue(SliderIdDissipation, InitialDissipation);
state.updQ() = 0; // all positions to zero
state.updU() = 0; // all velocities to zero
system.realize(state, Stage::Position);
system.prescribeU(state);
system.realize(state, Stage::Velocity);
system.projectU(state);
}
}
}
const int evals = integ.getNumRealizations();
std::cout << "Done -- simulated " << integ.getTime() << "s with "
<< integ.getNumStepsTaken() << " steps, avg step="
<< (1000*integ.getTime())/integ.getNumStepsTaken() << "ms "
<< (1000*integ.getTime())/evals << "ms/eval\n";
printf("Used Integrator %s at accuracy %g:\n",
integ.getMethodName(), integ.getAccuracyInUse());
printf("# STEPS/ATTEMPTS = %d/%d\n", integ.getNumStepsTaken(), integ.getNumStepsAttempted());
printf("# ERR TEST FAILS = %d\n", integ.getNumErrorTestFailures());
printf("# REALIZE/PROJECT = %d/%d\n", integ.getNumRealizations(), integ.getNumProjections());
} catch (const std::exception& e) {
std::cout << "ERROR: " << e.what() << std::endl;
return 1;
}
return 0;
}
|