1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
|
/* -------------------------------------------------------------------------- *
* Simbody(tm) Example: Pendulum *
* -------------------------------------------------------------------------- *
* This is part of the SimTK biosimulation toolkit originating from *
* Simbios, the NIH National Center for Physics-Based Simulation of *
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody. *
* *
* Portions copyright (c) 2007-12 Stanford University and the Authors. *
* Authors: Ajay Seth *
* Contributors: Michael Sherman *
* *
* Licensed under the Apache License, Version 2.0 (the "License"); you may *
* not use this file except in compliance with the License. You may obtain a *
* copy of the License at http://www.apache.org/licenses/LICENSE-2.0. *
* *
* Unless required by applicable law or agreed to in writing, software *
* distributed under the License is distributed on an "AS IS" BASIS, *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
* See the License for the specific language governing permissions and *
* limitations under the License. *
* -------------------------------------------------------------------------- */
// Define two identical double pendulums, one modeled the easy way using
// two pin mobilizers, the other modeled with free mobilizers plus a ball
// constraint, plus two "constant angle" constraints to get rid of the extra
// rotational degrees of freedom.
// We're going to show that the resulting reaction forces are identical.
#include "Simbody.h"
using namespace SimTK;
using std::cout; using std::endl;
int main() {
try {
// Create the system, with subsystems for the bodies and some forces.
MultibodySystem system;
SimbodyMatterSubsystem matter(system);
GeneralForceSubsystem forces(system);
// Add gravity as a force element.
Rotation x45(Pi/4, XAxis);
Rotation y45(Pi/4, YAxis);
Rotation z45(Pi/4, ZAxis);
Force::UniformGravity gravity(forces, matter, Vec3(10, Real(-9.8), 3));
// Create the body and some artwork for it.
Body::Rigid pendulumBody(MassProperties(1.0, Vec3(0), Inertia(1)));
pendulumBody.addDecoration(Transform(),
DecorativeSphere(Real(0.1)).setColor(Red));
// Add an instance of the body to the multibody system by connecting
// it to Ground via a pin mobilizer.
MobilizedBody::Pin pendulum1(matter.updGround(),
Transform(/*x45,*/Vec3(0,-1,0)),
pendulumBody,
Transform(Vec3(0, 1, 0)));
MobilizedBody::Pin pendulum1b(pendulum1,
Transform(/*x45,*/Vec3(0,-1,0)),
pendulumBody,
Transform(Vec3(0, 1, 0)));
// Now make an identical system with pin joints faked up using a
// free mobilizer + ball constraint + two angle constraints.
MobilizedBody::Free pendulum2(matter.updGround(),
Transform(/*x45,*/Vec3(2,-1,0)),
pendulumBody,
Transform(Vec3(0,1,0)));
Constraint::Ball ballcons2(matter.updGround(), Vec3(2,-1,0),
pendulum2, Vec3(0,1,0));
const Transform& X_GF2 = pendulum2.getDefaultInboardFrame();
const Transform& X_P2M = pendulum2.getDefaultOutboardFrame();
Constraint::ConstantAngle angx2(matter.Ground(), X_GF2.x(),
pendulum2, X_P2M.z());
Constraint::ConstantAngle angy2(matter.Ground(), X_GF2.y(),
pendulum2, X_P2M.z());
MobilizedBody::Free pendulum2b(pendulum2,
Transform(/*x45,*/Vec3(0,-1,0)),
pendulumBody,
Transform(Vec3(0,1,0)));
Constraint::Ball ballcons2b(pendulum2, Vec3(0,-1,0),
pendulum2b, Vec3(0,1,0));
const Transform& X_GF2b = pendulum2b.getDefaultInboardFrame();
const Transform& X_P2Mb = pendulum2b.getDefaultOutboardFrame();
Constraint::ConstantAngle angx2b(pendulum2, X_GF2b.x(),
pendulum2b, X_P2Mb.z());
Constraint::ConstantAngle angy2b(pendulum2, X_GF2b.y(),
pendulum2b, X_P2Mb.z());
// Visualize with default options; ask for a report every 1/30 of a second
// to match the Visualizer's default 30 frames per second rate.
Visualizer viz(system);
system.addEventReporter(new Visualizer::Reporter(viz, Real(1./30)));
// Initialize the system and state.
system.realizeTopology();
State state = system.getDefaultState();
pendulum1.setOneQ(state, 0, Pi/4);
//pendulum1.setOneU(state, 0, 1.0); // initial velocity 1 rad/sec
//pendulum1b.setOneU(state, 0, 1.0); // initial velocity 1 rad/sec
pendulum1b.setOneQ(state, 0, Pi/4);
pendulum2.setQToFitRotation(state, Rotation(Pi/4, ZAxis));
//pendulum2.setUToFitAngularVelocity(state, Vec3(0,0,1));
pendulum2b.setQToFitRotation(state, Rotation(Pi/4, ZAxis));
//pendulum2b.setUToFitAngularVelocity(state, Vec3(0,0,1));
system.realize(state);
const Vector lambda = state.getMultipliers();
Vector_<SpatialVec> consBodyForcesInG;
Vector consMobForces;
matter.calcConstraintForcesFromMultipliers(state, -lambda, consBodyForcesInG,
consMobForces);
const MobodIndex p2x = pendulum2.getMobilizedBodyIndex();
const MobodIndex p2bx = pendulum2b.getMobilizedBodyIndex();
const Rotation& R_G2 = pendulum2.getBodyTransform(state).R();
//consBodyForcesInG[p2x] = shiftForceFromTo(consBodyForcesInG[p2x],
// Vec3(0), R_G2*Vec3(0,1,0));
const int nb = matter.getNumBodies();
Vector_<SpatialVec> forcesAtMInG;
matter.calcMobilizerReactionForces(state, forcesAtMInG);
// The above method returns reactions *on the child body* at the outboard
// mobilizer frame M (that is, the frame fixed on the child body).
// Calculate the same reactions, but *on the parent body* and at the
// inboard mobilizer frame F (that is, the frame fixed on the parent body).
// This is done by shifting the reaction forces across the mobilizer from
// M to F, and negating.
// Note that for the example here the mobilizers aren't translating so
// the origins Mo and Fo are identical. Nevertheless we're using the
// generic code here that should work for any system.
Vector_<SpatialVec> forcesAtFInG(nb); // to hold the result
forcesAtFInG[0] = -forcesAtMInG[0]; // Ground is "welded" at origin
for (MobilizedBodyIndex i(1); i < matter.getNumBodies(); ++i) {
const MobilizedBody& body = matter.getMobilizedBody(i);
const MobilizedBody& parent = body.getParentMobilizedBody();
// Want to shift negated reaction by p_MF_G, the vector from M
// to F across the mobilizer, expressed in Ground. We can get p_FM,
// then re-express in Ground for the shift and negate.
const Vec3& p_FM = body.getMobilizerTransform(state).p();
const Rotation& R_PF = body.getInboardFrame(state).R(); // In parent.
const Rotation& R_GP = parent.getBodyTransform(state).R();
Rotation R_GF = R_GP*R_PF; // F frame orientation in Ground.
Vec3 p_MF_G = -(R_GF*p_FM); // Re-express and negate shift vector.
forcesAtFInG[i] = -shiftForceBy(forcesAtMInG[i], p_MF_G);
}
std::cout << "Reactions @M: " << forcesAtMInG << "\n";
std::cout << "Reactions @F: " << forcesAtFInG << "\n";
std::cout << "norm of difference: " << (forcesAtMInG+forcesAtFInG).norm()
<< "\n";
const MobodIndex p1x = pendulum1.getMobilizedBodyIndex();
const MobodIndex p1bx = pendulum1b.getMobilizedBodyIndex();
const Rotation& R_G1 = pendulum1.getBodyTransform(state).R();
const Rotation& R_G1b = pendulum1b.getBodyTransform(state).R();
// This time shift the child reactions from the mobilizer frames M to the
// child body frames B so we can compare with the constraint forces that
// are returned at the child body frame.
Vector_<SpatialVec> forcesAtBInG(nb);
for (MobodIndex i(0); i < nb; ++i) {
const Mobod& body = matter.getMobilizedBody(i);
const Vec3& p_BM = body.getOutboardFrame(state).p();
const Rotation& R_GB = body.getBodyTransform(state).R();
forcesAtBInG[i] = shiftForceFromTo(forcesAtMInG[i],
R_GB*p_BM, Vec3(0));
}
std::cout << "Pin mobilizer reaction forces:\n";
std::cout << "FB_G=" << forcesAtBInG[p1x]
<< " " << forcesAtBInG[p1bx] << "\n";
std::cout << "Constraint reaction forces (should be the same):\n";
cout << "FC_G=" << -(ballcons2.getConstrainedBodyForcesAsVector(state)
+ angx2.getConstrainedBodyForcesAsVector(state)
+ angy2.getConstrainedBodyForcesAsVector(state))[1] << " ";
cout << -(ballcons2b.getConstrainedBodyForcesAsVector(state)
+ angx2b.getConstrainedBodyForcesAsVector(state)
+ angy2b.getConstrainedBodyForcesAsVector(state))[1] << endl;
viz.report(state);
// Simulate it.
cout << "Hit ENTER to run a short simulation ...";
getchar();
RungeKuttaMersonIntegrator integ(system);
TimeStepper ts(system, integ);
ts.initialize(state);
ts.stepTo(1.0);
state = integ.getState();
system.realize(state);
matter.calcMobilizerReactionForces(state, forcesAtMInG);
const Transform& X_GP = pendulum1.getBodyTransform(state);
//forcesAtMInG[1][1] = X_GP.R()*forcesAtMInG[1][1];
std::cout << "FM_G=" << forcesAtMInG << "\n";
ts.stepTo(Real(1.2));
state = integ.getState();
system.realize(state);
matter.calcMobilizerReactionForces(state, forcesAtMInG);
std::cout << "FM_G=" << forcesAtMInG << "\n";
} catch (const std::exception& e) {
std::cout << "ERROR: " << e.what() << std::endl;
return 1;
} catch (...) {
std::cout << "UNKNOWN EXCEPTION\n";
return 1;
}
return 0;
}
|