File: ExamplePendulum.cpp

package info (click to toggle)
simbody 3.7%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 72,896 kB
  • sloc: cpp: 248,827; ansic: 18,240; sh: 29; makefile: 24
file content (220 lines) | stat: -rw-r--r-- 10,782 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
/* -------------------------------------------------------------------------- *
 *                       Simbody(tm) Example: Pendulum                        *
 * -------------------------------------------------------------------------- *
 * This is part of the SimTK biosimulation toolkit originating from           *
 * Simbios, the NIH National Center for Physics-Based Simulation of           *
 * Biological Structures at Stanford, funded under the NIH Roadmap for        *
 * Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody.  *
 *                                                                            *
 * Portions copyright (c) 2007-12 Stanford University and the Authors.        *
 * Authors: Ajay Seth                                                         *
 * Contributors: Michael Sherman                                              *
 *                                                                            *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may    *
 * not use this file except in compliance with the License. You may obtain a  *
 * copy of the License at http://www.apache.org/licenses/LICENSE-2.0.         *
 *                                                                            *
 * Unless required by applicable law or agreed to in writing, software        *
 * distributed under the License is distributed on an "AS IS" BASIS,          *
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.   *
 * See the License for the specific language governing permissions and        *
 * limitations under the License.                                             *
 * -------------------------------------------------------------------------- */


// Define two identical double pendulums, one modeled the easy way using
// two pin mobilizers, the other modeled with free mobilizers plus a ball
// constraint, plus two "constant angle" constraints to get rid of the extra 
// rotational degrees of freedom.
// We're going to show that the resulting reaction forces are identical.


#include "Simbody.h"

using namespace SimTK;
using std::cout; using std::endl;

int main() {
  try {   
    // Create the system, with subsystems for the bodies and some forces.
    MultibodySystem system;
    SimbodyMatterSubsystem matter(system);
    GeneralForceSubsystem forces(system);

    // Add gravity as a force element.
    Rotation x45(Pi/4, XAxis);
    Rotation y45(Pi/4, YAxis);
    Rotation z45(Pi/4, ZAxis);
    Force::UniformGravity gravity(forces, matter, Vec3(10, Real(-9.8), 3));
    // Create the body and some artwork for it.
    Body::Rigid pendulumBody(MassProperties(1.0, Vec3(0), Inertia(1)));
    pendulumBody.addDecoration(Transform(), 
                               DecorativeSphere(Real(0.1)).setColor(Red));

    // Add an instance of the body to the multibody system by connecting
    // it to Ground via a pin mobilizer.
    MobilizedBody::Pin pendulum1(matter.updGround(), 
                                Transform(/*x45,*/Vec3(0,-1,0)), 
                                pendulumBody, 
                                Transform(Vec3(0, 1, 0)));
    MobilizedBody::Pin pendulum1b(pendulum1, 
                                Transform(/*x45,*/Vec3(0,-1,0)), 
                                pendulumBody, 
                                Transform(Vec3(0, 1, 0)));

    // Now make an identical system with pin joints faked up using a
    // free mobilizer + ball constraint + two angle constraints.
    MobilizedBody::Free pendulum2(matter.updGround(), 
                                  Transform(/*x45,*/Vec3(2,-1,0)),
                                  pendulumBody, 
                                  Transform(Vec3(0,1,0)));
    Constraint::Ball ballcons2(matter.updGround(), Vec3(2,-1,0),
                               pendulum2, Vec3(0,1,0));
    const Transform& X_GF2 = pendulum2.getDefaultInboardFrame();
    const Transform& X_P2M = pendulum2.getDefaultOutboardFrame();
    Constraint::ConstantAngle angx2(matter.Ground(), X_GF2.x(),
                              pendulum2, X_P2M.z());
    Constraint::ConstantAngle angy2(matter.Ground(), X_GF2.y(),
                              pendulum2, X_P2M.z());

    MobilizedBody::Free pendulum2b(pendulum2, 
                                   Transform(/*x45,*/Vec3(0,-1,0)),
                                   pendulumBody, 
                                   Transform(Vec3(0,1,0)));
    Constraint::Ball ballcons2b(pendulum2, Vec3(0,-1,0),
                                pendulum2b, Vec3(0,1,0));
    const Transform& X_GF2b = pendulum2b.getDefaultInboardFrame();
    const Transform& X_P2Mb = pendulum2b.getDefaultOutboardFrame();
    Constraint::ConstantAngle angx2b(pendulum2, X_GF2b.x(),
                              pendulum2b, X_P2Mb.z());
    Constraint::ConstantAngle angy2b(pendulum2, X_GF2b.y(),
                              pendulum2b, X_P2Mb.z());


    // Visualize with default options; ask for a report every 1/30 of a second
    // to match the Visualizer's default 30 frames per second rate.
    Visualizer viz(system);
    system.addEventReporter(new Visualizer::Reporter(viz, Real(1./30)));
    
    // Initialize the system and state.
    
    system.realizeTopology();
    State state = system.getDefaultState();
    pendulum1.setOneQ(state, 0, Pi/4);
    //pendulum1.setOneU(state, 0, 1.0); // initial velocity 1 rad/sec

    //pendulum1b.setOneU(state, 0, 1.0); // initial velocity 1 rad/sec
    pendulum1b.setOneQ(state, 0, Pi/4);

    pendulum2.setQToFitRotation(state, Rotation(Pi/4, ZAxis));
    //pendulum2.setUToFitAngularVelocity(state, Vec3(0,0,1));
    pendulum2b.setQToFitRotation(state, Rotation(Pi/4, ZAxis));
    //pendulum2b.setUToFitAngularVelocity(state, Vec3(0,0,1));

    system.realize(state);
    const Vector lambda = state.getMultipliers();
    Vector_<SpatialVec> consBodyForcesInG;
    Vector              consMobForces;
    matter.calcConstraintForcesFromMultipliers(state, -lambda, consBodyForcesInG,
        consMobForces);
    const MobodIndex p2x = pendulum2.getMobilizedBodyIndex();
    const MobodIndex p2bx = pendulum2b.getMobilizedBodyIndex();
    const Rotation& R_G2 = pendulum2.getBodyTransform(state).R();
    //consBodyForcesInG[p2x] = shiftForceFromTo(consBodyForcesInG[p2x],
     //                                         Vec3(0), R_G2*Vec3(0,1,0));

    const int nb = matter.getNumBodies();
    Vector_<SpatialVec> forcesAtMInG;
    matter.calcMobilizerReactionForces(state, forcesAtMInG);

    // The above method returns reactions *on the child body* at the outboard
    // mobilizer frame M (that is, the frame fixed on the child body). 
    // Calculate the same reactions, but *on the parent body* and at the 
    // inboard mobilizer frame F (that is, the frame fixed on the parent body). 
    // This is done by shifting the reaction forces across the mobilizer from 
    // M to F, and negating.
    // Note that for the example here the mobilizers aren't translating so
    // the origins Mo and Fo are identical. Nevertheless we're using the
    // generic code here that should work for any system.

    Vector_<SpatialVec> forcesAtFInG(nb); // to hold the result
    forcesAtFInG[0] = -forcesAtMInG[0]; // Ground is "welded" at origin
    for (MobilizedBodyIndex i(1); i < matter.getNumBodies(); ++i) {
        const MobilizedBody& body   = matter.getMobilizedBody(i);
        const MobilizedBody& parent = body.getParentMobilizedBody();
        // Want to shift negated reaction by p_MF_G, the vector from M
        // to F across the mobilizer, expressed in Ground. We can get p_FM, 
        // then re-express in Ground for the shift and negate.
        const Vec3& p_FM = body.getMobilizerTransform(state).p();
        const Rotation& R_PF = body.getInboardFrame(state).R(); // In parent.
        const Rotation& R_GP = parent.getBodyTransform(state).R();
        Rotation R_GF   =   R_GP*R_PF;  // F frame orientation in Ground.
        Vec3     p_MF_G = -(R_GF*p_FM); // Re-express and negate shift vector.
        forcesAtFInG[i] = -shiftForceBy(forcesAtMInG[i], p_MF_G);
    }

    std::cout << "Reactions @M: " << forcesAtMInG << "\n";
    std::cout << "Reactions @F: " << forcesAtFInG << "\n";
    std::cout << "norm of difference: " << (forcesAtMInG+forcesAtFInG).norm() 
              << "\n";

    const MobodIndex p1x = pendulum1.getMobilizedBodyIndex();
    const MobodIndex p1bx = pendulum1b.getMobilizedBodyIndex();
    const Rotation& R_G1 = pendulum1.getBodyTransform(state).R();
    const Rotation& R_G1b = pendulum1b.getBodyTransform(state).R();

    // This time shift the child reactions from the mobilizer frames M to the
    // child body frames B so we can compare with the constraint forces that
    // are returned at the child body frame.
    Vector_<SpatialVec> forcesAtBInG(nb);
    for (MobodIndex i(0); i < nb; ++i) {
        const Mobod& body = matter.getMobilizedBody(i);
        const Vec3&  p_BM = body.getOutboardFrame(state).p();
        const Rotation& R_GB = body.getBodyTransform(state).R();
        forcesAtBInG[i] = shiftForceFromTo(forcesAtMInG[i],
                                           R_GB*p_BM, Vec3(0));
    }

    std::cout << "Pin mobilizer reaction forces:\n";
    std::cout << "FB_G=" << forcesAtBInG[p1x] 
              << " " << forcesAtBInG[p1bx] << "\n";

    std::cout << "Constraint reaction forces (should be the same):\n";
    cout << "FC_G=" << -(ballcons2.getConstrainedBodyForcesAsVector(state)
        + angx2.getConstrainedBodyForcesAsVector(state)
        + angy2.getConstrainedBodyForcesAsVector(state))[1] << " ";
    cout << -(ballcons2b.getConstrainedBodyForcesAsVector(state) 
        + angx2b.getConstrainedBodyForcesAsVector(state)
        + angy2b.getConstrainedBodyForcesAsVector(state))[1] << endl;

    viz.report(state);
    // Simulate it.
    cout << "Hit ENTER to run a short simulation ...";
    getchar();

    RungeKuttaMersonIntegrator integ(system);
    TimeStepper ts(system, integ);
    ts.initialize(state);
    ts.stepTo(1.0);
    state = integ.getState();
    system.realize(state);
    matter.calcMobilizerReactionForces(state, forcesAtMInG);
    const Transform& X_GP = pendulum1.getBodyTransform(state);
    //forcesAtMInG[1][1] = X_GP.R()*forcesAtMInG[1][1];
    std::cout << "FM_G=" << forcesAtMInG << "\n";
    ts.stepTo(Real(1.2));
    state = integ.getState();
    system.realize(state);
    matter.calcMobilizerReactionForces(state, forcesAtMInG);
    std::cout << "FM_G=" << forcesAtMInG << "\n";

  } catch (const std::exception& e) {
      std::cout << "ERROR: " << e.what() << std::endl;
      return 1;
  } catch (...) {
      std::cout << "UNKNOWN EXCEPTION\n";
      return 1;
  }

    return 0;
}