1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
|
/* -------------------------------------------------------------------------- *
* Simbody(tm) Example: SimplePlanarMechanism *
* -------------------------------------------------------------------------- *
* This is part of the SimTK biosimulation toolkit originating from *
* Simbios, the NIH National Center for Physics-Based Simulation of *
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody. *
* *
* Portions copyright (c) 2013 Stanford University and the Authors. *
* Authors: Michael Sherman *
* Contributors: Kevin He (Roblox) *
* *
* Licensed under the Apache License, Version 2.0 (the "License"); you may *
* not use this file except in compliance with the License. You may obtain a *
* copy of the License at http://www.apache.org/licenses/LICENSE-2.0. *
* *
* Unless required by applicable law or agreed to in writing, software *
* distributed under the License is distributed on an "AS IS" BASIS, *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
* See the License for the specific language governing permissions and *
* limitations under the License. *
* -------------------------------------------------------------------------- */
#include "Simbody.h"
using namespace SimTK;
#include <cstdio>
using std::cout; using std::endl;
// This builds a scissor lift mechanism as suggested by Kevin He at Roblox.
// You can choose the number of scissor levels.
// This is a planar mechanism. It is rather a worst case for an internal
// coordinate multibody system since it has lots of tree degrees of freedom,
// all but one of which is removed by constraints. Execution time will grow
// as O(m^3) once the number of constraints m is large enough so that factoring
// the constraint matrix dominates the execution time.
//
// You can instead use stiff springs instead of constraints to model the
// cross-connections. That results in considerable savings in per-evaluation
// CPU time (I measured almost 10X at 10 levels), but it makes the system stiff
// and requires *much* smaller time steps.
//
// The mechanism is built to operate in the X-Y plane, with Y vertical and
// X to the right. Joints are all pins in the Z direction.
static const int NumLevels = 10;
static const bool PrescribeRotor = true;
static const bool UseSpringsInsteadOfConstraints = false;
// This Force element holds a point on one body (the "follower") onto a plane
// on another via a spring that acts always along the plane normal.
class DirectionalSpringDamper : public Force::Custom::Implementation {
public:
DirectionalSpringDamper
(const MobilizedBody& plane, const UnitVec3& normal, Real h,
const MobilizedBody& follower, const Vec3& point,
Real k, Real c) // stiffness and damping
: plane(plane), normal(normal), h(h),
follower(follower), point(point), k(k), c(c)
{ assert(k >= 0 && c >= 0); }
virtual void calcForce(const State& state,
Vector_<SpatialVec>& bodyForces,
Vector_<Vec3>& particleForces,
Vector& mobilityForces) const override
{
const Vec3 p = follower.findStationLocationInAnotherBody
(state, point, plane);
const Vec3 v = follower.findStationVelocityInAnotherBody
(state, point, plane);
const Real x = dot(p,normal) - h; // height of point over plane
const Real s = dot(v,normal); // speed along normal
const Vec3 forceOnPlane = plane.expressVectorInGroundFrame
(state, k*x*normal + s*c);
// Apply equal and opposite forces at the same point in space.
plane.applyForceToBodyPoint(state, p, forceOnPlane, bodyForces);
follower.applyForceToBodyPoint(state, point, -forceOnPlane, bodyForces);
}
virtual Real calcPotentialEnergy(const State& state) const override {
const Vec3 p = follower.findStationLocationInAnotherBody
(state, point, plane);
const Real x = dot(p,normal) - h; // height of point over plane
return k*x*x/2;
}
private:
MobilizedBody plane;
UnitVec3 normal;
Real h;
MobilizedBody follower;
Vec3 point;
Real k, c;
};
int main() {
try { // catch errors if any
// Create the system, with subsystems for the bodies and some forces.
MultibodySystem system;
SimbodyMatterSubsystem matter(system);
GeneralForceSubsystem forces(system);
Force::Gravity gravity(forces, matter, -YAxis, 9.8);
// Turn off automatically-generated geometry so we just see what we
// draw here.
matter.setShowDefaultGeometry(false);
// Height off the ground, and half width of the scissor mechanism's base.
Real Height = 2, BaseHalfWidth = .35;
// Definition of the rotor body, used so the simulation won't be boring.
Real rotorMass = .5;
Vec3 rotorSz(.25,.05,.025); // half dimensions of rotor body
Body::Rigid rotorInfo(MassProperties(rotorMass, Vec3(0),
UnitInertia::brick(rotorSz)));
rotorInfo.addDecoration(Vec3(0), DecorativeBrick(rotorSz).setColor(Red));
// Describe a long thin rectangular body, with the long direction in Y.
Real linkMass = 1;
Vec3 linkSz(.1,1,.025); // half dimensions of link body
Body::Rigid linkInfo(MassProperties(linkMass, Vec3(0),
UnitInertia::brick(linkSz)));
linkInfo.addDecoration(Vec3(0), DecorativeBrick(linkSz).setColor(Green));
// Attach the rotor to Ground off to the right and push into -z a little
// so it is offset from the link.
MobilizedBody::Pin rotor(matter.Ground(), Vec3(BaseHalfWidth + 2*rotorSz[0],
Height, 0),
rotorInfo, Vec3(rotorSz[0],0, rotorSz[2]));
// Can let the rotor flop or prescribe it to go at a constant velocity.
if (PrescribeRotor) {
//Vector coef(2); coef[0]=1; coef[1]=0;
//Constraint::PrescribedMotion(matter, new Function::Linear(coef),
// rotor, MobilizerQIndex(0));
// Using a Motion rather than a constraint is faster, especially if
// there are no other constraints.
Motion::Steady(rotor, 1.);
}
// Create the two trees of mobilized bodies, reusing the above link
// description.
MobilizedBody::Pin right1
(rotor, Vec3(-rotorSz[0], 0, rotorSz[2]),
linkInfo, Vec3(0, -linkSz[1], -linkSz[2]));
MobilizedBody::Pin left1
(matter.Ground(), Vec3(-BaseHalfWidth,Height,2*linkSz[2]),
linkInfo, Vec3(0, -linkSz[1], -linkSz[2]));
right1.setDefaultAngle(Pi/8);
left1.setDefaultAngle(-Pi/8);
MobilizedBody::Pin lastRight = right1, lastLeft = left1;
Real sign = -1; // alternate initial angles
for (int i=1; i <= NumLevels; ++i) {
// Add cross connections between the tree ends using two 1-dof
// constraints (that's enough since this is planar).
if (UseSpringsInsteadOfConstraints) {
const Real k = 3000000, c = 1000;
Force::Custom(forces,
new DirectionalSpringDamper(lastLeft,YAxis, 0.,
lastRight, Vec3(0), k, c));
Force::Custom(forces,
new DirectionalSpringDamper(lastRight,YAxis, 0.,
lastLeft, Vec3(0), k, c));
} else {
Constraint::PointInPlane(lastLeft, YAxis, 0., // the plane
lastRight, Vec3(0)); // the point
Constraint::PointInPlane(lastRight, YAxis, 0., // the plane
lastLeft, Vec3(0)); // the point
}
if (i==NumLevels) break;
// Add generic link pair.
lastRight = MobilizedBody::Pin(lastRight, Vec3(0, linkSz[1], 0),
linkInfo, Vec3(0, -linkSz[1], 0));
lastLeft = MobilizedBody::Pin(lastLeft, Vec3(0, linkSz[1], 0),
linkInfo, Vec3(0, -linkSz[1], 0));
// Set default initial conditions in a zig-zag pattern.
lastRight.setDefaultAngle(sign*2*Pi/8);
lastLeft.setDefaultAngle(-sign*2*Pi/8);
sign = -sign;
}
// Ask for visualization every 1/30 second.
Visualizer viz(system);
system.addEventReporter(new Visualizer::Reporter(viz, 1./30));
// Initialize the system and state.
State state = system.realizeTopology();
cout << "Scissors before assembly ... ENTER to assemble.\n";
viz.report(state);
getchar();
Assembler(system).assemble(state);
cout << "Scissors after assembly ... ENTER to "
<< (UseSpringsInsteadOfConstraints?"minimize energy":"run simulation")
<< "\n";
viz.report(state);
getchar();
if (UseSpringsInsteadOfConstraints) {
try {
LocalEnergyMinimizer::minimizeEnergy(system,state,10.);
} catch(const std::exception& e) {
cout << "Minimizer failed with " << e.what() << ". Continuing\n";
}
cout << "Scissors after static ... ENTER to run simulation.\n";
viz.report(state);
getchar();
}
// Run a simulation. There are a variety of integration settings you
// can play with here. If you put a cap on the max step size, you should
// use a low order integrator to avoid wasting cycles.
const Real Accuracy = 0.1; // i.e., 10%. Default is 0.1%.
//const Real Accuracy = 0.01; // 1%
//const Real Accuracy = 0.2; // 20%
//const Real Accuracy = 0.5; // 50%
const Real MaxStepSize = Infinity;
//RungeKuttaMersonIntegrator integ(system); // 4th order
//const Real MaxStepSize = 0.05; // 50 ms
RungeKutta3Integrator integ(system); // 3rd order
//const Real MaxStepSize = .001;
//const Real MaxStepSize = .0005;
//RungeKutta2Integrator integ(system); // 2nd order
//ExplicitEulerIntegrator integ(system); // 1st order
integ.setMaximumStepSize(MaxStepSize);
integ.setAccuracy(Accuracy);
// Maintain 1mm tolerance even at very loose integration accuracy.
integ.setConstraintTolerance(std::min(.001, Accuracy/10));
TimeStepper ts(system, integ);
ts.initialize(state);
const double startReal = realTime();
const double startCPU = cpuTime();
ts.stepTo(10); // Run simulation for 10s.
// Finished simulating; dump out some stats. On Windows CPUtime is not
// reliable if very little time is spent in this thread.
const double timeInSec = realTime()-startReal;
const double cpuInSec = cpuTime()-startCPU;
const int evals = integ.getNumRealizations();
cout << "Done -- took " << integ.getNumStepsTaken() << " steps in " <<
timeInSec << "s for " << integ.getTime() << "s sim (avg step="
<< (1000*integ.getTime())/integ.getNumStepsTaken() << "ms) "
<< (1000*integ.getTime())/evals << "sim ms/eval\n";
cout << "CPUtime (not reliable when visualizing) " << cpuInSec << endl;
printf("Used Integrator %s at accuracy %g:\n",
integ.getMethodName(), integ.getAccuracyInUse());
printf("# STEPS/ATTEMPTS = %d/%d\n", integ.getNumStepsTaken(),
integ.getNumStepsAttempted());
printf("# ERR TEST FAILS = %d\n", integ.getNumErrorTestFailures());
printf("# REALIZE/PROJECT = %d/%d\n", integ.getNumRealizations(),
integ.getNumProjections());
} catch (const std::exception& e) {
std::cout << "ERROR: " << e.what() << std::endl;
return 1;
}
return 0;
}
|