File: ExampleWrapping.cpp

package info (click to toggle)
simbody 3.7%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 72,896 kB
  • sloc: cpp: 248,827; ansic: 18,240; sh: 29; makefile: 24
file content (318 lines) | stat: -rw-r--r-- 9,836 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
/* -------------------------------------------------------------------------- *
 *                         Simbody(tm)  ExampleWrapping                           *
 * -------------------------------------------------------------------------- *
 * This is part of the SimTK biosimulation toolkit originating from           *
 * Simbios, the NIH National Center for Physics-Based Simulation of           *
 * Biological Structures at Stanford, funded under the NIH Roadmap for        *
 * Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody.  *
 *                                                                            *
 * Portions copyright (c) 2005-12 Stanford University and the Authors.        *
 * Authors: Ian Stavness, Michael Sherman                                     *
 * Contributors:                                                              *
 *                                                                            *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may    *
 * not use this file except in compliance with the License. You may obtain a  *
 * copy of the License at http://www.apache.org/licenses/LICENSE-2.0.         *
 *                                                                            *
 * Unless required by applicable law or agreed to in writing, software        *
 * distributed under the License is distributed on an "AS IS" BASIS,          *
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.   *
 * See the License for the specific language governing permissions and        *
 * limitations under the License.                                             *
 * -------------------------------------------------------------------------- */

/*
 * This example demonstrates cable path wrapping for one obstacle
 */

#include "Simbody.h"

using namespace SimTK;
using std::cos;
using std::sin;
using std::cout;
using std::endl;

// Newton solver settings
const Real ftol = 1e-9;
const Real xtol = 1e-9;
const Real minlam = 1e-9;
const int maxNewtonIterations = 25;

Real pauseBetweenPathIterations = 1; // sec
Real estimatedPathErrorAccuracy = 1e-12;

const Real vizInterval = Infinity; // set to 1/30. to vizualize shooting


class VizPeriodicReporter : public PeriodicEventReporter {
public:
    VizPeriodicReporter(const Visualizer& viz, const State& dummyState, Real interval) :
        PeriodicEventReporter(interval), viz(viz), dummyState(dummyState) {
    }

    void handleEvent(const State& state) const override {
        viz.report(dummyState);
    }

private:
    const Visualizer& viz;
    const State& dummyState;
};

/*
 * This class is used to calculate the path error for a single obstacle
 */
class PathError: public Differentiator::JacobianFunction {

public:
    PathError(int nf, int ny, ContactGeometry& geom, Geodesic& geod,
            const Vec3& O, const Vec3& I) :
            Differentiator::JacobianFunction(nf, ny),
                    geom(geom), geod(geod),
                    O(O), I(I) { }

    // x = ~[P, Q]
    int f(const Vector& x, Vector& fx) const override  {
        Vec3 P(&x[0]);
        Vec3 Q(&x[3]);

        UnitVec3 r_OP(P-O);
        UnitVec3 r_QI(I-Q);

        geod.clear();
        geom.calcGeodesic(P, Q, r_OP, -r_QI, geod);

        const UnitVec3& nP = geod.getNormalP();
        const UnitVec3& nQ = geod.getNormalQ();
        const UnitVec3& bP = geod.getBinormalP();
        const UnitVec3& bQ = geod.getBinormalQ();

        fx[0] = ~r_OP*nP;
        fx[1] = ~r_QI*nQ;
        fx[2] = ~r_OP*bP;
        fx[3] = ~r_QI*bQ;
        fx[4] = geom.calcSurfaceValue(P);
        fx[5] = geom.calcSurfaceValue(Q);

        return 0;
    }

    const Geodesic& getGeod() {
        return geod;
    }

private:
    ContactGeometry& geom;
    const Vec3& O;
    const Vec3& I;

    // temporary variables
    Geodesic& geod;

}; // class PathError

/*
 * This class is used to calculate the path error for a single obstacle
 * using the split geodesic error
 */
class PathErrorSplit: public Differentiator::JacobianFunction {

public:
    PathErrorSplit(int nf, int ny, ContactGeometry& geom, Geodesic& geod,
            const Vec3& O, const Vec3& I) :
            Differentiator::JacobianFunction(nf, ny),
                    geom(geom), geod(geod),
                    O(O), I(I) { }

    // x = ~[P, Q]
    int f(const Vector& x, Vector& fx) const override  {
        Vec3 P(&x[0]);
        Vec3 Q(&x[3]);

        // calculate plane bisecting P and Q, and use as termination condition for integrator
        UnitVec3 normal(Q-P);
        Real offset = (~(P+Q)*normal)/2 ;
        geom.setPlane(Plane(normal, offset));

        UnitVec3 nP = geom.calcSurfaceUnitNormal(P);
        UnitVec3 nQ = geom.calcSurfaceUnitNormal(Q);

        UnitVec3 e_OP(P-O);
        UnitVec3 e_QI(I-Q);

        UnitVec3 tP(e_OP-nP*(~nP*e_OP));
        UnitVec3 tQ(e_QI-nQ*(~nQ*e_QI));

        geod.clear();
        Vec2 geodErr = geom.calcSplitGeodErrorAnalytical(P, Q, tP, -tQ);

        fx[0] = ~e_OP*nP;
        fx[1] = ~e_QI*nQ;
        fx[2] = geodErr[0];
        fx[3] = geodErr[1];
        fx[4] = geom.calcSurfaceValue(P);
        fx[5] = geom.calcSurfaceValue(Q);

        return 0;
    }

    const Geodesic& getGeod() {
        return geod;
    }

private:
    ContactGeometry& geom;
    const Vec3& O;
    const Vec3& I;

    // temporary variables
    Geodesic& geod;

}; // class PathErrorSplit

static Real maxabs(Vector x) {
    Real maxVal = 0;
    for (int i = 0; i < x.size(); ++i) {
        if (std::abs(x[i]) > maxVal)
            maxVal = std::abs(x[i]);
    }
    return maxVal;
}

static Real maxabsdiff(Vector x, Vector xold) {
//    ASSERT(x.size()==xold.size());
    Real maxVal = 0;
    for (int i = 0; i < x.size(); ++i) {
        if (std::abs(x[i]-xold[i])/std::max(x[i],1.0) > maxVal)
            maxVal = std::abs(x[i]-xold[i])/std::max(x[i],1.0);
    }
    return maxVal;
}


int main() {
  try {

    // setup test problem
    double r = .5;
    double uP = -Pi/2;
    double vP = Pi/3;
    double uQ = 0;
    double vQ = 2;
    Vec3 O(-r, -r, 0.2);
    Vec3 I(r, r, -r);
    Vec3 P(r*cos(uP)*sin(vP), r*sin(uP)*sin(vP), r*cos(vP));
    Vec3 Q(r*cos(uQ)*sin(vQ), r*sin(uQ)*sin(vQ), r*cos(vQ));

    Vec3 r_OP = P-O;
    Vec3 r_IQ = Q-I;
    Vec3 tP = r_OP.normalize();
    Vec3 tQ = r_IQ.normalize();

    int n = 6; // problem size
    Vector x(n), dx(n), Fx(n), xold(n);
    Matrix J(n,n);

    ContactGeometry::Sphere geom(r);
//    r = 2;
//    Vec3 radii(1,2,3);
//    ContactGeometry::Ellipsoid geom(radii);
    Geodesic geod;

    // Create a dummy MultibodySystem for visualization purposes
    MultibodySystem dummySystem;
    SimbodyMatterSubsystem matter(dummySystem);
    matter.updGround().addBodyDecoration(Transform(), geom.createDecorativeGeometry()
            .setColor(Gray)
            .setOpacity(0.5)
            .setResolution(5));

    // Visualize with default options; ask for a report every 1/30 of a second
    // to match the Visualizer's default 30 frames per second rate.
    Visualizer viz(dummySystem);
    viz.setBackgroundType(Visualizer::SolidColor);
    dummySystem.addEventReporter(new Visualizer::Reporter(viz, 1./30));

    // add vizualization callbacks for geodesics, contact points, etc.
    viz.addDecorationGenerator(new GeodesicDecorator(geom.getGeodP(), Red));
    viz.addDecorationGenerator(new GeodesicDecorator(geom.getGeodQ(), Blue));
    viz.addDecorationGenerator(new GeodesicDecorator(geod, Orange));
    viz.addDecorationGenerator(new PlaneDecorator(geom.getPlane(), Gray));
    viz.addDecorationGenerator(new PathDecorator(x, O, I, Green));
    dummySystem.realizeTopology();
    State dummyState = dummySystem.getDefaultState();


    // calculate the geodesic
    geom.addVizReporter(new VizPeriodicReporter(viz, dummyState, vizInterval));
    viz.report(dummyState);

    // creat path error function
    //PathError pathErrorFnc(n, n, geom, geod, O, I);
    PathErrorSplit pathErrorFnc(n, n, geom, geod, O, I);
    pathErrorFnc.setEstimatedAccuracy(estimatedPathErrorAccuracy);
    Differentiator diff(pathErrorFnc);

    // set initial conditions
    x[0]=P[0]; x[1]=P[1]; x[2]=P[2];
    x[3]=Q[0]; x[4]=Q[1]; x[5]=Q[2];

    Real f, fold, lam;

    pathErrorFnc.f(x, Fx);
    viz.report(dummyState);
    sleepInSec(pauseBetweenPathIterations);

    f = std::sqrt(~Fx*Fx);
    for (int i = 0; i < maxNewtonIterations; ++i) {
        if (f < ftol) {
            std::cout << "path converged in " << i << " iterations" << std::endl;
//            cout << "obstacle err = " << Fx << ", x = " << x << endl;
            break;
        }

        diff.calcJacobian(x, Fx, J, Differentiator::ForwardDifference);
        dx = J.invert()*Fx;

        fold = f;
        xold = x;

        // backtracking
        lam = 1;
        while (true) {
            x = xold - lam*dx;
            cout << "TRY stepsz=" << lam << " sz*dx=" << lam*dx << endl;
            pathErrorFnc.f(x, Fx);
            f = std::sqrt(~Fx*Fx);
            if (f > fold && lam > minlam) {
                lam = lam / 2;
            } else {
                break;
            }
        }
        if (maxabsdiff(x,xold) < xtol) {
            std::cout << "converged on step size after " << i << " iterations" << std::endl;
            std::cout << "error = " << Fx << std::endl;
            break;
        }
        viz.report(dummyState);
        sleepInSec(pauseBetweenPathIterations);

    }
    cout << "obstacle error = " << Fx << endl;

    cout << "num geodP pts = " << geom.getGeodP().getNumPoints() << endl;


  } catch (const std::exception& e) {
    std::printf("EXCEPTION THROWN: %s\n", e.what());
    exit(1);

  } catch (...) {
    std::printf("UNKNOWN EXCEPTION THROWN\n");
    exit(1);
  }

  return 0;
}