1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
|
/* -------------------------------------------------------------------------- *
* Simbody(tm) Example: Gazebo 2 Simbody *
* -------------------------------------------------------------------------- *
* This is part of the SimTK biosimulation toolkit originating from *
* Simbios, the NIH National Center for Physics-Based Simulation of *
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody. *
* *
* Portions copyright (c) 2013 Stanford University and the Authors. *
* Authors: Michael Sherman *
* Contributors: *
* *
* Licensed under the Apache License, Version 2.0 (the "License"); you may *
* not use this file except in compliance with the License. You may obtain a *
* copy of the License at http://www.apache.org/licenses/LICENSE-2.0. *
* *
* Unless required by applicable law or agreed to in writing, software *
* distributed under the License is distributed on an "AS IS" BASIS, *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
* See the License for the specific language governing permissions and *
* limitations under the License. *
* -------------------------------------------------------------------------- */
/* This example reads input in the form of a Gazebo ".sdf" file and generates
a roughly-equivalent Simbody model. Gazebo is a robot simulator from the Open
Source Robotics Foundation (http://osrfoundation.org). This is not intended to
be comprehensive -- it is just a proof of concept.
We will construct the Simbody model here and maintain a mapping between the
Gazebo objects and the Simbody implementation of them to demonstrate how this
might be done in Gazebo.
Gazebo file format notes
------------------------
An sdf file describes a model in XML format using the following objects:
world The Ground frame. May have associated geometry and lights. Contains one
or more "model" objects. Normally the ground is the x-y plane, with
+z the "up" direction and a ground plane at z=0. The world also acts
as a link whose name is "world".
model Named grouping of physical objects. Provides a model frame given
relative to the world frame, however this frame is still fixed in the
world. A model contains links and joints.
link Named mass- and geometry-carrying object (a body). There is a link
frame, and inertial, visual, and collision objects each with their own
frame given relative to the link frame. An initial pose for the link
frame is given, relative to the model frame.
joint Connection between two links or between a link and the world.
There is a parent and child link, given by name, with "world"
the name for the ground link. There is a joint type and then appropriate
parameters depending on the type. There is a child frame and a
parent frame. However, if only a single frame is given for the joint
it is interpreted as the child frame and then the default link frame
poses are used to find the coincident frame on the parent.
NOTE: for purposes of this example we have implemented some extensions:
- You can specify that a link must be a base link, i.e. must be connected
directly to World. Use
<must_be_base_link> 1 </must_be_base_link>
in the <link> element.
- You can force a loop to be cut at a particular joint. Use
<must_be_loop_joint> 1 </must_be_loop_joint>
in the <joint> element.
- We accept John Hsu's proposed modification allowing a joint to specify
separate child and parent frames. Use
<child link="childName" ><pose>...</pose></child>
<parent link="parentName"><pose>...</pose></parent>
to specify separate frame. (We also accept the old style.)
A <pose> element (containing six scalars) is equivalent to a Simbody Transform,
interpreted as x,y,z translation vector followed by an x-y-z body-fixed Euler
angle sequence given in radians. Gazebo refers to this as pitch-roll-yaw.
A <visual> element has <geometry> and <material> subelements; here we'll use the
material only to pick a color.
A <collision> element has <geometry> and <surface> subelements, with the
latter giving the physical properties used in contact. We'll generate a gray
visual for these.
Generalized coordinate representation
-------------------------------------
We use Simbody's MultibodyGraphMaker class to take the Gazebo definition of
links and joints and construct a spanning tree whose root is
the World, with every link appearing exactly once. Any link that does not appear
in any joint will be given six degrees of freedom relative to the World via a
Simbody "Free" mobilizer. Note: If a disconnected link is a point mass (that is,
inertialess) it should be mobilized with a 3 dof "Translation" mobilizer but
we're not doing that in this example. Also if there are disconnected branches we
will pick one of the bodies as a "base" body and connect it to World by a Free
(6dof) mobilizer.
MultibodyGraphMaker won't take the parent-child specification too seriously when
building the tree since these can be arbitrary in the Gazebo description. To
avoid confusion, we speak of the "inboard" and "outboard" bodies of a mobilizer;
usually inboard==parent and outboard==child but the relationship is opposite for
a reverse mobilizer. For example, a three-body chain might be defined
link1--j1--link2--j2--link3
joint1 parent=link1 child=link2
joint2 parent=link3 child=link2
There is no way to build a tree where inboard/outboard matches parent/child
for both joints in this example. MultibodyGraphMaker will tell us if we have
to reverse, which we'll do using Simbody's reverse mobilizer capability so
that the meaning of the joint is unchanged.
After the tree is built, all the links will have been used but there may still
be some unused joints. Those joints will involve parent and child links both
of which are already in the tree. That means these joints form topological
loops in the multibody graph. MultibodyGraphMaker will normally handle that by
splitting the child link to create a new "slave" body, mobilizing the slave
with the given joint, and then introducing a Weld constraint (-6 dofs) to hold
the master link and its slaves together. Note that in this example the visual
and contact geometry stays with the master; the mass and inertia are divided
equally among the master and slaves. We'll also generate some "shadow"
visualization for the slaves since they are interesting.
An alternative is used if you tell MultibodyGraphMaker that there is a good
constraint that can be used directly to replace a loop joint. Since Simbody's
Ball constraint (-3 dofs) is mostly indistinguishable from a Ball mobilizer
(+3 dofs), we'll substitute a Ball constraint when breaking a loop at a
ball joint, resulting in a smaller system overall. */
#include "Simbody.h"
#include "shared/SimbodyExampleHelper.h"
#include <utility>
#include <string>
#include <vector>
#include <map>
#include <iostream>
using std::cout; using std::endl;
using namespace SimTK;
// Skip down to main() first -- these are just some helper classes to keep
// track of the Gazebo model and connect it to its Simbody implementation.
// Hacks for sherm's testing.
#define ANIMATE // turn this off for timing tests
//#define ADD_JOINT_SPRINGS // makes all the revolute & prismatic joints stiff
//#define RAGDOLL2_ICS // set initial conditions for ragdoll2 model
//#define USE_CONTACT_MESH // use elastic foundation model for cylinder
//==============================================================================
// GAZEBO LINK INFO
//==============================================================================
// This is one link's information read from the Gazebo input file and translated
// into Simbody's terminology and conventions. The mapping to Simbody
// MobilizedBody is written here after we build the Simbody System.
class GazeboLinkInfo {
public:
explicit GazeboLinkInfo(const std::string& name)
: name(name), mustBeBaseLink(false), selfCollide(false) {}
// When a link is broken into several fragments (master and slaves), they
// share the mass equally. Given the number of fragments, this returns the
// appropriate mass properties to use for each fragment. Per Simbody's
// convention, COM is measured from, and inertia taken about, the link
// origin and both are expressed in the link frame.
MassProperties getEffectiveMassProps(int numFragments) const {
assert(numFragments > 0); // must be at least 1 for the master
return MassProperties(massProps.getMass()/numFragments,
massProps.getMassCenter(),
massProps.getUnitInertia());
}
Xml::Element element; // if this was in the Xml file
std::string name;
bool mustBeBaseLink;
bool selfCollide; // if true can collide with other links in
// the same Gazebo model.
// Mass properties converted to Simbody terms: com & inertia expressed in
// body frame; inertia taken about body origin *not* body COM. This is the
// full mass; if there are slaves the master and slaves will split the mass
// properties evenly.
MassProperties massProps;
Transform defX_ML; // default pose in model frame
// Which MobilizedBody corresponds to the master instance of this link.
MobilizedBody masterMobod;
// If this link got split into a master and slaves, these are the
// MobilizedBodies used to mobilize the slaves.
std::vector<MobilizedBody> slaveMobods;
// And these are the Weld constraints used to attach slaves to master.
std::vector<Constraint::Weld> slaveWelds;
};
//==============================================================================
// GAZEBO JOINT INFO
//==============================================================================
// This is one joint's information read from the Gazebo input file and
// translated into Simbody's terminology and conventions. The joint will
// typically have been modeled as a Mobilizer, but may have been modeled as
// a Constraint; in either case the corresponding Simbody element is written
// here after we build the Simbody System.
class GazeboJointInfo {
public:
GazeboJointInfo(const std::string& name, const std::string& type)
: name(name), type(type), mustBreakLoopHere(false), isReversed(false) {}
// These are set when we process the input.
Xml::Element element; // if this was in the Xml file
std::string name, type, parent, child;
bool mustBreakLoopHere;
// Normally A=F, B=M. But if reversed, then B=F, A=M.
Transform X_PA; // parent body frame to mobilizer frame
Transform X_CB; // child body frame to mobilizer frame
Transform defX_AB; // default mobilizer pose
// Members below here are set when we build the Simbody model.
// How this joint was modeled in the Simbody System. We used either a
// mobilizer or a constraint, but not both. The type of either one is the
// same as the joint type above.
MobilizedBody mobod; // isValid() if we used a mobilizer
bool isReversed; // if mobilizer, did it reverse parent&child?
Constraint constraint; // isValid() if we used a constraint
};
//==============================================================================
// GAZEBO LINKS
//==============================================================================
// This collects all the links for a particular model, and maintains a
// name->GazeboLinkInfo mapping. Be sure to add a world link first, with the
// appropriate pose measured from the model frame.
class GazeboLinks {
public:
// Add a new link to the collection and index it by name.
int addLink(const GazeboLinkInfo& info);
// Return the number of links so far.
int size() const {return (int)linkByIndex.size();}
bool hasLink(const std::string& name) const
{ return name2index.find(name) != name2index.end(); }
bool hasLink(int index) const
{ assert(index>=0); return index < size(); }
// Get link by name (const or writable).
const GazeboLinkInfo& getLink(const std::string& name) const
{ return getLink(getLinkIndex(name)); }
GazeboLinkInfo& updLink(const std::string& name)
{ return updLink(getLinkIndex(name)); }
// Get link fast by index (const or writable).
GazeboLinkInfo& updLink(int index)
{ return linkByIndex[index]; }
const GazeboLinkInfo& getLink(int index) const
{ return linkByIndex[index];}
private:
int getLinkIndex(const std::string& name) const
{ assert(hasLink(name)); return name2index.find(name)->second; }
std::vector<GazeboLinkInfo> linkByIndex;
std::map<std::string,int> name2index;
};
//==============================================================================
// GAZEBO JOINTS
//==============================================================================
// This collects all the joints for a particular model, and maintains a
// name->GazeboJointInfo mapping.
class GazeboJoints {
public:
// Add a new joint to the collection, and return its assigned joint index,
// starting from zero for the first joint and counting up from there.
int addJoint(const GazeboJointInfo& info);
// Return the number of joints added so far.
int size() const {return (int)jointByIndex.size();}
bool hasJoint(const std::string& name) const
{ return name2index.find(name) != name2index.end(); }
bool hasJoint(int index) const
{ assert(index>=0); return index < size(); }
// Get joint by name (const or writable).
const GazeboJointInfo& getJoint(const std::string& name) const
{ return getJoint(getJointIndex(name)); }
GazeboJointInfo& updJoint(const std::string& name)
{ return updJoint(getJointIndex(name)); }
// Get joint fast by index (const or writable).
const GazeboJointInfo& getJoint(int index) const
{ return jointByIndex[index]; }
GazeboJointInfo& updJoint(int index)
{ return jointByIndex[index]; }
private:
int getJointIndex(const std::string& name) const
{ assert(hasJoint(name)); return name2index.find(name)->second; }
std::vector<GazeboJointInfo> jointByIndex;
std::map<std::string,int> name2index;
};
//==============================================================================
// GAZEBO MODEL
//==============================================================================
// Contains model-level information and the set of links and joints that
// were found in the input file for this model.
class GazeboModel {
public:
GazeboModel() : isStatic(false) {}
void readModel(Xml::Element modelElt);
std::string name;
Transform X_WM; // model frame in the World frame
bool isStatic; // means all bodies are attached to Ground
GazeboLinks links;
GazeboJoints joints;
// This is a grouping of contact surfaces that are invisible to one
// another. Gazebo's convention is that surfaces in the same model don't
// collide unless they have been explicitly marked <self_collide>. The
// Simbody equivalent is to put the unmarked ones into the same clique.
ContactCliqueId modelClique;
};
//==============================================================================
// MAIN
//==============================================================================
static void createMultibodyGraph(GazeboModel& model,
MultibodyGraphMaker& mbgraph);
static void addModelToSimbodySystem(const MultibodyGraphMaker& mbgraph,
GazeboModel& model,
MultibodySystem& mbs,
SimbodyMatterSubsystem& matter,
GeneralForceSubsystem& forces,
CompliantContactSubsystem& contact);
static void runSimulation(const MultibodySystem& mbs,
const std::vector<GazeboModel>& gzModels);
int main(int argc, const char* argv[]) {
cout << "This is Simbody example '"
<< SimbodyExampleHelper::getExampleName() << "'\n";
std::string sdfFileName;
if (argc < 2) {
std::cout << "Usage: " << argv[0] << " filename.sdf\n";
std::cout << "Trying ragdoll.sdf by default.\n";
sdfFileName = "ragdoll.sdf";
} else
sdfFileName = argv[1];
try {
//---------------------------- OPEN INPUT FILE -----------------------------
// Attempt to identify this as a Gazebo input file, find the World
// to get gravity and locate the Models.
cout << "Working dir=" << Pathname::getCurrentWorkingDirectory() << endl;
const std::string auxDir =
SimbodyExampleHelper::findAuxiliaryDirectoryContaining
("models/" + sdfFileName);
std::cout << "Getting models from '" << auxDir << "'\n";
const std::string fullSdfPathName = auxDir + "models/" + sdfFileName;
std::cout << "Reading file: " << fullSdfPathName << std::endl;
Xml::Document sdf(fullSdfPathName);
if (sdf.getRootTag() != "sdf" && sdf.getRootTag() != "gazebo")
throw std::runtime_error
("Expected to see document tag <sdf> or <gazebo> but saw <"
+ sdf.getRootTag() + "> instead.");
// This is a Gazebo document.
Xml::Element root = sdf.getRootElement();
cout << "sdf version="
<< root.getOptionalAttributeValue("version", "unspecified") << endl;
Xml::Element world = root.getRequiredElement("world");
Xml::Element physics = world.getOptionalElement("physics");
const Vec3 gravity = // default is std gravity at Earth's surface, m/s^2
world.hasElement("gravity")
? world.getRequiredElementValueAs<Vec3>("gravity")
: (physics.hasElement("gravity") ? physics.getRequiredElementValueAs<Vec3>("gravity")
: Vec3(0,0,-9.80665));
Array_<Xml::Element> models = world.getAllElements("model");
cout << "World '" << world.getOptionalAttributeValue("name","NONAME")
<< "' contains " << models.size() << " model(s).\n";
cout << "Gravity=" << gravity << endl;
if (models.empty()) {
cout << "File contained no model -- nothing to do. Goodbye.\n";
return 0;
}
//------------------------ CREATE SIMBODY SYSTEM ---------------------------
// Create a Simbody System and populate it with Subsystems we'll need.
MultibodySystem mbs;
SimbodyMatterSubsystem matter(mbs);
GeneralForceSubsystem forces(mbs);
ContactTrackerSubsystem tracker(mbs);
CompliantContactSubsystem contact(mbs, tracker);
// Tweak visualization to get Z up and to prevent Simbody from generating
// its own sketchy visuals.
mbs.setUpDirection(ZAxis);
matter.setShowDefaultGeometry(false);
// Set stiction max slip velocity to make it less stiff.
contact.setTransitionVelocity(0.05);
// Specify gravity (read in above from world).
Force::UniformGravity(forces, matter, gravity);
// Define a material to use for ground contact. This is not very stiff.
ContactMaterial groundMaterial(1e6, // stiffness
0.1, // dissipation
0.7, // mu_static
0.5, // mu_dynamic
0.5); // mu_viscous
// Add a contact surface to represent the ground.
// Half space normal is -x; must rotate about y to make it +z.
matter.Ground().updBody().addContactSurface(Rotation(Pi/2,YAxis),
ContactSurface(ContactGeometry::HalfSpace(), groundMaterial));
// Draw world frame and model frame.
matter.Ground().addBodyDecoration(Vec3(0),
DecorativeFrame(1).setColor(Green).setLineThickness(3)); // World
std::vector<GazeboModel> gzModels(models.size());
//------------------------ READ IN GAZEBO MODELS ---------------------------
for (unsigned m=0; m < models.size(); ++m) {
gzModels[m].readModel(models[m]); // TODO: ignore other models for now
//----------------------- GENERATE MULTIBODY GRAPH -------------------------
MultibodyGraphMaker mbgraph;
createMultibodyGraph(gzModels[m], mbgraph);
// Optional: dump the graph to stdout for debugging or curiosity.
mbgraph.dumpGraph(std::cout);
addModelToSimbodySystem(mbgraph, gzModels[m],
mbs, matter, forces, contact);
}
//--------------------------- RUN A SIMULATION -----------------------------
// The Simbody System has been built successfully. Now lets run it for
// a while to see what it looks like.
runSimulation(mbs, gzModels);
} catch (const std::exception& e) {
cout << "EXCEPTION: " << e.what() << "\n";
return 1;
}
printf("DONE.\n");
return 0;
}
//==============================================================================
// CREATE MULTIBODY GRAPH
//==============================================================================
// Define Gazebo joint types, then use links and joints in the given model
// to construct a reasonable spanning-tree-plus-constraints multibody graph
// to represent that model. An exception will be thrown if this fails.
// Note that this step is not Simbody dependent.
static void createMultibodyGraph(GazeboModel& model,
MultibodyGraphMaker& mbgraph) {
// Step 1: Tell MultibodyGraphMaker about joints it should know about.
// Note: "weld" and "free" are always predefined at 0 and 6 dofs, resp.
// Gazebo name #dofs Simbody equivalent
mbgraph.addJointType("revolute", 1); // Pin
mbgraph.addJointType("revolute2", 2); // ?
mbgraph.addJointType("prismatic", 1); // Slider
mbgraph.addJointType("universal", 2); // Universal
mbgraph.addJointType("piston", 2); // Cylinder
// Simbody has a Ball constraint that is a good choice if you need to
// break a loop at a ball joint.
mbgraph.addJointType("ball", 3, true); // Ball
// Step 2: Tell it about all the links we read from the input file,
// starting with world, and provide a reference pointer.
for (int lx=0; lx < model.links.size(); ++lx) {
GazeboLinkInfo& link = model.links.updLink(lx);
mbgraph.addBody(link.name, link.massProps.getMass(),
link.mustBeBaseLink, &link);
}
// Step 3: Tell it about all the joints we read from the input file,
// and provide a reference pointer.
for (int jx=0; jx < model.joints.size(); ++jx) {
GazeboJointInfo& joint = model.joints.updJoint(jx);
mbgraph.addJoint(joint.name, joint.type, joint.parent, joint.child,
joint.mustBreakLoopHere, &joint);
}
// Setp 4. Generate the multibody graph.
mbgraph.generateGraph();
}
//==============================================================================
// AUXILIARY FUNCTIONS FOR XML READING
//==============================================================================
// Convert the given pose in x,y,z,thetax,thetay,thetaz format to a Simbody
// Transform. The rotation angles are interpreted as a body-fixed sequence,
// meaning we rotation about x, then about the new y, then about the now twice-
// rotated z.
static Transform pose2Transform(const Vec6& pose) {
Transform frame(Rotation(SimTK::BodyRotationSequence,
pose[3], XAxis, pose[4], YAxis, pose[5], ZAxis),
pose.getSubVec<3>(0));
return frame;
}
// Convert a Simbody transform to a pose in x,y,z,thetax,thetay,thetaz format.
static Vec6 transform2Pose(const Transform& X_AB) {
Vec6 pose;
pose.updSubVec<3>(0) = X_AB.p(); // position vector
pose.updSubVec<3>(3) = X_AB.R().convertRotationToBodyFixedXYZ();
return pose;
}
// If the given element contains a <pose> element, return it as a Transform.
// Otherwise return the identity Transform. If there is more than one <pose>
// element, only the first one is processed.
static Transform getPose(Xml::Element element) {
const Vec6 pose = element.getOptionalElementValueAs<Vec6>("pose",Vec6(0));
return pose2Transform(pose);
}
// Look for an <inertial> element within the given element (which is probably
// a link but we don't care). If found, parse and transform to link (body)
// frame. Otherwise return unit mass and inertia. Result is returned as a
// Simbody MassProperties element containing mass, center of mass location,
// and unit inertia about body origin.
static MassProperties getMassProperties(Xml::Element link) {
Xml::Element inertial = link.getOptionalElement("inertial");
if (!inertial.isValid())
return MassProperties(1,Vec3(0),UnitInertia(1,1,1));
const Real mass = inertial.getOptionalElementValueAs<Real>("mass", 1.);
Transform X_LI = getPose(inertial); // identity if not provided
const Vec3 com_L = X_LI.p(); // vector from Lo to com, exp. in L
Xml::Element inertia = inertial.getOptionalElement("inertia");
if (mass==0 || !inertia.isValid())
return MassProperties(mass,com_L,UnitInertia(1,1,1));
// Get mass-weighted central inertia, expressed in I frame.
Inertia Ic_I(inertia.getOptionalElementValueAs<Real>("ixx", 1.),
inertia.getOptionalElementValueAs<Real>("iyy", 1.),
inertia.getOptionalElementValueAs<Real>("izz", 1.),
inertia.getOptionalElementValueAs<Real>("ixy", 0.),
inertia.getOptionalElementValueAs<Real>("ixz", 0.),
inertia.getOptionalElementValueAs<Real>("iyz", 0.));
// Re-express the central inertia from the I frame to the L frame.
Inertia Ic_L = Ic_I.reexpress(~X_LI.R()); // Ic_L=R_LI*Ic_I*R_IL
// Shift to L frame origin.
Inertia Io_L = Ic_L.shiftFromMassCenter(-com_L, mass);
return MassProperties(mass, com_L, Io_L); // converts to unit inertia
}
//==============================================================================
// ADD MODEL TO SIMBODY SYSTEM
//==============================================================================
// Given a desired multibody graph, gravity, and the Gazebo model that was
// used to generate the graph, add elements to the Simbody System to represent
// it. There are many limitations here, especially in the handling of contact.
// Any Gazebo features that we haven't modeled are just ignored.
// The GazeboModel is updated so that its links and joints have references to
// their corresponding Simbody elements.
// We set up some visualization here so we can see what's happening but this
// would not be needed in Gazebo since it does its own visualization.
static void addModelToSimbodySystem(const MultibodyGraphMaker& mbgraph,
GazeboModel& model,
MultibodySystem& mbs,
SimbodyMatterSubsystem& matter,
GeneralForceSubsystem& forces,
CompliantContactSubsystem& contact)
{
// Define a material to use for contact. This is not very stiff.
ContactMaterial material(1e6, // stiffness
0.1, // dissipation
0.7, // mu_static
0.5, // mu_dynamic
0.5); // mu_viscous
// Draw the model frame.
matter.Ground().addBodyDecoration(model.X_WM,
DecorativeFrame(.75).setColor(Orange).setLineThickness(3)); // Model
matter.Ground().addBodyDecoration(model.X_WM.p()+Vec3(0,0,.1),
DecorativeText(model.name).setScale(.2)
.setColor(model.isStatic?Green:Cyan));
// Generate a contact clique we can put collision geometry in to prevent
// self-collisions.
model.modelClique = ContactSurface::createNewContactClique();
// Record the MobilizedBody for the World link.
model.links.updLink(0).masterMobod = matter.Ground();
// Run through all the mobilizers in the multibody graph, adding a Simbody
// MobilizedBody for each one. Also add visual and collision geometry to the
// bodies when they are mobilized.
for (int mobNum=0; mobNum < mbgraph.getNumMobilizers(); ++mobNum) {
// Get a mobilizer from the graph, then extract its corresponding
// joint and bodies. Note that these don't necessarily have equivalents
// in the GazeboLink and GazeboJoint inputs.
const MultibodyGraphMaker::Mobilizer& mob = mbgraph.getMobilizer(mobNum);
const std::string& type = mob.getJointTypeName();
// The inboard body always corresponds to one of the input links,
// because a slave link is always the outboard body of a mobilizer.
// The outboard body may be slave, but its master body is one of the
// Gazebo input links.
const bool isSlave = mob.isSlaveMobilizer();
GazeboLinkInfo& gzInb = *(GazeboLinkInfo*)mob.getInboardBodyRef();
GazeboLinkInfo& gzOutb = *(GazeboLinkInfo*)mob.getOutboardMasterBodyRef();
const MassProperties massProps =
gzOutb.getEffectiveMassProps(mob.getNumFragments());
// This will reference the new mobilized body once we create it.
MobilizedBody mobod;
if (model.isStatic) {
mobod = matter.updGround();
} else if (mob.isAddedBaseMobilizer()) {
// There is no corresponding Gazebo joint for this mobilizer.
// Create the joint and set its default position to be the default
// pose of the base link relative to the Ground frame.
assert(type=="free"); // May add more types later
if (type == "free") {
MobilizedBody::Free freeJoint(
gzInb.masterMobod, Transform(),
massProps, Transform());
freeJoint.setDefaultTransform(~gzInb.defX_ML*gzOutb.defX_ML);
mobod = freeJoint;
}
} else {
// This mobilizer does correspond to one of the input joints.
GazeboJointInfo& gzJoint = *(GazeboJointInfo*)mob.getJointRef();
const bool isReversed = mob.isReversedFromJoint();
// Find inboard and outboard frames for the mobilizer; these are
// parent and child frames or the reverse.
const Transform& X_IF0 = isReversed ? gzJoint.X_CB : gzJoint.X_PA;
const Transform& X_OM0 = isReversed ? gzJoint.X_PA : gzJoint.X_CB;
const MobilizedBody::Direction direction =
isReversed ? MobilizedBody::Reverse : MobilizedBody::Forward;
if (type == "free") {
MobilizedBody::Free freeJoint(
gzInb.masterMobod, X_IF0,
massProps, X_OM0,
direction);
Transform defX_FM = isReversed ? Transform(~gzJoint.defX_AB)
: gzJoint.defX_AB;
freeJoint.setDefaultTransform(defX_FM);
mobod = freeJoint;
} else if (type == "revolute") {
Xml::Element axisElt = gzJoint.element.getRequiredElement("axis");
UnitVec3 axis =
UnitVec3(axisElt.getRequiredElementValueAs<Vec3>("xyz"));
Rotation R_JZ(axis, ZAxis); // Simbody's pin is along Z
Transform X_IF(X_IF0.R()*R_JZ, X_IF0.p());
Transform X_OM(X_OM0.R()*R_JZ, X_OM0.p());
MobilizedBody::Pin pinJoint(
gzInb.masterMobod, X_IF,
massProps, X_OM,
direction);
mobod = pinJoint;
#ifdef ADD_JOINT_SPRINGS
// KLUDGE add spring (stiffness proportional to mass)
Force::MobilityLinearSpring(forces,mobod,0,
30*massProps.getMass(),0);
#endif
} else if (type == "prismatic") {
Xml::Element axisElt = gzJoint.element.getRequiredElement("axis");
UnitVec3 axis =
UnitVec3(axisElt.getRequiredElementValueAs<Vec3>("xyz"));
Rotation R_JX(axis, XAxis); // Simbody's slider is along X
Transform X_IF(X_IF0.R()*R_JX, X_IF0.p());
Transform X_OM(X_OM0.R()*R_JX, X_OM0.p());
MobilizedBody::Slider sliderJoint(
gzInb.masterMobod, X_IF,
massProps, X_OM,
direction);
mobod = sliderJoint;
#ifdef ADD_JOINT_SPRINGS
// KLUDGE add spring (stiffness proportional to mass)
Force::MobilityLinearSpring(forces,mobod,0,
30*massProps.getMass(),0);
#endif
} else if (type == "ball") {
MobilizedBody::Ball ballJoint(
gzInb.masterMobod, X_IF0,
massProps, X_OM0,
direction);
Rotation defR_FM = isReversed
? Rotation(~gzJoint.defX_AB.R())
: gzJoint.defX_AB.R();
ballJoint.setDefaultRotation(defR_FM);
mobod = ballJoint;
} else if (type == "weld") {
MobilizedBody::Weld weldJoint(
gzInb.masterMobod, X_IF0,
massProps, X_OM0);
mobod = weldJoint;
}
// Created a mobilizer that corresponds to gzJoint. Keep track.
gzJoint.mobod = mobod;
gzJoint.isReversed = isReversed;
}
// Link gzOutb has been mobilized; keep track for later.
if (isSlave) gzOutb.slaveMobods.push_back(mobod);
else gzOutb.masterMobod = mobod;
// A mobilizer has been created; now add the visual and collision
// geometry for the new mobilized body.
Xml::Element master = gzOutb.element;
Vec3 color = isSlave ? Red : Cyan;
Real scale = isSlave ? 0.9 : 1.;
if (master.isValid()) {
// VISUAL
Array_<Xml::Element> visuals = master.getAllElements("visual");
for (unsigned i=0; i < visuals.size(); ++i) {
Transform X_LV = getPose(visuals[i]);
Xml::Element geo = visuals[i].getRequiredElement("geometry");
Xml::Element box = geo.getOptionalElement("box");
if (box.isValid()) {
Vec3 sz = box.getRequiredElementValueAs<Vec3>("size");
mobod.addBodyDecoration(
X_LV, DecorativeBrick(sz/2).setOpacity(.5)
.setColor(color).setScale(scale));
}
Xml::Element sphere = geo.getOptionalElement("sphere");
if (sphere.isValid()) {
Real r = sphere.getRequiredElementValueAs<Real>("radius");
mobod.addBodyDecoration(
X_LV, DecorativeSphere(r).setOpacity(.5)
.setColor(color).setScale(scale));
}
Xml::Element cyl = geo.getOptionalElement("cylinder");
if (cyl.isValid()) {
Real r = cyl.getRequiredElementValueAs<Real>("radius");
Real l = cyl.getRequiredElementValueAs<Real>("length");
// Cylinder is along Z in Gazebo, Y in Simbody
Rotation YtoZ(Pi/2, XAxis);
mobod.addBodyDecoration(
Transform(X_LV.R()*YtoZ, X_LV.p()),
DecorativeCylinder(r, l/2).setOpacity(.5)
.setColor(color).setScale(scale));
}
}
// COLLISION
Array_<Xml::Element> coll = master.getAllElements("collision");
const Vec3 collColor = model.isStatic ? Green : Gray;
for (unsigned i=0; i < coll.size(); ++i) {
Transform X_LC = getPose(coll[i]);
Xml::Element geo = coll[i].getRequiredElement("geometry");
// Model sphere collision surface.
Xml::Element sphere = geo.getOptionalElement("sphere");
if (sphere.isValid()) {
Real r = sphere.getRequiredElementValueAs<Real>("radius");
mobod.addBodyDecoration(
X_LC, DecorativeSphere(r)
.setRepresentation(DecorativeGeometry::DrawWireframe)
.setColor(collColor));
ContactSurface surface(ContactGeometry::Sphere(r),
material);
if (!gzOutb.selfCollide)
surface.joinClique(model.modelClique);
mobod.updBody().addContactSurface(X_LC, surface);
}
// Model cylinder collision surface (must fake with ellipsoid).
Xml::Element cyl = geo.getOptionalElement("cylinder");
if (cyl.isValid()) {
Real r = cyl.getRequiredElementValueAs<Real>("radius");
Real len = cyl.getRequiredElementValueAs<Real>("length");
// Cylinder is along Z in Gazebo
#ifndef USE_CONTACT_MESH
Vec3 esz = Vec3(r,r,len/2); // Use ellipsoid instead
mobod.addBodyDecoration(X_LC,
DecorativeEllipsoid(esz)
.setRepresentation(DecorativeGeometry::DrawWireframe)
.setColor(collColor));
ContactSurface surface(ContactGeometry::Ellipsoid(esz),
material);
#else
const int resolution = 0; // chunky hexagonal shape
const PolygonalMesh mesh = PolygonalMesh::
createCylinderMesh(ZAxis,r,len/2,resolution);
const ContactGeometry::TriangleMesh triMesh(mesh);
mobod.addBodyDecoration(X_LC,
DecorativeMesh(triMesh.createPolygonalMesh())
.setRepresentation(DecorativeGeometry::DrawWireframe)
.setColor(collColor));
ContactSurface surface(triMesh, material,1 /*Thickness*/);
#endif
if (!gzOutb.selfCollide)
surface.joinClique(model.modelClique);
mobod.updBody().addContactSurface(X_LC, surface);
}
// Model box collision surface (must fake with ellipsoid).
Xml::Element box = geo.getOptionalElement("box");
if (box.isValid()) {
Vec3 hsz = box.getRequiredElementValueAs<Vec3>("size")/2;
#ifndef USE_CONTACT_MESH
mobod.addBodyDecoration(X_LC,
DecorativeEllipsoid(hsz) // use half dimensions
.setRepresentation(DecorativeGeometry::DrawWireframe)
.setColor(collColor));
ContactSurface surface(ContactGeometry::Ellipsoid(hsz),
material);
#else
const int resolution = 20; // need dense to get near corners
const PolygonalMesh mesh = PolygonalMesh::
createBrickMesh(hsz,resolution);
const ContactGeometry::TriangleMesh triMesh(mesh);
mobod.addBodyDecoration(X_LC,
DecorativeMesh(triMesh.createPolygonalMesh())
.setRepresentation(DecorativeGeometry::DrawWireframe)
.setColor(collColor));
ContactSurface surface(triMesh, material,1 /*Thickness*/);
#endif
if (!gzOutb.selfCollide)
surface.joinClique(model.modelClique);
mobod.updBody().addContactSurface(X_LC, surface);
}
}
}
}
// Weld the slaves to their masters.
for (int lx=0; lx < model.links.size(); ++lx) {
GazeboLinkInfo& link = model.links.updLink(lx);
if (link.slaveMobods.empty()) continue;
for (unsigned i=0; i < link.slaveMobods.size(); ++i) {
Constraint::Weld weld(link.masterMobod, link.slaveMobods[i]);
link.slaveWelds.push_back(weld); // in case we want to know later
}
}
// Add the loop joints if any.
for (int lcx=0; lcx < mbgraph.getNumLoopConstraints(); ++lcx) {
const MultibodyGraphMaker::LoopConstraint& loop =
mbgraph.getLoopConstraint(lcx);
GazeboJointInfo& joint = *(GazeboJointInfo*)loop.getJointRef();
GazeboLinkInfo& parent = *(GazeboLinkInfo*) loop.getParentBodyRef();
GazeboLinkInfo& child = *(GazeboLinkInfo*) loop.getChildBodyRef();
if (joint.type == "weld") {
Constraint::Weld weld(parent.masterMobod, joint.X_PA,
child.masterMobod, joint.X_CB);
joint.constraint = weld;
} else if (joint.type == "ball") {
Constraint::Ball ball(parent.masterMobod, joint.X_PA.p(),
child.masterMobod, joint.X_CB.p());
joint.constraint = ball;
} else if (joint.type == "free") {
// A "free" loop constraint is no constraint at all so we can
// just ignore it. It might be more convenient if there were
// a 0-constraint Constraint::Free, just as there is a 0-mobility
// MobilizedBody::Weld.
} else
throw std::runtime_error(
"Unrecognized loop constraint type '" + joint.type + "'.");
}
}
//==============================================================================
// RUN SIMULATION
//==============================================================================
// Run a simulation and extract some data from it to show how that can be done.
static void runSimulation(const MultibodySystem& mbs,
const std::vector<GazeboModel>& gzModels) {
// Create a Visualizer so we can see what's what.
Visualizer viz(mbs);
viz.setShowSimTime(true);
// Initialize the system and obtain the default state.
State state = mbs.realizeTopology();
// The ragdoll2 model needs some reasonable initial conditions in order to
// assemble its loop joints properly.
#ifdef RAGDOLL2_ICS
gzModels[0].joints.getJoint("l_upper_arm_joint").mobod.setOneQ(state,0,-.4);
gzModels[0].joints.getJoint("r_upper_arm_joint").mobod.setOneQ(state,0,-.4);
gzModels[0].joints.getJoint("torso_joint").mobod.setOneQ(state,0,.3);
#endif
viz.report(state); // Show the initial state.
// If there are any constraints due to topological loops in the graph
// then the system might not be assembled yet. Use Simbody's Assembler
// to find a state that assembles the system.
// Note: assembly mail fail if the system starts out too far from
// assembled.
printf("INITIAL STATE err=%g -- ENTER to assemble\n",
state.getQErr().norm());
getchar();
Assembler assembler(mbs);
Real assemblyTol = assembler.assemble(state);
viz.report(state);
printf("ASSEMBLED to err=%g -- ENTER to simulate\n",
state.getQErr().norm());
getchar();
// Assembled. Now simulate.
const Real RunTime = 20;
const Real ReportTime = 1./30.;
//const Real Accuracy = 0.001; // 0.1% is Simbody default
//const Real Accuracy = 0.05; // 5%
const Real Accuracy = 0.1; // 1%
//const Real Accuracy = 0.10; // 10%
//const Real Accuracy = 0.20; // 20%
// Use a low order integrator if you force the max step size to be small.
//const Real MaxStepSize = .001;
//RungeKutta2Integrator integ(mbs);
const Real MaxStepSize = Infinity;
RungeKutta3Integrator integ(mbs);
//RungeKuttaMersonIntegrator integ(mbs); // 4th order
//CPodesIntegrator integ(mbs); // implicit integrator
integ.setAccuracy(Accuracy);
integ.setConstraintTolerance(std::min(1e-3, Accuracy/10));
integ.initialize(state);
viz.report(integ.getState());
cout << "q=" << state.getQ() << endl;
double startReal = realTime();
double startCPU = cpuTime();
while (integ.getTime() < RunTime) {
Real nextReport = std::min(RunTime, integ.getTime() + ReportTime);
do {
integ.stepTo(nextReport, integ.getTime()+MaxStepSize);
} while (integ.getTime() < nextReport);
const State& state = integ.getState();
const Real t = state.getTime();
#ifdef ANIMATE // suppress for more accurate CPU time measurement
viz.report(state);
#endif
// Show body origin locations and joint angles and rates at integer
// times to demo data extraction.
if (std::abs(std::floor(t+ReportTime/2)-t) > ReportTime/2)
continue;
for (unsigned m=0; m < gzModels.size(); ++m) {
const GazeboModel& model = gzModels[m];
printf("\nMODEL %s --------------------\n", model.name.c_str());
printf("\n LINKS t=%g\n", t);
for (int i=0; i < model.links.size(); ++i) {
const GazeboLinkInfo& link = model.links.getLink(i);
const Vec3& loc = link.masterMobod.getBodyOriginLocation(state);
printf(" %20s %10.3g %10.3g %10.3g\n",
link.name.c_str(), loc[0], loc[1], loc[2]);
}
printf("\n JOINTS t=%g\n", t);
for (int i=0; i < model.joints.size(); ++i) {
const GazeboJointInfo& joint = model.joints.getJoint(i);
if (joint.mobod.getNumU(state)) {
const Real q0 = joint.mobod.getOneQ(state, 0);
const Real u0 = joint.mobod.getOneU(state, 0);
printf(" %20s %10.3g %10.3g\n",
joint.name.c_str(), q0, u0);
} else { // weld joint
printf(" %20s weld; no dofs\n",
joint.name.c_str());
}
}
}
}
viz.report(integ.getState()); // show final state
// Finished simulating; dump out some stats. On Windows CPUtime is not
// reliable if very little time is spent in this thread.
const double timeInSec = realTime()-startReal;
const double cpuInSec = cpuTime()-startCPU;
const int evals = integ.getNumRealizations();
cout << "Done -- took " << integ.getNumStepsTaken() << " steps in " <<
timeInSec << "s for " << integ.getTime() << "s sim (avg step="
<< (1000*integ.getTime())/integ.getNumStepsTaken() << "ms) "
<< (1000*integ.getTime())/evals << "sim ms/eval\n";
cout << "CPUtime (not reliable when visualizing) " << cpuInSec << endl;
printf("Used Integrator %s at accuracy %g:\n",
integ.getMethodName(), integ.getAccuracyInUse());
printf("# STEPS/ATTEMPTS = %d/%d\n", integ.getNumStepsTaken(),
integ.getNumStepsAttempted());
printf("# ERR TEST FAILS = %d\n", integ.getNumErrorTestFailures());
printf("# REALIZE/PROJECT = %d/%d\n", integ.getNumRealizations(),
integ.getNumProjections());
}
//==============================================================================
// IMPLEMENTATIONS OF GAZEBO CLASSES
//==============================================================================
int GazeboLinks::addLink(const GazeboLinkInfo& info) {
if (name2index.find(info.name) != name2index.end())
throw std::runtime_error("GazeboLinks::addLink(): Link name '"
+ info.name + " was used more than once.");
const int lx = (int)linkByIndex.size();
linkByIndex.push_back(info);
name2index[info.name] = lx;
return lx;
}
int GazeboJoints::addJoint(const GazeboJointInfo& info) {
if(name2index.find(info.name) != name2index.end())
throw std::runtime_error(
"GazeboJoints::addJoint(): Joint name '" + info.name
+ "' was used more than once.");
const int jx = (int)jointByIndex.size();
jointByIndex.push_back(info);
name2index[info.name] = jx;
return jx;
}
void GazeboModel::readModel(Xml::Element modelElt) {
name = modelElt.getRequiredAttributeValue("name");
X_WM = getPose(modelElt);
isStatic = modelElt.getOptionalElementValueAs<bool>("static", false);
Array_<Xml::Element> linkElts = modelElt.getAllElements("link");
Array_<Xml::Element> jointElts = modelElt.getAllElements("joint");
printf("Reading %s model '%s' with ground + %d links, %d joints.\n",
isStatic ? "STATIC" : "DYNAMIC", name.c_str(),
linkElts.size(), jointElts.size());
cout << " Model frame X_WM as pose=" << transform2Pose(X_WM) << endl;
// Create a World link, then read in the real links.
GazeboLinkInfo worldLink("world");
worldLink.defX_ML = ~X_WM; // different for each model in this world
worldLink.massProps = MassProperties(Infinity,Vec3(0),UnitInertia(1));
links.addLink(worldLink);
for (unsigned i=0; i < linkElts.size(); ++i) {
Xml::Element elt = linkElts[i];
GazeboLinkInfo linfo(elt.getRequiredAttributeValue("name"));
linfo.mustBeBaseLink = elt.getOptionalElementValueAs<bool>
("must_be_base_link", false);
linfo.selfCollide = elt.getOptionalElementValueAs<bool>
("self_collide", false);
linfo.element = elt;
linfo.defX_ML = getPose(elt); // default link pose in Model frame
linfo.massProps = getMassProperties(elt);
links.addLink(linfo);
}
// Read in the joints.
for (unsigned i=0; i < jointElts.size(); ++i) {
Xml::Element elt = jointElts[i];
const std::string name = elt.getRequiredAttributeValue("name");
const std::string type = elt.getRequiredAttributeValue("type");
GazeboJointInfo jinfo(name,type);
jinfo.mustBreakLoopHere = elt.getOptionalElementValueAs<bool>
("must_be_loop_joint", false);
jinfo.element = elt;
// We'll accept either old style:
// <pose>pose on child</pose>
// <child>childName</child>
// <parent>parentName</parent>
// or new style
// <child>
// <link_name>childName</linkName>
// <pose>childPose</pose>
// </child>
// <parent>
// <link_name>parentName</linkName>
// <pose>parentPose</pose>
// </parent>
std::string child, parent;
jinfo.X_CB = getPose(elt); // default joint frame on child body
Xml::Element cElt = elt.getRequiredElement("child");
if (cElt.hasElement("link_name")) {
child = cElt.getRequiredElementValue("link_name");
if (cElt.hasElement("pose"))
jinfo.X_CB = getPose(cElt);
// else leave it as it was
} else child = cElt.getValue(); // old style
// At this point we have the child frame in X_CB
Xml::Element pElt = elt.getRequiredElement("parent");
bool gotParentPose = false;
if (pElt.hasElement("link_name")) {
parent = pElt.getRequiredElementValue("link_name");
if (pElt.hasElement("pose")) {
jinfo.X_PA = getPose(pElt);
gotParentPose = true;
}
} else parent = pElt.getValue(); // old style
assert(links.hasLink(parent) && links.hasLink(child));
assert(child != parent);
jinfo.parent = parent;
jinfo.child = child;
if (!gotParentPose) {
// Must derive joint frame on parent using the default body poses
// TODO: this should be fixed in the sdf file
const Transform X_MC = links.getLink(child).defX_ML;
const Transform X_MP = links.getLink(parent).defX_ML;
const Transform X_PC = ~X_MP*X_MC;
jinfo.X_PA = X_PC*jinfo.X_CB; // i.e., A spatially coincident with B
}
joints.addJoint(jinfo);
}
}
|