1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
|
/* -------------------------------------------------------------------------- *
* Simbody(tm) Example: Rattleback *
* -------------------------------------------------------------------------- *
* This is part of the SimTK biosimulation toolkit originating from *
* Simbios, the NIH National Center for Physics-Based Simulation of *
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody. *
* *
* Portions copyright (c) 2011-12 Stanford University and the Authors. *
* Authors: Michael Sherman *
* Contributors: *
* *
* Licensed under the Apache License, Version 2.0 (the "License"); you may *
* not use this file except in compliance with the License. You may obtain a *
* copy of the License at http://www.apache.org/licenses/LICENSE-2.0. *
* *
* Unless required by applicable law or agreed to in writing, software *
* distributed under the License is distributed on an "AS IS" BASIS, *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
* See the License for the specific language governing permissions and *
* limitations under the License. *
* -------------------------------------------------------------------------- */
/* This example is for experimenting with ellipsoid contact which was
introduced in Simbody 2.2.
*/
#include "Simbody.h"
#include <cstdio>
#include <exception>
#include <algorithm>
#include <iostream>
#include <fstream>
using std::cout; using std::endl;
using namespace SimTK;
Array_<State> saveEm;
const Real Cm2m = 1e-2;
const Real CmSq2mSq = Cm2m*Cm2m; // conversion from sq cm to sq m
const Real Deg2Rad = (Real)SimTK_DEGREE_TO_RADIAN;
const Real Rad2Deg = (Real)SimTK_RADIAN_TO_DEGREE;
static const Real TimeScale = 1;
static const Real FrameRate = 30;
static const Real ReportInterval = TimeScale/FrameRate;
static const Real ForceScale = .25;
static const Real MomentScale = .5;
class ForceArrowGenerator : public DecorationGenerator {
public:
ForceArrowGenerator(const MultibodySystem& system,
const CompliantContactSubsystem& complCont)
: m_system(system), m_compliant(complCont) {}
virtual void generateDecorations(const State& state, Array_<DecorativeGeometry>& geometry) override {
const Vec3 frcColors[] = {Red,Orange,Cyan};
const Vec3 momColors[] = {Blue,Green,Purple};
m_system.realize(state, Stage::Velocity);
const int ncont = m_compliant.getNumContactForces(state);
for (int i=0; i < ncont; ++i) {
const ContactForce& force = m_compliant.getContactForce(state,i);
const ContactId id = force.getContactId();
const Vec3& frc = force.getForceOnSurface2()[1];
const Vec3& mom = force.getForceOnSurface2()[0];
Real frcMag = frc.norm(), momMag=mom.norm();
int frcThickness = 1, momThickness = 1;
Real frcScale = ForceScale, momScale = ForceScale;
while (frcMag > 10)
frcThickness++, frcScale /= 10, frcMag /= 10;
while (momMag > 10)
momThickness++, momScale /= 10, momMag /= 10;
DecorativeLine frcLine(force.getContactPoint(),
force.getContactPoint() + frcScale*frc);
DecorativeLine momLine(force.getContactPoint(),
force.getContactPoint() + momScale*mom);
frcLine.setColor(frcColors[id%3]);
momLine.setColor(momColors[id%3]);
frcLine.setLineThickness(2*frcThickness);
momLine.setLineThickness(2*momThickness);
geometry.push_back(frcLine);
geometry.push_back(momLine);
ContactPatch patch;
const bool found = m_compliant.calcContactPatchDetailsById(state,id,patch);
//cout << "patch for id" << id << " found=" << found << endl;
//cout << "resultant=" << patch.getContactForce() << endl;
//cout << "num details=" << patch.getNumDetails() << endl;
for (int i=0; i < patch.getNumDetails(); ++i) {
const ContactDetail& detail = patch.getContactDetail(i);
const Real peakPressure = detail.getPeakPressure();
// Make a black line from the element's contact point in the normal
// direction, with length proportional to log(peak pressure)
// on that element.
DecorativeLine normal(detail.getContactPoint(),
detail.getContactPoint()+ std::log10(peakPressure)
* detail.getContactNormal());
normal.setColor(Black);
geometry.push_back(normal);
// Make a red line that extends from the contact
// point in the direction of the slip velocity, of length 3*slipvel.
DecorativeLine slip(detail.getContactPoint(),
detail.getContactPoint()+3*detail.getSlipVelocity());
slip.setColor(Red);
geometry.push_back(slip);
}
}
}
private:
const MultibodySystem& m_system;
const CompliantContactSubsystem& m_compliant;
};
class MyReporter : public PeriodicEventReporter {
public:
MyReporter(const MultibodySystem& system,
const CompliantContactSubsystem& complCont,
Real reportInterval)
: PeriodicEventReporter(reportInterval), m_system(system),
m_compliant(complCont)
{}
~MyReporter() {}
void handleEvent(const State& state) const override {
m_system.realize(state, Stage::Dynamics);
cout << state.getTime() << ": E = " << m_system.calcEnergy(state)
<< " Ediss=" << m_compliant.getDissipatedEnergy(state)
<< " E+Ediss=" << m_system.calcEnergy(state)
+m_compliant.getDissipatedEnergy(state)
<< endl;
cout << " q0(Deg): " << state.getQ()[0]*Rad2Deg << endl;
const int ncont = m_compliant.getNumContactForces(state);
cout << "Num contacts: " << m_compliant.getNumContactForces(state) << endl;
for (int i=0; i < ncont; ++i) {
const ContactForce& force = m_compliant.getContactForce(state,i);
//cout << force;
}
saveEm.push_back(state);
}
private:
const MultibodySystem& m_system;
const CompliantContactSubsystem& m_compliant;
};
// These are the item numbers for the entries on the Run menu.
static const int RunMenuId = 3, HelpMenuId = 7;
static const int GoItem = 1, ReplayItem=2, QuitItem=3;
// This is a periodic event handler that interrupts the simulation on a regular
// basis to poll the InputSilo for user input. If there has been some, process it.
// This one does nothing but look for the Run->Quit selection.
class UserInputHandler : public PeriodicEventHandler {
public:
UserInputHandler(Visualizer::InputSilo& silo, Real interval)
: PeriodicEventHandler(interval), m_silo(silo) {}
virtual void handleEvent(State& state, Real accuracy,
bool& shouldTerminate) const override
{
int menuId, item;
if (m_silo.takeMenuPick(menuId, item) && menuId==RunMenuId && item==QuitItem)
shouldTerminate = true;
}
private:
Visualizer::InputSilo& m_silo;
};
int main() {
try
{ // Create the system.
MultibodySystem system;
SimbodyMatterSubsystem matter(system);
GeneralForceSubsystem forces(system);
Force::Gravity gravity(forces, matter, UnitVec3(-1,0,0), 9.81);
ContactTrackerSubsystem tracker(system);
CompliantContactSubsystem contactForces(system, tracker);
contactForces.setTrackDissipatedEnergy(true);
contactForces.setTransitionVelocity(1e-2); // m/s
// Ground's normal is +x for this model
system.setUpDirection(+XAxis);
// Uncomment this if you want a more elegant movie.
//matter.setShowDefaultGeometry(false);
const Real ud = .3; // dynamic
const Real us = .6; // static
const Real uv = 0; // viscous (force/velocity)
const Real k = 1e8; // pascals
const Real c = 0.01; // dissipation (1/v)
// Halfspace default is +x, this one occupies -x instead, so flip.
const Rotation R_xdown(Pi,ZAxis);
matter.Ground().updBody().addContactSurface(
Transform(R_xdown, Vec3(0,0,0)),
ContactSurface(ContactGeometry::HalfSpace(),
ContactMaterial(k,c,us,ud,uv)));
const Real ellipsoidMass = 1; // kg
const Vec3 halfDims(2*Cm2m, 20*Cm2m, 3*Cm2m); // m (read in cm)
const Vec3 comLoc(-1*Cm2m, 0, 0);
const Inertia centralInertia(Vec3(17,2,16)*CmSq2mSq, Vec3(0,0,.2)*CmSq2mSq); // now kg-m^2
const Inertia inertia(centralInertia.shiftFromMassCenter(-comLoc, ellipsoidMass)); // in S
Body::Rigid ellipsoidBody(MassProperties(ellipsoidMass, comLoc, inertia));
ellipsoidBody.addDecoration(Transform(),
DecorativeEllipsoid(halfDims).setColor(Cyan)
//.setOpacity(.5)
.setResolution(3));
ellipsoidBody.addContactSurface(Transform(),
ContactSurface(ContactGeometry::Ellipsoid(halfDims),
ContactMaterial(k,c,us,ud,uv))
);
MobilizedBody::Free ellipsoid(matter.Ground(), Transform(Vec3(0,0,0)),
ellipsoidBody, Transform(Vec3(0)));
Visualizer viz(system);
viz.addDecorationGenerator(new ForceArrowGenerator(system,contactForces));
viz.setMode(Visualizer::RealTime);
viz.setDesiredFrameRate(FrameRate);
viz.setCameraClippingPlanes(0.1, 10);
Visualizer::InputSilo* silo = new Visualizer::InputSilo();
viz.addInputListener(silo);
Array_<std::pair<String,int> > runMenuItems;
runMenuItems.push_back(std::make_pair("Go", GoItem));
runMenuItems.push_back(std::make_pair("Replay", ReplayItem));
runMenuItems.push_back(std::make_pair("Quit", QuitItem));
viz.addMenu("Run", RunMenuId, runMenuItems);
Array_<std::pair<String,int> > helpMenuItems;
helpMenuItems.push_back(std::make_pair("TBD - Sorry!", 1));
viz.addMenu("Help", HelpMenuId, helpMenuItems);
system.addEventReporter(new MyReporter(system,contactForces,ReportInterval));
system.addEventReporter(new Visualizer::Reporter(viz, ReportInterval));
// Check for a Run->Quit menu pick every 1/4 second.
system.addEventHandler(new UserInputHandler(*silo, .25));
// Initialize the system and state.
system.realizeTopology();
State state = system.getDefaultState();
matter.setUseEulerAngles(state, true);
system.realizeModel(state);
ellipsoid.setQToFitTransform(state, Transform(
Rotation(BodyRotationSequence, 0 *Deg2Rad, XAxis,
0.5*Deg2Rad, YAxis,
-0.5*Deg2Rad, ZAxis),
Vec3(2.1*Cm2m, 0, 0)));
ellipsoid.setUToFitAngularVelocity(state, 2*Vec3(5,0,0)); // rad/s
viz.report(state);
printf("Default state\n");
cout << "\nChoose 'Go' from Run menu to simulate:\n";
int menuId, item;
do { silo->waitForMenuPick(menuId, item);
if (menuId != RunMenuId || item != GoItem)
cout << "\aDude ... follow instructions!\n";
} while (menuId != RunMenuId || item != GoItem);
// Simulate it.
//ExplicitEulerIntegrator integ(system);
//CPodesIntegrator integ(system,CPodes::BDF,CPodes::Newton);
//RungeKuttaFeldbergIntegrator integ(system);
RungeKuttaMersonIntegrator integ(system);
//RungeKutta3Integrator integ(system);
//VerletIntegrator integ(system);
//integ.setMaximumStepSize(1e-0001);
integ.setAccuracy(1e-4); // minimum for CPodes
//integ.setAccuracy(.01);
TimeStepper ts(system, integ);
ts.initialize(state);
double cpuStart = cpuTime();
double realStart = realTime();
ts.stepTo(10.0);
const double timeInSec = realTime() - realStart;
const int evals = integ.getNumRealizations();
cout << "Done -- took " << integ.getNumStepsTaken() << " steps in " <<
timeInSec << "s elapsed for " << ts.getTime() << "s sim (avg step="
<< (1000*ts.getTime())/integ.getNumStepsTaken() << "ms) "
<< (1000*ts.getTime())/evals << "ms/eval\n";
cout << " CPU time was " << cpuTime() - cpuStart << "s\n";
printf("Using Integrator %s at accuracy %g:\n",
integ.getMethodName(), integ.getAccuracyInUse());
printf("# STEPS/ATTEMPTS = %d/%d\n", integ.getNumStepsTaken(), integ.getNumStepsAttempted());
printf("# ERR TEST FAILS = %d\n", integ.getNumErrorTestFailures());
printf("# REALIZE/PROJECT = %d/%d\n", integ.getNumRealizations(), integ.getNumProjections());
viz.dumpStats(std::cout);
// Add as slider to control playback speed.
viz.addSlider("Speed", 1, 0, 4, 1);
viz.setMode(Visualizer::PassThrough);
silo->clear(); // forget earlier input
double speed = 1; // will change if slider moves
while(true) {
cout << "Choose Run/Replay to see that again ...\n";
int menuId, item;
silo->waitForMenuPick(menuId, item);
if (menuId != RunMenuId) {
cout << "\aUse the Run menu!\n";
continue;
}
if (item == QuitItem)
break;
if (item != ReplayItem) {
cout << "\aHuh? Try again.\n";
continue;
}
for (double i=0; i < (int)saveEm.size(); i += speed ) {
int slider; Real newValue;
if (silo->takeSliderMove(slider,newValue)) {
speed = newValue;
}
viz.report(saveEm[(int)i]);
}
}
} catch (const std::exception& e) {
std::printf("EXCEPTION THROWN: %s\n", e.what());
exit(1);
} catch (...) {
std::printf("UNKNOWN EXCEPTION THROWN\n");
exit(1);
}
return 0;
}
|