1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
|
/* -------------------------------------------------------------------------- *
* Simbody(tm) Example: Boston Dynamics Atlas robot *
* -------------------------------------------------------------------------- *
* This is part of the SimTK biosimulation toolkit originating from *
* Simbios, the NIH National Center for Physics-Based Simulation of *
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody. *
* *
* Portions copyright (c) 2014 Stanford University and the Authors. *
* Authors: Michael Sherman *
* Contributors: Jack Wang, Chris Dembia, John Hsu *
* *
* Licensed under the Apache License, Version 2.0 (the "License"); you may *
* not use this file except in compliance with the License. You may obtain a *
* copy of the License at http://www.apache.org/licenses/LICENSE-2.0. *
* *
* Unless required by applicable law or agreed to in writing, software *
* distributed under the License is distributed on an "AS IS" BASIS, *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
* See the License for the specific language governing permissions and *
* limitations under the License. *
* -------------------------------------------------------------------------- */
#include "Simbody.h"
#include "URDFReader.h"
#include "Atlas.h"
#include <cstdio>
#include <iostream>
using namespace SimTK;
namespace {
// This local event handler is called periodically to sample the robot's
// sensors.
class AtlasJointSampler : public PeriodicEventHandler {
public:
AtlasJointSampler(const Atlas& realRobot,
Real interval)
: PeriodicEventHandler(interval), m_realRobot(realRobot) {}
// This method is called whenever this event occurs.
void handleEvent(State& state, Real, bool&) const override;
private:
const Atlas& m_realRobot;
Random::Gaussian m_gaussian; // mean=0, stddev=1
};
}
static void createMultibodyGraph(URDFRobot& robot,
MultibodyGraphMaker& mbgraph);
static void addRobotToSimbodySystem(const std::string& auxDir,
const MultibodyGraphMaker& mbgraph,
URDFRobot& robot,
MultibodySystem& mbs,
SimbodyMatterSubsystem& matter,
GeneralForceSubsystem& forces,
CompliantContactSubsystem& contact);
//------------------------------------------------------------------------------
// ATLAS CONSTRUCTOR
//------------------------------------------------------------------------------
// Build a Simbody System of the Boston Dynamics Atlas robot.
Atlas::Atlas(const std::string& auxDir, const std::string& fileNameAndExt)
: m_matter(*this), m_forces(*this), m_tracker(*this),
m_contact(*this, m_tracker),
m_sampledAngles(*this, Stage::Dynamics, Vector()),
m_sampledRates(*this, Stage::Dynamics, Vector()),
m_sampledPelvisPose(*this, Stage::Dynamics, Transform()),
m_sampledEndEffectorPos(*this, Stage::Dynamics, Vec3(0)),
m_qNoise(*this,Stage::Dynamics,Zero), m_uNoise(*this,Stage::Dynamics,Zero),
m_endEffectorLinkName("r_hand"), m_endEffectorStation(0,-.15,0)
{
const std::string urdfPathName = auxDir + "models/" + fileNameAndExt;
setUpDirection(ZAxis);
m_matter.setShowDefaultGeometry(false);
// Set the sensor sampling rate. TODO: should be settable.
addEventHandler(new AtlasJointSampler(*this, 0.002));
//--------------------------------------------------------------------------
// Read the robot file
//--------------------------------------------------------------------------
std::cout << "Reading file: " << urdfPathName << std::endl;
Xml::Document urdf(urdfPathName);
if (urdf.getRootTag() != "robot")
throw std::runtime_error
("Expected to see document tag <robot>but saw <"
+ urdf.getRootTag() + "> instead.");
// This is a URDF robot document.
Xml::Element root = urdf.getRootElement();
std::cout << "Reading robot '"
<< root.getOptionalAttributeValue("name","NONAME") << "'\n";
m_urdfRobot.readRobot(root);
createMultibodyGraph(m_urdfRobot, m_mbGraph);
// Optional: dump the graph to stdout for debugging or curiosity.
//m_mbGraph.dumpGraph(std::cout);
//--------------------------------------------------------------------------
// Gravity and Ground
//--------------------------------------------------------------------------
m_gravity = Force::Gravity(m_forces, m_matter, -SimTK::ZAxis, 9.80665);
// Define a material to use for ground contact. This is not very stiff.
ContactMaterial groundMaterial(1e6, // stiffness
0.1, // dissipation
0.7, // mu_static
0.5, // mu_dynamic
0.5); // mu_viscous
// Add a contact surface to represent the ground.
// Half space normal is -x; must rotate about y to make it +z.
m_matter.Ground().updBody().addContactSurface(Rotation(Pi/2,YAxis),
ContactSurface(ContactGeometry::HalfSpace(), groundMaterial));
// Draw world frame.
m_matter.Ground().addBodyDecoration(Vec3(0),
DecorativeFrame(1).setColor(Green).setLineThickness(3)); // World
//--------------------------------------------------------------------------
// Build Simbody System
//--------------------------------------------------------------------------
addRobotToSimbodySystem(auxDir, m_mbGraph, m_urdfRobot,
*this, m_matter, m_forces, m_contact);
}
//------------------------------------------------------------------------------
// ATLAS JOINT SAMPLER :: HANDLE EVENT
//------------------------------------------------------------------------------
// This method is called whenever this event occurs.
void AtlasJointSampler::handleEvent
(State& state, Real, bool&) const
{
const int nq = state.getNQ(), nu = state.getNU();
const Vector& q = state.getQ();
const Vector& u = state.getU();
const Real qNoise = m_realRobot.getAngleNoise(state);
const Real uNoise = m_realRobot.getRateNoise(state);
Vector qSample(nq), uSample(nu);
for (int i=0; i<nq; ++i)
qSample[i] = q[i] + qNoise * m_gaussian.getValue();
for (int i=0; i<nu; ++i)
uSample[i] = u[i] + uNoise * m_gaussian.getValue();
m_realRobot.setSampledAngles(state, qSample);
m_realRobot.setSampledRates(state, uSample);
m_realRobot.setSampledPelvisPose(state,
m_realRobot.getBody("pelvis").getBodyTransform(state));
m_realRobot.setSampledEndEffectorPos(state,
m_realRobot.getActualEndEffectorPosition(state));
}
//==============================================================================
// CREATE MULTIBODY GRAPH
//==============================================================================
// Define URDF joint types, then use links and joints in the given model
// to construct a reasonable spanning-tree-plus-constraints multibody graph
// to represent that model. An exception will be thrown if this fails.
// Note that this step is not Simbody dependent.
static void createMultibodyGraph(URDFRobot& robot,
MultibodyGraphMaker& mbgraph) {
// Step 1: Tell MultibodyGraphMaker about joints it should know about.
mbgraph.setWeldJointTypeName("fixed"); // 0 dofs, Weld
mbgraph.setFreeJointTypeName("floating"); // 6 dofs, Free
// URDF name #dofs Simbody equivalent
mbgraph.addJointType("revolute", 1); // Pin with limits
mbgraph.addJointType("continuous", 1); // Pin with no limits
mbgraph.addJointType("planar", 3); // Planar
// Step 2: Tell it about all the links we read from the input file,
// starting with world, and provide a reference pointer.
for (int lx=0; lx < robot.links.size(); ++lx) {
URDFLinkInfo& link = robot.links.updLink(lx);
mbgraph.addBody(link.name, link.massProps.getMass(),
link.mustBeBaseLink, &link);
}
// Step 3: Tell it about all the joints we read from the input file,
// and provide a reference pointer.
for (int jx=0; jx < robot.joints.size(); ++jx) {
URDFJointInfo& joint = robot.joints.updJoint(jx);
mbgraph.addJoint(joint.name, joint.type, joint.parent, joint.child,
joint.mustBreakLoopHere, &joint);
}
// Setp 4. Generate the multibody graph.
mbgraph.generateGraph();
}
void Atlas::initialize(SimTK::State& state) {
state = realizeTopology();
realizeModel(state);
const int nq=state.getNQ(), nu=state.getNU();
m_sampledAngles.setValue(state, SimTK::Vector(nq, SimTK::Zero));
m_sampledRates.setValue(state, SimTK::Vector(nu, SimTK::Zero));
m_effortLimits.resize(nu); m_effortLimits = Infinity;
m_speedLimits.resize(nu); m_speedLimits = Infinity;
m_lowerLimits.resize(nq); m_lowerLimits = -Infinity;
m_upperLimits.resize(nq); m_upperLimits = Infinity;
for (int j=0; j < (int)m_urdfRobot.joints.size(); ++j) {
const URDFJointInfo& joint = m_urdfRobot.joints.getJoint(j);
const MobilizedBody& mobod = joint.mobod;
const int nu = mobod.getNumU(state), nq = mobod.getNumQ(state);
const int u0 = mobod.getFirstUIndex(state);
const int q0 = mobod.getFirstQIndex(state);
for (int u=0; u < nu; ++u) {
m_effortLimits[u0+u] = joint.effort;
m_speedLimits[u0+u] = joint.velocity;
}
for (int q=0; q < nq; ++q) {
m_lowerLimits[q0+q] = joint.lower;
m_upperLimits[q0+q] = joint.upper;
}
}
}
//==============================================================================
// ADD ROBOT TO SIMBODY SYSTEM
//==============================================================================
// Given a desired multibody graph, gravity, and the URDF robot that was
// used to generate the graph, add elements to the Simbody System to represent
// it. There are many limitations here, especially in the handling of contact.
// Any URDF features that we haven't roboted are just ignored.
// The URDFRobot is updated so that its links and joints have references to
// their corresponding Simbody elements.
static void addRobotToSimbodySystem(const std::string& auxDir,
const MultibodyGraphMaker& mbgraph,
URDFRobot& robot,
MultibodySystem& mbs,
SimbodyMatterSubsystem& matter,
GeneralForceSubsystem& forces,
CompliantContactSubsystem& contact)
{
const std::string& freeJointName = mbgraph.getFreeJointTypeName();
const std::string& weldJointName = mbgraph.getWeldJointTypeName();
// Define a material to use for contact. This is not very stiff.
ContactMaterial material(1e6, // stiffness
0.1, // dissipation
0.7, // mu_static
0.5, // mu_dynamic
0.5); // mu_viscous
// Draw the robot frame.
matter.Ground().addBodyDecoration(robot.X_WM,
DecorativeFrame(.75).setColor(Orange).setLineThickness(3)); // Model
matter.Ground().addBodyDecoration(robot.X_WM.p()+Vec3(0,0,.1),
DecorativeText(robot.name).setScale(.2)
.setColor(robot.isStatic?Green:Cyan));
// Generate a contact clique we can put collision geometry in to prevent
// self-collisions.
robot.robotClique = ContactSurface::createNewContactClique();
// Record the MobilizedBody for the World link.
robot.links.updLink(0).masterMobod = matter.Ground();
// Run through all the mobilizers in the multibody graph, adding a Simbody
// MobilizedBody for each one. Also add visual and collision geometry to the
// bodies when they are mobilized.
for (int mobNum=0; mobNum < mbgraph.getNumMobilizers(); ++mobNum) {
// Get a mobilizer from the graph, then extract its corresponding
// joint and bodies. Note that these don't necessarily have equivalents
// in the URDFLink and URDFJoint inputs.
const MultibodyGraphMaker::Mobilizer& mob = mbgraph.getMobilizer(mobNum);
const std::string& type = mob.getJointTypeName();
// The inboard body always corresponds to one of the input links,
// because a slave link is always the outboard body of a mobilizer.
// The outboard body may be slave, but its master body is one of the
// URDF input links.
const bool isSlave = mob.isSlaveMobilizer();
URDFLinkInfo& gzInb = *(URDFLinkInfo*)mob.getInboardBodyRef();
URDFLinkInfo& gzOutb = *(URDFLinkInfo*)mob.getOutboardMasterBodyRef();
const MassProperties massProps =
gzOutb.getEffectiveMassProps(mob.getNumFragments());
//std::cout << "link=" << gzOutb.name << std::endl;
//std::cout << " " << massProps << std::endl;
// This will reference the new mobilized body once we create it.
MobilizedBody mobod;
if (robot.isStatic) {
mobod = matter.updGround();
} else if (mob.isAddedBaseMobilizer()) {
// There is no corresponding URDF joint for this mobilizer.
// Create the joint and set its default position to be the default
// pose of the base link relative to the Ground frame.
assert(type==freeJointName); // May add more types later
if (type == freeJointName) {
MobilizedBody::Free freeJoint(
gzInb.masterMobod, Transform(),
massProps, Transform());
freeJoint.setDefaultTransform(Transform());
mobod = freeJoint;
}
} else {
// This mobilizer does correspond to one of the input joints.
URDFJointInfo& gzJoint = *(URDFJointInfo*)mob.getJointRef();
const bool isReversed = mob.isReversedFromJoint();
// Find inboard and outboard frames for the mobilizer; these are
// parent and child frames or the reverse.
const Transform& X_IF0 = isReversed ? gzJoint.X_CB : gzJoint.X_PA;
const Transform& X_OM0 = isReversed ? gzJoint.X_PA : gzJoint.X_CB;
const MobilizedBody::Direction direction =
isReversed ? MobilizedBody::Reverse : MobilizedBody::Forward;
// Here we are using a Simbody Bushing joint to implement "floating"
// so that we'll have Euler angle rotations & derivatives rather
// than the quaternions we would get with a Simbody Free joint.
// Of course that does mean there will be a singularity somewhere.
// This makes it easier to apply prescribed motion.
if (type == freeJointName) {
MobilizedBody::Bushing freeJoint(
gzInb.masterMobod, X_IF0,
massProps, X_OM0,
direction);
Transform defX_FM = isReversed ? Transform(~gzJoint.defX_AB)
: gzJoint.defX_AB;
freeJoint.setDefaultTransform(defX_FM);
mobod = freeJoint;
// Pin joint with no limits
} else if (type == "continuous") {
Xml::Element axisElt = gzJoint.element.getRequiredElement("axis");
UnitVec3 axis =
UnitVec3(axisElt.getRequiredAttributeValueAs<Vec3>("xyz"));
Rotation R_JZ(axis, ZAxis); // Simbody's pin is along Z
Transform X_IF(X_IF0.R()*R_JZ, X_IF0.p());
Transform X_OM(X_OM0.R()*R_JZ, X_OM0.p());
MobilizedBody::Pin pinJoint(
gzInb.masterMobod, X_IF,
massProps, X_OM,
direction);
mobod = pinJoint;
#ifdef ADD_JOINT_SPRINGS
// KLUDGE add spring (stiffness proportional to mass)
Force::MobilityLinearSpring(forces,mobod,0,
30*massProps.getMass(),0);
#endif
// Pin joint with limits
} else if (type == "revolute") {
Xml::Element axisElt = gzJoint.element.getRequiredElement("axis");
UnitVec3 axis =
UnitVec3(axisElt.getRequiredAttributeValueAs<Vec3>("xyz"));
Rotation R_JZ(axis, ZAxis); // Simbody's pin is along Z
Transform X_IF(X_IF0.R()*R_JZ, X_IF0.p());
Transform X_OM(X_OM0.R()*R_JZ, X_OM0.p());
MobilizedBody::Pin pinJoint(
gzInb.masterMobod, X_IF,
massProps, X_OM,
direction);
mobod = pinJoint;
#ifdef ADD_JOINT_SPRINGS
// KLUDGE add spring (stiffness proportional to mass)
Force::MobilityLinearSpring(forces,mobod,0,
30*massProps.getMass(),0);
#endif
} else if (type == "prismatic") {
Xml::Element axisElt = gzJoint.element.getRequiredElement("axis");
UnitVec3 axis =
UnitVec3(axisElt.getRequiredAttributeValueAs<Vec3>("xyz"));
Rotation R_JX(axis, XAxis); // Simbody's slider is along X
Transform X_IF(X_IF0.R()*R_JX, X_IF0.p());
Transform X_OM(X_OM0.R()*R_JX, X_OM0.p());
MobilizedBody::Slider sliderJoint(
gzInb.masterMobod, X_IF,
massProps, X_OM,
direction);
mobod = sliderJoint;
#ifdef ADD_JOINT_SPRINGS
// KLUDGE add spring (stiffness proportional to mass)
Force::MobilityLinearSpring(forces,mobod,0,
30*massProps.getMass(),0);
#endif
} else if (type == "ball") {
MobilizedBody::Ball ballJoint(
gzInb.masterMobod, X_IF0,
massProps, X_OM0,
direction);
Rotation defR_FM = isReversed
? Rotation(~gzJoint.defX_AB.R())
: gzJoint.defX_AB.R();
ballJoint.setDefaultRotation(defR_FM);
mobod = ballJoint;
} else if (type == weldJointName) {
MobilizedBody::Weld weldJoint(
gzInb.masterMobod, X_IF0,
massProps, X_OM0);
mobod = weldJoint;
}
// Created a mobilizer that corresponds to gzJoint. Keep track.
gzJoint.mobod = mobod;
gzJoint.isReversed = isReversed;
}
// Link gzOutb has been mobilized; keep track for later.
if (isSlave) gzOutb.slaveMobods.push_back(mobod);
else gzOutb.masterMobod = mobod;
// A mobilizer has been created; now add the visual and collision
// geometry for the new mobilized body.
Xml::Element master = gzOutb.element;
Vec3 color = isSlave ? Red : Cyan;
Real scale = isSlave ? 0.9 : 1.;
if (master.isValid()) {
// VISUAL
Array_<Xml::Element> visuals = master.getAllElements("visual");
for (unsigned i=0; i < visuals.size(); ++i) {
Transform X_LV = URDF::getOrigin(visuals[i]);
Xml::Element geo = visuals[i].getRequiredElement("geometry");
Xml::Element box = geo.getOptionalElement("box");
if (box.isValid()) {
Vec3 sz = box.getRequiredAttributeValueAs<Vec3>("size");
mobod.addBodyDecoration(
X_LV, DecorativeBrick(sz/2).setOpacity(.5)
.setColor(color).setScale(scale));
}
Xml::Element sphere = geo.getOptionalElement("sphere");
if (sphere.isValid()) {
Real r = sphere.getRequiredAttributeValueAs<Real>("radius");
mobod.addBodyDecoration(
X_LV, DecorativeSphere(r).setOpacity(.5)
.setColor(color).setScale(scale));
}
Xml::Element cyl = geo.getOptionalElement("cylinder");
if (cyl.isValid()) {
Real r = cyl.getRequiredAttributeValueAs<Real>("radius");
Real l = cyl.getRequiredAttributeValueAs<Real>("length");
// Cylinder is along Z in URDF, Y in Simbody
Rotation YtoZ(Pi/2, XAxis);
mobod.addBodyDecoration(
Transform(X_LV.R()*YtoZ, X_LV.p()),
DecorativeCylinder(r, l/2).setOpacity(.5)
.setColor(color).setScale(scale));
}
Xml::Element meshFile = geo.getOptionalElement("mesh");
if (meshFile.isValid()) {
std::string pathname =
meshFile.getRequiredAttributeValue("filename");
const std::string::size_type spos = pathname.rfind('/');
if (spos != std::string::npos)
pathname = pathname.substr(spos+1);
const Vec3 scale =
meshFile.getOptionalAttributeValueAs<Vec3>
("scale", Vec3(1));
bool isAbsolutePath; std::string dir, fn, ext;
Pathname::deconstructPathname(pathname, isAbsolutePath,
dir, fn, ext);
PolygonalMesh polyMesh;
polyMesh.loadStlFile(auxDir + "geometry/" + fn + ".stl");
DecorativeMesh decMesh(polyMesh);
decMesh.setColor(Cyan).setScaleFactors(scale);
mobod.addBodyDecoration(X_LV, decMesh);
}
}
// COLLISION
Array_<Xml::Element> coll = master.getAllElements("collision");
const Vec3 collColor = robot.isStatic ? Green : Gray;
//TODO: disabled
for (unsigned i=0; i < 0*coll.size(); ++i) {
Transform X_LC = URDF::getOrigin(coll[i]);
Xml::Element geo = coll[i].getRequiredElement("geometry");
// Model sphere collision surface.
Xml::Element sphere = geo.getOptionalElement("sphere");
if (sphere.isValid()) {
Real r = sphere.getRequiredAttributeValueAs<Real>("radius");
mobod.addBodyDecoration(
X_LC, DecorativeSphere(r)
.setRepresentation(DecorativeGeometry::DrawWireframe)
.setColor(collColor));
ContactSurface surface(ContactGeometry::Sphere(r),
material);
if (!gzOutb.selfCollide)
surface.joinClique(robot.robotClique);
mobod.updBody().addContactSurface(X_LC, surface);
}
// Model cylinder collision surface (must fake with ellipsoid).
Xml::Element cyl = geo.getOptionalElement("cylinder");
if (cyl.isValid()) {
Real r = cyl.getRequiredAttributeValueAs<Real>("radius");
Real len = cyl.getRequiredAttributeValueAs<Real>("length");
// Cylinder is along Z in URDF
#ifndef USE_CONTACT_MESH
Vec3 esz = Vec3(r,r,len/2); // Use ellipsoid instead
mobod.addBodyDecoration(X_LC,
DecorativeEllipsoid(esz)
.setRepresentation(DecorativeGeometry::DrawWireframe)
.setColor(collColor));
ContactSurface surface(ContactGeometry::Ellipsoid(esz),
material);
#else
const int resolution = 0; // chunky hexagonal shape
const PolygonalMesh mesh = PolygonalMesh::
createCylinderMesh(ZAxis,r,len/2,resolution);
const ContactGeometry::TriangleMesh triMesh(mesh);
mobod.addBodyDecoration(X_LC,
DecorativeMesh(triMesh.createPolygonalMesh())
.setRepresentation(DecorativeGeometry::DrawWireframe)
.setColor(collColor));
ContactSurface surface(triMesh, material,1 /*Thickness*/);
#endif
if (!gzOutb.selfCollide)
surface.joinClique(robot.robotClique);
mobod.updBody().addContactSurface(X_LC, surface);
}
// Model box collision surface (must fake with ellipsoid).
Xml::Element box = geo.getOptionalElement("box");
if (box.isValid()) {
Vec3 hsz = box.getRequiredAttributeValueAs<Vec3>("size")/2;
#ifndef USE_CONTACT_MESH
mobod.addBodyDecoration(X_LC,
DecorativeEllipsoid(hsz) // use half dimensions
.setRepresentation(DecorativeGeometry::DrawWireframe)
.setColor(collColor));
ContactSurface surface(ContactGeometry::Ellipsoid(hsz),
material);
#else
const int resolution = 20; // need dense to get near corners
const PolygonalMesh mesh = PolygonalMesh::
createBrickMesh(hsz,resolution);
const ContactGeometry::TriangleMesh triMesh(mesh);
mobod.addBodyDecoration(X_LC,
DecorativeMesh(triMesh.createPolygonalMesh())
.setRepresentation(DecorativeGeometry::DrawWireframe)
.setColor(collColor));
ContactSurface surface(triMesh, material,1 /*Thickness*/);
#endif
if (!gzOutb.selfCollide)
surface.joinClique(robot.robotClique);
mobod.updBody().addContactSurface(X_LC, surface);
}
}
}
}
// Weld the slaves to their masters.
for (int lx=0; lx < robot.links.size(); ++lx) {
URDFLinkInfo& link = robot.links.updLink(lx);
if (link.slaveMobods.empty()) continue;
for (unsigned i=0; i < link.slaveMobods.size(); ++i) {
Constraint::Weld weld(link.masterMobod, link.slaveMobods[i]);
link.slaveWelds.push_back(weld); // in case we want to know later
}
}
// Add the loop joints if any.
for (int lcx=0; lcx < mbgraph.getNumLoopConstraints(); ++lcx) {
const MultibodyGraphMaker::LoopConstraint& loop =
mbgraph.getLoopConstraint(lcx);
URDFJointInfo& joint = *(URDFJointInfo*)loop.getJointRef();
URDFLinkInfo& parent = *(URDFLinkInfo*) loop.getParentBodyRef();
URDFLinkInfo& child = *(URDFLinkInfo*) loop.getChildBodyRef();
if (joint.type == weldJointName) {
Constraint::Weld weld(parent.masterMobod, joint.X_PA,
child.masterMobod, joint.X_CB);
joint.constraint = weld;
} else if (joint.type == "ball") {
Constraint::Ball ball(parent.masterMobod, joint.X_PA.p(),
child.masterMobod, joint.X_CB.p());
joint.constraint = ball;
} else if (joint.type == freeJointName) {
// A "free" loop constraint is no constraint at all so we can
// just ignore it. It might be more convenient if there were
// a 0-constraint Constraint::Free, just as there is a 0-mobility
// MobilizedBody::Weld.
} else
throw std::runtime_error(
"Unrecognized loop constraint type '" + joint.type + "'.");
}
}
|