1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
|
/* -------------------------------------------------------------------------- *
* Simbody(tm) Example: Atlas Task Space Control *
* -------------------------------------------------------------------------- *
* This is part of the SimTK biosimulation toolkit originating from *
* Simbios, the NIH National Center for Physics-Based Simulation of *
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody. *
* *
* Portions copyright (c) 2014 Stanford University and the Authors. *
* Authors: Michael Sherman, Chris Dembia *
* Contributors: John Hsu *
* *
* Licensed under the Apache License, Version 2.0 (the "License"); you may *
* not use this file except in compliance with the License. You may obtain a *
* copy of the License at http://www.apache.org/licenses/LICENSE-2.0. *
* *
* Unless required by applicable law or agreed to in writing, software *
* distributed under the License is distributed on an "AS IS" BASIS, *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
* See the License for the specific language governing permissions and *
* limitations under the License. *
* -------------------------------------------------------------------------- */
/* This example shows a task space (a.k.a. operational space) controller for
the Gazebo model of the Boston Dynamics Atlas humanoid robot used in the
DARPA Robotics Challenge. Task space controllers are model-based, meaning that
the controller itself contains a model of the system being controlled. Since
we don't have a real robot handy, that means there will be two versions of
the Atlas system here: one that we're simulating that is taking the role of the
"real" robot, and one contained in the task space controller that we'll call
the "model" robot. In real life the internal model won't perfectly match the
real one; we'll fake that here by introducing some sensor noise which you can
control with sliders in the user interface.
Here we assume the real robot has a balance controller that determines the
lower body pose up to the "pelvis" link. The model controller consists only
of the robot's upper body, with the pelvis frame welded to the Ground frame.
We sample the real robot to determine the current pelvis pose, and use that
to properly position the model controller. We are ignoring the pelvis velocity
and acceleration, so this is only good enough if the pelvis moves slowly.
For the example here, we move the pelvis around sinusoidally with the feet
welded to the floor as a stand-in for the balance controller.
We assume the system has a direct-drive torque motor at each of its degrees of
freedom.
The task the controller will achieve has several components:
1. One of the robot's arms reaches for a target point that can be moved with
arrow keys.
2. Subject to achieving the reaching task, we try to keep the robot's pose
neutral in joint space, that is, with all joint angles and velocities zero.
3. All links are subject to gravity compensation (to counteract the effect
of gravity). This is done in joint space and simply added to the pose control
torques.
Each of the above effects may be disabled independently via letter keys in
the visualizer window.
You can also optionally sense the end effector position on the real robot
and have that sent to the controller so that it doesn't have to depend
entirely on the behavior of the model robot when the real robot's sensors are
noisy. Try cranking up the noise, which causes poor tracking, and then hit
"e" to enable the end effector sensing which improves things dramatically.
This works best with pose control off.
For more information about operational space control, see:
Khatib, Oussama, et al. "Robotics-based synthesis of human motion."
Journal of physiology-Paris 103.3 (2009): 211-219.
*/
#include "Simbody.h"
#include "Atlas.h"
#include "shared/TaskSpace.h"
#include "shared/SimbodyExampleHelper.h"
#include <iostream>
using namespace SimTK;
using namespace std;
static const int QNoise=1, UNoise=2; // sliders in the UI
//==============================================================================
// TASKS MEASURE
//==============================================================================
// This Measure is added to the modelRobot and is used to manage the tasks
// it is supposed to achieve and to return as its value the control torques
// that should be applied to the realRobot (that is, the simulated one).
// This should only be instantiated with T=Vector.
template <class T>
class TasksMeasure : public Measure_<T> {
public:
SimTK_MEASURE_HANDLE_PREAMBLE(TasksMeasure, Measure_<T>);
TasksMeasure(Atlas& modelRobot)
: Measure_<T>(modelRobot.updForceSubsystem(),
new Implementation(modelRobot),
AbstractMeasure::SetHandle()) {}
const Vec3& getTarget() const { return getImpl().m_desiredTaskPosInGround; }
Vec3& updTarget() { return updImpl().m_desiredTaskPosInGround; }
void setTarget(Vec3 pos) { updImpl().m_desiredTaskPosInGround = pos; }
void toggleGravityComp() {
updImpl().m_compensateForGravity = !isGravityCompensationOn();}
void togglePoseControl() {
updImpl().m_controlPose = !isPoseControlOn();}
void toggleTask() {updImpl().m_controlTask = !getImpl().m_controlTask;}
void toggleEndEffectorSensing()
{ updImpl().m_endEffectorSensing = !getImpl().m_endEffectorSensing;}
bool isGravityCompensationOn() const
{ return getImpl().m_compensateForGravity; }
bool isPoseControlOn() const
{ return getImpl().m_controlPose; }
bool isEndEffectorSensingOn() const
{ return getImpl().m_endEffectorSensing; }
bool isTaskPointFollowingOn() const
{ return getImpl().m_controlTask; }
const Vec3& getTaskPointInEndEffector() const
{ return getImpl().m_taskPointInEndEffector; }
SimTK_MEASURE_HANDLE_POSTSCRIPT(TasksMeasure, Measure_<T>);
};
template <class T>
class TasksMeasure<T>::Implementation : public Measure_<T>::Implementation {
public:
Implementation(const Atlas& modelRobot,
Real proportionalGain=225, double derivativeGain=30)
//Real proportionalGain=100, double derivativeGain=20)
: Measure_<T>::Implementation(T(), 1),
m_modelRobot(modelRobot),
m_tspace1(m_modelRobot.getMatterSubsystem(), m_modelRobot.getGravity()),
m_proportionalGain(proportionalGain),
m_derivativeGain(derivativeGain),
m_jointPositionGain(100),
m_jointDampingGain(20),
//m_jointPositionGain(225),
//m_jointDampingGain(30),
m_compensateForGravity(true),
m_controlPose(true),
m_controlTask(false),
m_endEffectorSensing(false),
m_desiredTaskPosInGround(Vec3(0.4, -0.1, 1)) // Z is up
{
//TODO: should have end effector body
m_tspace1.addStationTask(m_modelRobot.getEndEffectorBody(),
m_modelRobot.getEndEffectorStation());
}
// Default copy constructor, destructor, copy assignment are fine.
// Implementations of virtual methods.
Implementation* cloneVirtual() const override
{ return new Implementation(*this); }
int getNumTimeDerivativesVirtual() const override {return 0;}
Stage getDependsOnStageVirtual(int order) const override
{ return Stage::Velocity; }
// This is the task space controller. It returns joint torques tau as the
// value of the enclosing Measure.
void calcCachedValueVirtual(const State& s, int derivOrder, T& tau) const
override;
// TaskSpace objects require some State resources; this call is the time
// for doing that so forward on to the TaskSpace.
void realizeMeasureTopologyVirtual(State& modelState) const override {
m_tspace1.realizeTopology(modelState);
}
private:
friend class TasksMeasure<T>;
const Atlas& m_modelRobot;
TaskSpace m_tspace1;
const Real m_proportionalGain; // task space
const Real m_derivativeGain;
const Real m_jointPositionGain; // joint space
const Real m_jointDampingGain;
bool m_compensateForGravity;
bool m_controlPose;
bool m_controlTask;
bool m_endEffectorSensing;
Vec3 m_desiredTaskPosInGround;
};
//==============================================================================
// REACHING AND GRAVITY COMPENSATION
//==============================================================================
// This is a task-space controller that tries to move the end effector to
// a particular target location, and applies gravity compensation and some
// joint damping as lower-priority tasks.
//
// The controller has its own internal Atlas model which in general does not
// match the "real" Atlas perfectly. Each time it is asked to
// generate control torques it reads the sensors on the real Atlas, updates
// its internal model to match. It then generates torques that would be right
// for the internal model, but returns them to be applied to the real Atlas.
class ReachingAndGravityCompensation : public Force::Custom::Implementation {
public:
ReachingAndGravityCompensation(const std::string& auxDir,
const Atlas& realRobot)
: m_modelRobot(auxDir, "atlas_v4_upper.urdf"), m_modelTasks(m_modelRobot),
m_realRobot(realRobot), m_targetColor(Red)
{
m_modelRobot.initialize(m_modelState);
printf("Controller model has %d dofs.\n", m_modelState.getNU());
}
// Call this after the real robot has been initialized to set up
// a mapping between the joint coordinates in the model robot and
// the corresponding ones in the real robot.
void mapModelToRealRobot(const State& realState);
const Vec3& getTarget() const {return m_modelTasks.getTarget();}
Vec3& updTarget() {return m_modelTasks.updTarget();}
void setTarget(Vec3 pos) {m_modelTasks.setTarget(pos);}
void toggleGravityComp() {m_modelTasks.toggleGravityComp();}
void togglePoseControl() {m_modelTasks.togglePoseControl();}
void toggleTask() {m_modelTasks.toggleTask();}
void toggleEndEffectorSensing() {m_modelTasks.toggleEndEffectorSensing();}
bool isGravityCompensationOn() const
{ return m_modelTasks.isGravityCompensationOn(); }
// This method calculates the needed control torques and adds them into
// the given mobilityForces Vector which will be applied to the real Atlas.
// The supplied State is from the real Atlas and will be used to read its
// sensors.
void calcForce(const SimTK::State& realState,
SimTK::Vector_<SimTK::SpatialVec>& bodyForces,
SimTK::Vector_<SimTK::Vec3>& particleForces,
SimTK::Vector& mobilityForces) const
override;
// This controller does not contribute potential energy to the system.
Real calcPotentialEnergy(const SimTK::State& state) const override
{ return 0; }
// Add some useful text and graphics that changes due to user input.
void calcDecorativeGeometryAndAppend(const State & state, Stage stage,
Array_<DecorativeGeometry>& geometry) const override;
private:
Atlas m_modelRobot; // The controller's internal model.
TasksMeasure<Vector> m_modelTasks;
mutable State m_modelState; // Temporary: State for the model robot.
const Atlas& m_realRobot; // The "real" robot being controlled.
const Vec3 m_targetColor;
// Map from model robot coordinates to real robot coordinates.
Array_<int> m_model2realQ;
Array_<int> m_model2realU;
};
//==============================================================================
// USER INPUT HANDLER
//==============================================================================
/// This is a periodic event handler that interrupts the simulation on a
/// regular basis to poll the InputSilo for user input.
class UserInputHandler : public PeriodicEventHandler {
public:
UserInputHandler(Visualizer::InputSilo& silo,
Atlas& realRobot,
ReachingAndGravityCompensation& controller,
Real interval)
: PeriodicEventHandler(interval), m_silo(silo), m_realRobot(realRobot),
m_controller(controller), m_increment(0.05) {}
void handleEvent(State& realState, Real accuracy,
bool& shouldTerminate) const override;
private:
Visualizer::InputSilo& m_silo;
Atlas& m_realRobot;
ReachingAndGravityCompensation& m_controller;
const Real m_increment;
};
//==============================================================================
// MAIN
//==============================================================================
int main(int argc, char **argv) {
try {
cout << "This is Simbody example '"
<< SimbodyExampleHelper::getExampleName() << "'\n";
cout << "Working dir=" << Pathname::getCurrentWorkingDirectory() << endl;
const std::string auxDir =
SimbodyExampleHelper::findAuxiliaryDirectoryContaining
("models/atlas_v4_free_pelvis.urdf");
std::cout << "Getting geometry and models from '" << auxDir << "'\n";
// Set some options.
const double duration = Infinity; // seconds.
// Create the "real" robot (the one that is being simulated).
//Atlas realRobot("atlas_v4_locked_pelvis.urdf");
Atlas realRobot(auxDir, "atlas_v4_free_pelvis.urdf");
// Weld the feet to the floor.
Constraint::Weld(realRobot.updMatterSubsystem().Ground(),Vec3(-.1,.1,0),
realRobot.updBody("l_foot"), Vec3(0,0,-.1));
Constraint::Weld(realRobot.updMatterSubsystem().Ground(),Vec3(.1,-.1,0),
realRobot.updBody("r_foot"), Vec3(0,0,-.1));
// Add a sinusoidal prescribed motion to the pelvis.
MobilizedBody pelvis = realRobot.updBody("pelvis");
Motion::Sinusoid(pelvis, Motion::Position,
.1, .5, 0);
// Add the controller.
ReachingAndGravityCompensation* controller =
new ReachingAndGravityCompensation(auxDir, realRobot);
// Force::Custom takes ownership over controller.
Force::Custom control(realRobot.updForceSubsystem(), controller);
// Set up visualizer and event handlers.
Visualizer viz(realRobot);
viz.setShowFrameRate(true);
viz.setShowSimTime(true);
viz.addSlider("Rate sensor noise", UNoise, 0, 1, 0);
viz.addSlider("Angle sensor noise", QNoise, 0, 1, 0);
Visualizer::InputSilo* userInput = new Visualizer::InputSilo();
viz.addInputListener(userInput);
realRobot.addEventHandler(
new UserInputHandler(*userInput, realRobot, *controller, 0.05));
realRobot.addEventReporter(
new Visualizer::Reporter(viz, 1./30));
// Display message on the screen about how to start simulation.
DecorativeText help("Any input to start; ESC to quit.");
help.setIsScreenText(true);
viz.addDecoration(MobilizedBodyIndex(0), Vec3(0), help);
help.setText("Move target: Arrows, PageUp/Down");
viz.addDecoration(MobilizedBodyIndex(0), Vec3(0), help);
// Initialize the real robot and other related classes.
State s;
realRobot.initialize(s);
printf("Real robot has %d dofs.\n", s.getNU());
controller->mapModelToRealRobot(s);
// Bend knees and hips so assembly will come out reasonable.
realRobot.getBody("l_uleg").setOneQ(s,0,-.3); // hips
realRobot.getBody("r_uleg").setOneQ(s,0,-.3);
realRobot.getBody("l_lleg").setOneQ(s,0,1); // knees
realRobot.getBody("r_lleg").setOneQ(s,0,1);
realRobot.realize(s);
//RungeKuttaMersonIntegrator integ(realRobot);
SemiExplicitEuler2Integrator integ(realRobot);
integ.setAccuracy(0.001);
TimeStepper ts(realRobot, integ);
ts.initialize(s);
viz.report(ts.getState());
userInput->waitForAnyUserInput();
userInput->clear();
const double startCPU = cpuTime(), startTime = realTime();
// Simulate.
ts.stepTo(duration);
std::cout << "CPU time: " << cpuTime() - startCPU << " seconds. "
<< "Real time: " << realTime() - startTime << " seconds."
<< std::endl;
} catch (const std::exception& e) {
std::cout << "ERROR: " << e.what() << std::endl;
return 1;
}
return 0;
}
//------------------------------------------------------------------------------
// TASKS MEASURE :: CALC CACHED VALUE VIRTUAL
//------------------------------------------------------------------------------
// Given a modelState that has been updated from the real robot's sensors,
// generate control torques as the TasksMeasure's value. This is the only part
// of the code that is actually doing task space operations.
template <class T>
void TasksMeasure<T>::Implementation::calcCachedValueVirtual
(const State& modelState, int derivOrder, T& tau) const
{
SimTK_ASSERT1_ALWAYS(derivOrder==0,
"TasksMeasure::Implementation::calcCachedValueVirtual():"
" derivOrder %d seen but only 0 allowed.", derivOrder);
// Shorthands.
// -----------
const State& ms = modelState;
const TaskSpace& p1 = m_tspace1;
const int mnq = ms.getNQ();
const int mnu = ms.getNU();
tau.resize(mnu);
const Real& kd = m_derivativeGain;
const Real& kp = m_proportionalGain;
// The desired task position is in Ground. We need instead to measure it
// from the real robot's pelvis origin so that we can translate it into the
// model's pelvis-centric viewpoint.
const Transform& X_GP = m_modelRobot.getSampledPelvisPose(ms);
const Vec3 x1_des = ~X_GP*m_desiredTaskPosInGround; // measure in P
// Compute control law in task space (F*).
// ---------------------------------------
Vec3 xd_des(0);
Vec3 xdd_des(0);
// Get the model's estimate of the end effector location in Ground, which
// is also the pelvis origin.
Vec3 x1, x1d;
p1.findStationLocationAndVelocityInGround(ms,
TaskSpace::StationTaskIndex(0),
m_modelRobot.getEndEffectorStation(), x1, x1d);
if (m_endEffectorSensing) {
// Since the controller model has the pelvis origin fixed at (0,0,0),
// we need to know the real robot's pelvis location so we can measure
// the real robot's end effector from its pelvis location. We don't
// have to modify x1d because we want the end effector stationary
// in Ground, not in the pelvis.
const Vec3& x1_G = m_modelRobot.getSampledEndEffectorPos(ms);
x1 = ~X_GP*x1_G; // measure end effector in pelvis frame
}
// Units of acceleration.
Vec3 Fstar1 = xdd_des + kd * (xd_des - x1d) + kp * (x1_des - x1);
// Compute task-space force that achieves the task-space control.
// F = Lambda Fstar + p
Vector F1 = p1.Lambda(ms) * Fstar1 + p1.mu(ms) + p1.p(ms);
//Vector F2 = p2.calcInverseDynamics(ms, Fstar2);
// Combine the reaching task with the gravity compensation and pose
// control to a neutral q=0 pose with u=0 also.
const Vector& q = ms.getQ();
const Vector& u = ms.getU();
const Real k = m_jointPositionGain;
const Real c = m_jointDampingGain;
Vector Mu(mnu), Mq(mnu);
m_modelRobot.getMatterSubsystem().multiplyByM(ms, u, Mu);
m_modelRobot.getMatterSubsystem().multiplyByM(ms, q, Mq);
tau.setToZero();
const Real gFac = m_compensateForGravity?1.:0.;
const Real pFac = m_controlPose?1.:0.;
if (m_controlTask) {
tau += p1.JT(ms) * F1;
tau += p1.NT(ms) * (gFac*p1.g(ms) - pFac*k*Mq - c*Mu); // damping always
} else
tau += gFac*p1.g(ms) - (pFac*k*Mq + c*Mu);
// Cut tau back to within effort limits.
// TODO: can't use these limits with one-foot support!
const Vector& effortLimits = m_modelRobot.getEffortLimits();
for (int i=0; i < mnu; ++i) {
const Real oldtau = tau[i], effort = 10*effortLimits[i]; // cheating
if (std::abs(oldtau) <= effort) continue;
const Real newtau = clamp(-effort, oldtau, effort);
//printf("Limit tau[%d]: %g -> %g\n", i, oldtau, newtau);
tau[i] = newtau;
}
}
//------------------------------------------------------------------------------
// REACHING AND GRAVITY COMPENSATION :: MAP MODEL TO REAL ROBOT
//------------------------------------------------------------------------------
// Fill in the q- and u-maps so we can correctly apply sampled joint angles
// to the model's equivalents. Assumes both model and real robot have been
// initialized so we can determine how many coordinates there are in each.
void ReachingAndGravityCompensation::
mapModelToRealRobot(const State& realState) {
const URDFJoints& modelJoints = m_modelRobot.getURDFRobot().joints;
const URDFJoints& realJoints = m_realRobot.getURDFRobot().joints;
m_model2realU.resize(m_modelState.getNU());
m_model2realQ.resize(m_modelState.getNQ());
for (int mj=0; mj < (int)modelJoints.size(); ++mj) {
const URDFJointInfo& modelInfo = modelJoints.getJoint(mj);
const URDFJointInfo& realInfo = realJoints.getJoint(modelInfo.name);
const MobilizedBody& modelMobod = modelInfo.mobod;
const MobilizedBody& realMobod = realInfo.mobod;
const int mnu = modelMobod.getNumU(m_modelState),
mnq = modelMobod.getNumQ(m_modelState),
mu0 = modelMobod.getFirstUIndex(m_modelState),
mq0 = modelMobod.getFirstQIndex(m_modelState);
if (mnu==0)
continue; // this is fixed in the model; might not be in real robot
const int rnu = realMobod.getNumU(realState),
rnq = realMobod.getNumQ(realState),
ru0 = realMobod.getFirstUIndex(realState),
rq0 = realMobod.getFirstQIndex(realState);
SimTK_ASSERT1_ALWAYS(mnu==rnu && mnq==rnq,
"ReachingAndGravityCompensation::mapModelToRealRobot(): "
"joint '%s' dof mismatch.", modelInfo.name.c_str());
for (int mu=0; mu < mnu; ++mu)
m_model2realU[mu0+mu] = ru0+mu;
for (int mq=0; mq < mnq; ++mq)
m_model2realQ[mq0+mq] = rq0+mq;
}
std::cout<<"m2rU="<<m_model2realU<<std::endl;
std::cout<<"m2rQ="<<m_model2realQ<<std::endl;
}
//------------------------------------------------------------------------------
// REACHING AND GRAVITY COMPENSATION :: CALC FORCE
//------------------------------------------------------------------------------
// Given sensor readings from the real robot, generate control torques for it.
// We'll pass on those sensor readings to the task space controller for it to
// use to update its internal modelRobot.
void ReachingAndGravityCompensation::calcForce(
const State& realState,
Vector_<SpatialVec>& bodyForces,
Vector_<Vec3>& particleForces,
Vector& mobilityForces) const
{
// Sense the real robot and use readings to update model robot.
// ------------------------------------------------------------
const int mnq = m_modelState.getNQ(), mnu = m_modelState.getNU();
const Vector& sensedQ = m_realRobot.getSampledAngles(realState);
const Vector& sensedU = m_realRobot.getSampledRates(realState);
for (int i=0; i < mnq; ++i)
m_modelRobot.setJointAngle(m_modelState, QIndex(i),
sensedQ[m_model2realQ[i]]);
for (int i=0; i < mnu; ++i)
m_modelRobot.setJointRate(m_modelState, UIndex(i),
sensedU[m_model2realU[i]]);
// We have to know the pose of the real robot's pelvis so we can figure
// out the pelvis-relative location of the end effector, and the effective
// gravity direction since the model robot has its pelvis frame welded to
// its Ground frame.
const Transform& X_GP = m_realRobot.getSampledPelvisPose(realState);
m_modelRobot.setSampledPelvisPose(m_modelState, X_GP);
m_modelRobot.getGravity()
.setDownDirection(m_modelState, ~X_GP.R()*UnitVec3(-ZAxis));
// Optional: if real robot end effector location can be sensed, it can
// be used to improve accuracy. Otherwise, estimate the end effector
// location using the model robot.
const Vec3& sensedEEPos = m_realRobot.getSampledEndEffectorPos(realState);
m_modelRobot.setSampledEndEffectorPos(m_modelState, sensedEEPos);
// Calculate model kinematics.
m_modelRobot.realize(m_modelState, Stage::Velocity);
// Obtain joint torques from task controller.
const Vector& tau = m_modelTasks.getValue(m_modelState);
// Apply model joint torques to their corresponding real robot dofs.
for (int i=0; i < mnu; ++i)
mobilityForces[m_model2realU[i]] += tau[i];
}
//------------------------------------------------------------------------------
// REACHING AND GRAVITY COMPENSATION :: CALC DECORATIVE GEOMETRY
//------------------------------------------------------------------------------
void ReachingAndGravityCompensation::
calcDecorativeGeometryAndAppend(const State & state, Stage stage,
Array_<DecorativeGeometry>& geometry) const
{
if (stage != Stage::Position) return;
const Vec3 targetPos = m_modelTasks.getTarget();
geometry.push_back(DecorativeSphere(0.02)
.setTransform(targetPos)
.setColor(m_targetColor));
geometry.push_back(DecorativeText("Target: " +
String(targetPos[0])+","+String(targetPos[1])+","+String(targetPos[2]))
.setIsScreenText(true));
const MobilizedBody& ee = m_realRobot.getEndEffectorBody();
Vec3 taskPosInGround = ee.findStationLocationInGround(state,
m_realRobot.getEndEffectorStation());
geometry.push_back(DecorativePoint(taskPosInGround)
.setColor(Green).setLineThickness(3));
geometry.push_back(DecorativeText(String("TOGGLES: [t]Task point ")
+ (m_modelTasks.isTaskPointFollowingOn() ? "ON" : "OFF")
+ "...[g]Gravity comp "
+ (m_modelTasks.isGravityCompensationOn() ? "ON" : "OFF")
+ "...[p]Posture control "
+ (m_modelTasks.isPoseControlOn() ? "ON" : "OFF")
+ "...[e]End effector sensor "
+ (m_modelTasks.isEndEffectorSensingOn() ? "ON" : "OFF")
)
.setIsScreenText(true));
}
//------------------------------------------------------------------------------
// USER INPUT HANDLER :: HANDLE EVENT
//------------------------------------------------------------------------------
void UserInputHandler::handleEvent(State& realState, Real accuracy,
bool& shouldTerminate) const
{
while (m_silo.isAnyUserInput()) {
int whichSlider; Real sliderValue;
while (m_silo.takeSliderMove(whichSlider, sliderValue)) {
if (whichSlider == QNoise) {
m_realRobot.setAngleNoise(realState, sliderValue);
continue;
}
if (whichSlider == UNoise) {
m_realRobot.setRateNoise(realState, sliderValue);
continue;
}
}
unsigned key, modifiers;
while (m_silo.takeKeyHit(key, modifiers)) {
if (key == Visualizer::InputListener::KeyEsc) {
shouldTerminate = true;
m_silo.clear();
continue;
}
if (key == 'g') {
m_controller.toggleGravityComp();
continue;
}
if (key == 'p') {
m_controller.togglePoseControl();
continue;
}
if (key == 't') {
m_controller.toggleTask();
continue;
}
if (key == 'e') {
m_controller.toggleEndEffectorSensing();
continue;
}
else if (key == Visualizer::InputListener::KeyRightArrow) {
// x coordinate goes in and out of the screen.
m_controller.updTarget()[XAxis] -= m_increment;
continue;
}
else if (key == Visualizer::InputListener::KeyLeftArrow) {
m_controller.updTarget()[XAxis] += m_increment;
continue;
}
else if (key == Visualizer::InputListener::KeyUpArrow) {
m_controller.updTarget()[ZAxis] += m_increment;
continue;
}
else if (key == Visualizer::InputListener::KeyDownArrow) {
m_controller.updTarget()[ZAxis] -= m_increment;
continue;
}
else if (key == Visualizer::InputListener::KeyPageUp) {
m_controller.updTarget()[YAxis] -= m_increment;
continue;
}
else if (key == Visualizer::InputListener::KeyPageDown) {
m_controller.updTarget()[YAxis] += m_increment;
continue;
}
}
}
}
|