File: TaskSpaceControl-Atlas.cpp

package info (click to toggle)
simbody 3.7%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 72,896 kB
  • sloc: cpp: 248,827; ansic: 18,240; sh: 29; makefile: 24
file content (690 lines) | stat: -rw-r--r-- 30,130 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
/* -------------------------------------------------------------------------- *
 *               Simbody(tm) Example: Atlas Task Space Control                *
 * -------------------------------------------------------------------------- *
 * This is part of the SimTK biosimulation toolkit originating from           *
 * Simbios, the NIH National Center for Physics-Based Simulation of           *
 * Biological Structures at Stanford, funded under the NIH Roadmap for        *
 * Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody.  *
 *                                                                            *
 * Portions copyright (c) 2014 Stanford University and the Authors.           *
 * Authors: Michael Sherman, Chris Dembia                                     *
 * Contributors: John Hsu                                                     *
 *                                                                            *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may    *
 * not use this file except in compliance with the License. You may obtain a  *
 * copy of the License at http://www.apache.org/licenses/LICENSE-2.0.         *
 *                                                                            *
 * Unless required by applicable law or agreed to in writing, software        *
 * distributed under the License is distributed on an "AS IS" BASIS,          *
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.   *
 * See the License for the specific language governing permissions and        *
 * limitations under the License.                                             *
 * -------------------------------------------------------------------------- */

/* This example shows a task space (a.k.a. operational space) controller for
the Gazebo model of the Boston Dynamics Atlas humanoid robot used in the 
DARPA Robotics Challenge. Task space controllers are model-based, meaning that
the controller itself contains a model of the system being controlled. Since
we don't have a real robot handy, that means there will be two versions of
the Atlas system here: one that we're simulating that is taking the role of the
"real" robot, and one contained in the task space controller that we'll call
the "model" robot. In real life the internal model won't perfectly match the 
real one; we'll fake that here by introducing some sensor noise which you can
control with sliders in the user interface.

Here we assume the real robot has a balance controller that determines the
lower body pose up to the "pelvis" link. The model controller consists only
of the robot's upper body, with the pelvis frame welded to the Ground frame.
We sample the real robot to determine the current pelvis pose, and use that
to properly position the model controller. We are ignoring the pelvis velocity
and acceleration, so this is only good enough if the pelvis moves slowly.
For the example here, we move the pelvis around sinusoidally with the feet
welded to the floor as a stand-in for the balance controller.

We assume the system has a direct-drive torque motor at each of its degrees of
freedom.

The task the controller will achieve has several components:
1. One of the robot's arms reaches for a target point that can be moved with 
   arrow keys.
2. Subject to achieving the reaching task, we try to keep the robot's pose
   neutral in joint space, that is, with all joint angles and velocities zero.
3. All links are subject to gravity compensation (to counteract the effect
   of gravity). This is done in joint space and simply added to the pose control
   torques.

Each of the above effects may be disabled independently via letter keys in
the visualizer window.

You can also optionally sense the end effector position on the real robot
and have that sent to the controller so that it doesn't have to depend 
entirely on the behavior of the model robot when the real robot's sensors are
noisy. Try cranking up the noise, which causes poor tracking, and then hit
"e" to enable the end effector sensing which improves things dramatically.
This works best with pose control off.

For more information about operational space control, see:

Khatib, Oussama, et al. "Robotics-based synthesis of human motion."
Journal of physiology-Paris 103.3 (2009): 211-219.
*/

#include "Simbody.h"
#include "Atlas.h"
#include "shared/TaskSpace.h"

#include "shared/SimbodyExampleHelper.h"

#include <iostream>

using namespace SimTK;
using namespace std;

static const int QNoise=1, UNoise=2; // sliders in the UI

//==============================================================================
//                             TASKS MEASURE
//==============================================================================
// This Measure is added to the modelRobot and is used to manage the tasks
// it is supposed to achieve and to return as its value the control torques
// that should be applied to the realRobot (that is, the simulated one).
// This should only be instantiated with T=Vector.
template <class T>
class TasksMeasure : public Measure_<T> {
public:
    SimTK_MEASURE_HANDLE_PREAMBLE(TasksMeasure, Measure_<T>);

    TasksMeasure(Atlas& modelRobot) 
    :   Measure_<T>(modelRobot.updForceSubsystem(), 
                    new Implementation(modelRobot),
                    AbstractMeasure::SetHandle()) {}


    const Vec3& getTarget() const { return getImpl().m_desiredTaskPosInGround; }
    Vec3& updTarget() { return updImpl().m_desiredTaskPosInGround; }
    void setTarget(Vec3 pos) { updImpl().m_desiredTaskPosInGround = pos; }

    void toggleGravityComp() {
        updImpl().m_compensateForGravity = !isGravityCompensationOn();}
    void togglePoseControl() {
        updImpl().m_controlPose = !isPoseControlOn();}
    void toggleTask() {updImpl().m_controlTask = !getImpl().m_controlTask;}
    void toggleEndEffectorSensing() 
    {   updImpl().m_endEffectorSensing = !getImpl().m_endEffectorSensing;}

    bool isGravityCompensationOn() const 
    {   return getImpl().m_compensateForGravity; }
    bool isPoseControlOn() const 
    {   return getImpl().m_controlPose; }
    bool isEndEffectorSensingOn() const 
    {   return getImpl().m_endEffectorSensing; }
    bool isTaskPointFollowingOn() const
    {   return getImpl().m_controlTask; }
    const Vec3& getTaskPointInEndEffector() const 
    {   return getImpl().m_taskPointInEndEffector; }

    SimTK_MEASURE_HANDLE_POSTSCRIPT(TasksMeasure, Measure_<T>);
};


template <class T>
class TasksMeasure<T>::Implementation : public Measure_<T>::Implementation {
public:
    Implementation(const Atlas& modelRobot,
                   Real proportionalGain=225, double derivativeGain=30) 
                   //Real proportionalGain=100, double derivativeGain=20) 
    :   Measure_<T>::Implementation(T(), 1),
        m_modelRobot(modelRobot),
        m_tspace1(m_modelRobot.getMatterSubsystem(), m_modelRobot.getGravity()),
        m_proportionalGain(proportionalGain),
        m_derivativeGain(derivativeGain),
        m_jointPositionGain(100),
        m_jointDampingGain(20),
        //m_jointPositionGain(225),
        //m_jointDampingGain(30),
        m_compensateForGravity(true),
        m_controlPose(true),
        m_controlTask(false),
        m_endEffectorSensing(false),
        m_desiredTaskPosInGround(Vec3(0.4, -0.1, 1)) // Z is up
    {       
        //TODO: should have end effector body
        m_tspace1.addStationTask(m_modelRobot.getEndEffectorBody(),
                                 m_modelRobot.getEndEffectorStation());
    }


    // Default copy constructor, destructor, copy assignment are fine.

    // Implementations of virtual methods.
    Implementation* cloneVirtual() const override
    {   return new Implementation(*this); }
    int getNumTimeDerivativesVirtual() const override {return 0;}
    Stage getDependsOnStageVirtual(int order) const override
    {   return Stage::Velocity; }

    // This is the task space controller. It returns joint torques tau as the
    // value of the enclosing Measure.
    void calcCachedValueVirtual(const State& s, int derivOrder, T& tau) const
        override;

    // TaskSpace objects require some State resources; this call is the time
    // for doing that so forward on to the TaskSpace.
    void realizeMeasureTopologyVirtual(State& modelState) const override {
        m_tspace1.realizeTopology(modelState);
    }
private:
friend class TasksMeasure<T>;

    const Atlas&    m_modelRobot;
    TaskSpace       m_tspace1;

    const Real      m_proportionalGain;     // task space
    const Real      m_derivativeGain;
    const Real      m_jointPositionGain;    // joint space
    const Real      m_jointDampingGain;

    bool            m_compensateForGravity;
    bool            m_controlPose;
    bool            m_controlTask;
    bool            m_endEffectorSensing;
    Vec3            m_desiredTaskPosInGround;
};


//==============================================================================
//                    REACHING AND GRAVITY COMPENSATION
//==============================================================================
// This is a task-space controller that tries to move the end effector to 
// a particular target location, and applies gravity compensation and some
// joint damping as lower-priority tasks.
//
// The controller has its own internal Atlas model which in general does not
// match the "real" Atlas perfectly. Each time it is asked to
// generate control torques it reads the sensors on the real Atlas, updates
// its internal model to match. It then generates torques that would be right
// for the internal model, but returns them to be applied to the real Atlas.
class ReachingAndGravityCompensation : public Force::Custom::Implementation {
public:
    ReachingAndGravityCompensation(const std::string& auxDir, 
                                   const Atlas& realRobot) 
    :   m_modelRobot(auxDir, "atlas_v4_upper.urdf"), m_modelTasks(m_modelRobot), 
        m_realRobot(realRobot), m_targetColor(Red)
    {
        m_modelRobot.initialize(m_modelState);
        printf("Controller model has %d dofs.\n", m_modelState.getNU());
    }

    // Call this after the real robot has been initialized to set up
    // a mapping between the joint coordinates in the model robot and
    // the corresponding ones in the real robot.
    void mapModelToRealRobot(const State& realState);

    const Vec3& getTarget() const {return m_modelTasks.getTarget();}
    Vec3& updTarget() {return m_modelTasks.updTarget();}
    void setTarget(Vec3 pos) {m_modelTasks.setTarget(pos);}

    void toggleGravityComp() {m_modelTasks.toggleGravityComp();}
    void togglePoseControl() {m_modelTasks.togglePoseControl();}
    void toggleTask() {m_modelTasks.toggleTask();}
    void toggleEndEffectorSensing() {m_modelTasks.toggleEndEffectorSensing();}

    bool isGravityCompensationOn() const 
    {   return m_modelTasks.isGravityCompensationOn(); }

    // This method calculates the needed control torques and adds them into
    // the given mobilityForces Vector which will be applied to the real Atlas.
    // The supplied State is from the real Atlas and will be used to read its
    // sensors.
    void calcForce(const SimTK::State&                realState,
                   SimTK::Vector_<SimTK::SpatialVec>& bodyForces,
                   SimTK::Vector_<SimTK::Vec3>&       particleForces,
                   SimTK::Vector&                     mobilityForces) const
                   override;

    // This controller does not contribute potential energy to the system.
    Real calcPotentialEnergy(const SimTK::State& state) const override
    { return 0; }

    // Add some useful text and graphics that changes due to user input.
    void calcDecorativeGeometryAndAppend(const State & state, Stage stage,
            Array_<DecorativeGeometry>& geometry) const override;

private:
    Atlas                m_modelRobot;   // The controller's internal model.
    TasksMeasure<Vector> m_modelTasks;
    mutable State        m_modelState;   // Temporary: State for the model robot.
    const Atlas&         m_realRobot;    // The "real" robot being controlled.
    const Vec3           m_targetColor;

    // Map from model robot coordinates to real robot coordinates.
    Array_<int>          m_model2realQ;
    Array_<int>          m_model2realU;
};


//==============================================================================
//                           USER INPUT HANDLER
//==============================================================================
/// This is a periodic event handler that interrupts the simulation on a
/// regular basis to poll the InputSilo for user input.
class UserInputHandler : public PeriodicEventHandler {
public:
    UserInputHandler(Visualizer::InputSilo&             silo,
                     Atlas&                             realRobot,
                     ReachingAndGravityCompensation&    controller, 
                     Real                               interval)
    :   PeriodicEventHandler(interval), m_silo(silo), m_realRobot(realRobot),
        m_controller(controller), m_increment(0.05) {}

    void handleEvent(State& realState, Real accuracy,
                     bool& shouldTerminate) const override;
private:
    Visualizer::InputSilo&          m_silo;
    Atlas&                          m_realRobot;
    ReachingAndGravityCompensation& m_controller;
    const Real                      m_increment;
};


//==============================================================================
//                                  MAIN
//==============================================================================
int main(int argc, char **argv) {
  try {
    cout << "This is Simbody example '" 
         << SimbodyExampleHelper::getExampleName() << "'\n";
    cout << "Working dir=" << Pathname::getCurrentWorkingDirectory() << endl;

    const std::string auxDir = 
        SimbodyExampleHelper::findAuxiliaryDirectoryContaining
        ("models/atlas_v4_free_pelvis.urdf");
    std::cout << "Getting geometry and models from '" << auxDir << "'\n";

    // Set some options.
    const double duration = Infinity; // seconds.

    // Create the "real" robot (the one that is being simulated).
    //Atlas realRobot("atlas_v4_locked_pelvis.urdf");
    Atlas realRobot(auxDir, "atlas_v4_free_pelvis.urdf");

    // Weld the feet to the floor.
    Constraint::Weld(realRobot.updMatterSubsystem().Ground(),Vec3(-.1,.1,0),
                     realRobot.updBody("l_foot"), Vec3(0,0,-.1));
    Constraint::Weld(realRobot.updMatterSubsystem().Ground(),Vec3(.1,-.1,0),
                     realRobot.updBody("r_foot"), Vec3(0,0,-.1));

    // Add a sinusoidal prescribed motion to the pelvis.
    MobilizedBody pelvis = realRobot.updBody("pelvis");
    Motion::Sinusoid(pelvis, Motion::Position,
                     .1, .5, 0);


    // Add the controller.
    ReachingAndGravityCompensation* controller =
        new ReachingAndGravityCompensation(auxDir, realRobot);
    // Force::Custom takes ownership over controller.
    Force::Custom control(realRobot.updForceSubsystem(), controller);

    // Set up visualizer and event handlers.
    Visualizer viz(realRobot);
    viz.setShowFrameRate(true);
    viz.setShowSimTime(true);

    viz.addSlider("Rate sensor noise", UNoise, 0, 1, 0); 
    viz.addSlider("Angle sensor noise", QNoise, 0, 1, 0); 

    Visualizer::InputSilo* userInput = new Visualizer::InputSilo();
    viz.addInputListener(userInput);
    realRobot.addEventHandler(
            new UserInputHandler(*userInput, realRobot, *controller, 0.05));
    realRobot.addEventReporter(
            new Visualizer::Reporter(viz, 1./30));

    // Display message on the screen about how to start simulation.
    DecorativeText help("Any input to start; ESC to quit.");
    help.setIsScreenText(true);
    viz.addDecoration(MobilizedBodyIndex(0), Vec3(0), help);
    help.setText("Move target: Arrows, PageUp/Down");
    viz.addDecoration(MobilizedBodyIndex(0), Vec3(0), help);

    // Initialize the real robot and other related classes.
    State s;
    realRobot.initialize(s);
    printf("Real robot has %d dofs.\n", s.getNU());
    controller->mapModelToRealRobot(s);

    // Bend knees and hips so assembly will come out reasonable.
    realRobot.getBody("l_uleg").setOneQ(s,0,-.3);   // hips
    realRobot.getBody("r_uleg").setOneQ(s,0,-.3);
    realRobot.getBody("l_lleg").setOneQ(s,0,1);     // knees
    realRobot.getBody("r_lleg").setOneQ(s,0,1);
    realRobot.realize(s);

    //RungeKuttaMersonIntegrator integ(realRobot);
    SemiExplicitEuler2Integrator integ(realRobot);
    integ.setAccuracy(0.001);
    TimeStepper ts(realRobot, integ);
    ts.initialize(s);
    viz.report(ts.getState());

    userInput->waitForAnyUserInput();
    userInput->clear();

    const double startCPU  = cpuTime(), startTime = realTime();

    // Simulate.
    ts.stepTo(duration);

    std::cout << "CPU time: " << cpuTime() - startCPU << " seconds. "
                << "Real time: " << realTime() - startTime << " seconds."
                << std::endl;

  } catch (const std::exception& e) {
    std::cout << "ERROR: " << e.what() << std::endl;
    return 1;
  }
  return 0;
}



//------------------------------------------------------------------------------
//                TASKS MEASURE :: CALC CACHED VALUE VIRTUAL
//------------------------------------------------------------------------------
// Given a modelState that has been updated from the real robot's sensors, 
// generate control torques as the TasksMeasure's value. This is the only part
// of the code that is actually doing task space operations.

template <class T>
void TasksMeasure<T>::Implementation::calcCachedValueVirtual
   (const State& modelState, int derivOrder, T& tau) const
{
    SimTK_ASSERT1_ALWAYS(derivOrder==0,
        "TasksMeasure::Implementation::calcCachedValueVirtual():"
        " derivOrder %d seen but only 0 allowed.", derivOrder);

    // Shorthands.
    // -----------
    const State& ms = modelState;
    const TaskSpace& p1 = m_tspace1;

    const int mnq = ms.getNQ();
    const int mnu = ms.getNU();
    tau.resize(mnu);

    const Real& kd = m_derivativeGain;
    const Real& kp = m_proportionalGain;

    // The desired task position is in Ground. We need instead to measure it
    // from the real robot's pelvis origin so that we can translate it into the 
    // model's pelvis-centric viewpoint.
    const Transform& X_GP   = m_modelRobot.getSampledPelvisPose(ms);
    const Vec3 x1_des = ~X_GP*m_desiredTaskPosInGround; // measure in P


    // Compute control law in task space (F*).
    // ---------------------------------------
    Vec3 xd_des(0);
    Vec3 xdd_des(0);

    // Get the model's estimate of the end effector location in Ground, which
    // is also the pelvis origin.
    Vec3 x1, x1d;
    p1.findStationLocationAndVelocityInGround(ms,
            TaskSpace::StationTaskIndex(0),
            m_modelRobot.getEndEffectorStation(), x1, x1d);

    if (m_endEffectorSensing) {
        // Since the controller model has the pelvis origin fixed at (0,0,0),
        // we need to know the real robot's pelvis location so we can measure
        // the real robot's end effector from its pelvis location. We don't
        // have to modify x1d because we want the end effector stationary
        // in Ground, not in the pelvis.
        const Vec3& x1_G = m_modelRobot.getSampledEndEffectorPos(ms);
        x1 = ~X_GP*x1_G; // measure end effector in pelvis frame
    }

    // Units of acceleration.
    Vec3 Fstar1 = xdd_des + kd * (xd_des - x1d) + kp * (x1_des - x1);

    // Compute task-space force that achieves the task-space control.
    // F = Lambda Fstar + p
    Vector F1 = p1.Lambda(ms) * Fstar1 + p1.mu(ms) + p1.p(ms);
    //Vector F2 = p2.calcInverseDynamics(ms, Fstar2);

    // Combine the reaching task with the gravity compensation and pose 
    // control to a neutral q=0 pose with u=0 also.
    const Vector& q = ms.getQ();
    const Vector& u = ms.getU();
    const Real k = m_jointPositionGain;
    const Real c = m_jointDampingGain;
    Vector Mu(mnu), Mq(mnu);
    m_modelRobot.getMatterSubsystem().multiplyByM(ms, u, Mu);
    m_modelRobot.getMatterSubsystem().multiplyByM(ms, q, Mq);

    tau.setToZero();
    const Real gFac = m_compensateForGravity?1.:0.;
    const Real pFac = m_controlPose?1.:0.;
    if (m_controlTask) {
        tau += p1.JT(ms) * F1;
        tau += p1.NT(ms) * (gFac*p1.g(ms) - pFac*k*Mq - c*Mu); // damping always
    } else 
        tau += gFac*p1.g(ms) - (pFac*k*Mq + c*Mu);

    // Cut tau back to within effort limits.
    // TODO: can't use these limits with one-foot support!
    const Vector& effortLimits = m_modelRobot.getEffortLimits();
    for (int i=0; i < mnu; ++i) {
        const Real oldtau = tau[i], effort = 10*effortLimits[i]; // cheating
        if (std::abs(oldtau) <= effort) continue;
        const Real newtau = clamp(-effort, oldtau, effort);
        //printf("Limit tau[%d]: %g -> %g\n", i, oldtau, newtau);
        tau[i] = newtau;
    }

}

//------------------------------------------------------------------------------
//     REACHING AND GRAVITY COMPENSATION :: MAP MODEL TO REAL ROBOT
//------------------------------------------------------------------------------
// Fill in the q- and u-maps so we can correctly apply sampled joint angles
// to the model's equivalents. Assumes both model and real robot have been
// initialized so we can determine how many coordinates there are in each.
void ReachingAndGravityCompensation::
mapModelToRealRobot(const State& realState) {
    const URDFJoints& modelJoints = m_modelRobot.getURDFRobot().joints;
    const URDFJoints& realJoints  = m_realRobot.getURDFRobot().joints;

    m_model2realU.resize(m_modelState.getNU()); 
    m_model2realQ.resize(m_modelState.getNQ());

    for (int mj=0; mj < (int)modelJoints.size(); ++mj) {
        const URDFJointInfo& modelInfo = modelJoints.getJoint(mj);
        const URDFJointInfo& realInfo = realJoints.getJoint(modelInfo.name);
        const MobilizedBody& modelMobod = modelInfo.mobod;
        const MobilizedBody& realMobod = realInfo.mobod;
        const int mnu = modelMobod.getNumU(m_modelState), 
                  mnq = modelMobod.getNumQ(m_modelState),
                  mu0 = modelMobod.getFirstUIndex(m_modelState),
                  mq0 = modelMobod.getFirstQIndex(m_modelState);
        if (mnu==0)
            continue; // this is fixed in the model; might not be in real robot

        const int rnu = realMobod.getNumU(realState), 
                  rnq = realMobod.getNumQ(realState),
                  ru0 = realMobod.getFirstUIndex(realState),
                  rq0 = realMobod.getFirstQIndex(realState);
        SimTK_ASSERT1_ALWAYS(mnu==rnu && mnq==rnq,
            "ReachingAndGravityCompensation::mapModelToRealRobot(): "
            "joint '%s' dof mismatch.", modelInfo.name.c_str());
        for (int mu=0; mu < mnu; ++mu)
            m_model2realU[mu0+mu] = ru0+mu;
        for (int mq=0; mq < mnq; ++mq) 
            m_model2realQ[mq0+mq] = rq0+mq;
    }

    std::cout<<"m2rU="<<m_model2realU<<std::endl;
    std::cout<<"m2rQ="<<m_model2realQ<<std::endl;
}


//------------------------------------------------------------------------------
//           REACHING AND GRAVITY COMPENSATION :: CALC FORCE
//------------------------------------------------------------------------------
// Given sensor readings from the real robot, generate control torques for it.
// We'll pass on those sensor readings to the task space controller for it to
// use to update its internal modelRobot.
void ReachingAndGravityCompensation::calcForce(
               const State&         realState,
               Vector_<SpatialVec>& bodyForces,
               Vector_<Vec3>&       particleForces,
               Vector&              mobilityForces) const
{
    // Sense the real robot and use readings to update model robot.
    // ------------------------------------------------------------
    const int mnq = m_modelState.getNQ(), mnu = m_modelState.getNU();
    const Vector& sensedQ = m_realRobot.getSampledAngles(realState);
    const Vector& sensedU = m_realRobot.getSampledRates(realState);
    for (int i=0; i < mnq; ++i)
        m_modelRobot.setJointAngle(m_modelState, QIndex(i), 
                                   sensedQ[m_model2realQ[i]]);
    for (int i=0; i < mnu; ++i)
        m_modelRobot.setJointRate(m_modelState, UIndex(i), 
                                  sensedU[m_model2realU[i]]);

    // We have to know the pose of the real robot's pelvis so we can figure
    // out the pelvis-relative location of the end effector, and the effective
    // gravity direction since the model robot has its pelvis frame welded to
    // its Ground frame.

    const Transform& X_GP = m_realRobot.getSampledPelvisPose(realState);
    m_modelRobot.setSampledPelvisPose(m_modelState, X_GP);

    m_modelRobot.getGravity()
       .setDownDirection(m_modelState, ~X_GP.R()*UnitVec3(-ZAxis));

    // Optional: if real robot end effector location can be sensed, it can
    // be used to improve accuracy. Otherwise, estimate the end effector
    // location using the model robot.
    const Vec3& sensedEEPos = m_realRobot.getSampledEndEffectorPos(realState);
    m_modelRobot.setSampledEndEffectorPos(m_modelState, sensedEEPos);

    // Calculate model kinematics.
    m_modelRobot.realize(m_modelState, Stage::Velocity);
    // Obtain joint torques from task controller.
    const Vector& tau = m_modelTasks.getValue(m_modelState);

    // Apply model joint torques to their corresponding real robot dofs.
    for (int i=0; i < mnu; ++i)
        mobilityForces[m_model2realU[i]] += tau[i];
}


//------------------------------------------------------------------------------
//       REACHING AND GRAVITY COMPENSATION :: CALC DECORATIVE GEOMETRY
//------------------------------------------------------------------------------
void ReachingAndGravityCompensation::
calcDecorativeGeometryAndAppend(const State & state, Stage stage,
                                Array_<DecorativeGeometry>& geometry) const
{
    if (stage != Stage::Position) return;

    const Vec3 targetPos = m_modelTasks.getTarget();
    geometry.push_back(DecorativeSphere(0.02)
            .setTransform(targetPos)
            .setColor(m_targetColor));
    geometry.push_back(DecorativeText("Target: " +
        String(targetPos[0])+","+String(targetPos[1])+","+String(targetPos[2]))
        .setIsScreenText(true));

    const MobilizedBody& ee = m_realRobot.getEndEffectorBody();
    Vec3 taskPosInGround = ee.findStationLocationInGround(state,
                                        m_realRobot.getEndEffectorStation());
    geometry.push_back(DecorativePoint(taskPosInGround)
                       .setColor(Green).setLineThickness(3));

    geometry.push_back(DecorativeText(String("TOGGLES: [t]Task point ")
        + (m_modelTasks.isTaskPointFollowingOn() ? "ON" : "OFF")
        + "...[g]Gravity comp "
        + (m_modelTasks.isGravityCompensationOn() ? "ON" : "OFF")
        + "...[p]Posture control "
        + (m_modelTasks.isPoseControlOn() ? "ON" : "OFF")
        + "...[e]End effector sensor "
        + (m_modelTasks.isEndEffectorSensingOn() ? "ON" : "OFF")
        )
        .setIsScreenText(true));
}


//------------------------------------------------------------------------------
//                USER INPUT HANDLER :: HANDLE EVENT
//------------------------------------------------------------------------------
void UserInputHandler::handleEvent(State& realState, Real accuracy,
                                   bool& shouldTerminate) const
{
    while (m_silo.isAnyUserInput()) {

        int whichSlider; Real sliderValue;
        while (m_silo.takeSliderMove(whichSlider, sliderValue)) {
            if (whichSlider == QNoise) {
                m_realRobot.setAngleNoise(realState, sliderValue);
                continue;
            }
            if (whichSlider == UNoise) {
                m_realRobot.setRateNoise(realState, sliderValue);
                continue;
            }
        }

        unsigned key, modifiers;
        while (m_silo.takeKeyHit(key, modifiers)) {
            if (key == Visualizer::InputListener::KeyEsc) {
                shouldTerminate = true;
                m_silo.clear();
                continue;
            }
            if (key == 'g') {
                m_controller.toggleGravityComp();
                continue;
            }
            if (key == 'p') {
                m_controller.togglePoseControl();
                continue;
            }
            if (key == 't') {
                m_controller.toggleTask();
                continue;
            }            
            if (key == 'e') {
                m_controller.toggleEndEffectorSensing();
                continue;
            }
            else if (key == Visualizer::InputListener::KeyRightArrow) {
                // x coordinate goes in and out of the screen.
                m_controller.updTarget()[XAxis] -= m_increment;
                continue;
            }
            else if (key == Visualizer::InputListener::KeyLeftArrow) {
                m_controller.updTarget()[XAxis] += m_increment;
                continue;
            }
            else if (key == Visualizer::InputListener::KeyUpArrow) {
                m_controller.updTarget()[ZAxis] += m_increment;
                continue;
            }
            else if (key == Visualizer::InputListener::KeyDownArrow) {
                m_controller.updTarget()[ZAxis] -= m_increment;
                continue;
            }
            else if (key == Visualizer::InputListener::KeyPageUp) {
                m_controller.updTarget()[YAxis] -= m_increment;
                continue;
            }
            else if (key == Visualizer::InputListener::KeyPageDown) {
                m_controller.updTarget()[YAxis] += m_increment;
                continue;
            }
        }
    }
}