File: TheoJansenStrandbeest.cpp

package info (click to toggle)
simbody 3.7%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 72,896 kB
  • sloc: cpp: 248,827; ansic: 18,240; sh: 29; makefile: 24
file content (482 lines) | stat: -rw-r--r-- 22,205 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
/* -------------------------------------------------------------------------- *
 *             Simbody(tm) Example: TheoJansenStrandbeest                     *
 * -------------------------------------------------------------------------- *
 * This is part of the SimTK biosimulation toolkit originating from           *
 * Simbios, the NIH National Center for Physics-Based Simulation of           *
 * Biological Structures at Stanford, funded under the NIH Roadmap for        *
 * Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody.  *
 *                                                                            *
 * Portions copyright (c) 2013 Stanford University and the Authors.           *
 * Authors: Michael Sherman                                                   *
 * Contributors:                                                              *
 *                                                                            *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may    *
 * not use this file except in compliance with the License. You may obtain a  *
 * copy of the License at http://www.apache.org/licenses/LICENSE-2.0.         *
 *                                                                            *
 * Unless required by applicable law or agreed to in writing, software        *
 * distributed under the License is distributed on an "AS IS" BASIS,          *
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.   *
 * See the License for the specific language governing permissions and        *
 * limitations under the License.                                             *
 * -------------------------------------------------------------------------- */
#include "Simbody.h"
#include <iostream>
using namespace SimTK;
using std::cout; using std::endl; using std::cin;

/* This is a walking mechanism due to Theo Jansen. See strandbeest.com and
many YouTube videos. This is a full 3D simulation although each leg moves
only in 2D. The user controls the speed. I haven't yet figured out how to
steer one of these things though so it's not a very exciting drive!

Two different ways of building this model are demonstrated here based on the
compile-time flag below. One models all the links as they appear; the other
treats some links as massless resulting in halving the model size and better
than a 2X speedup.
*/

// Define this to use a simplified model that replaces some of the links
// with distance constraints. That reduces the model size by about half without
// changing the functionality at all.
//#define USE_MASSLESS_LINKS

// Undefine this to get more accurate CPU times.
#define ANIMATE

// Put local classes and definitions in the file-scope anonymous namespace.
namespace {

// This is a periodic event handler that interrupts the simulation on a regular
// basis to poll the InputSilo for user input, mostly for speed control.
const int SpeedControlSlider = 1;
class UserInputHandler : public PeriodicEventHandler {
public:
    UserInputHandler(Visualizer::InputSilo& silo, 
                     const Motion::Steady&  motor, 
                     Real                   interval); 
    void handleEvent(State& state, Real accuracy,
                     bool& shouldTerminate) const override;
private:
    Visualizer::InputSilo& m_silo;
    Motion::Steady         m_motor;
};

// Handy utility routine: given two vertices v1, v2 of a triangle in the x-y 
// plane and the lengths of the other two sides, find the location of the third 
// vertex, assuming v1-v2-v3 have counterclockwise ordering about the plane 
// normal. z coordinate is ignored on input and zero on output.
Vec3 findOtherVertex(const Vec3& v1, const Vec3& v2, Real s1, Real s2);

// Write interesting integrator info to stdout at end of simulation.
void dumpIntegratorStats(double startCPU, double startTime,
                         const Integrator& integ);

const Real LinkDepth = .01; // half depth of links
const Real LinkWidth = .02; // half width of links

const Real mu_s = 0.7;       // Friction coefficients.
const Real mu_d = 0.5;
const Real mu_v = 0;
const Real transitionVelocity = 1e-3; // slide->stick velocity

// Rubber for feet
const Real rubber_density = 1100.;  // kg/m^3
const Real rubber_young   = 0.01e9/10; // pascals (N/m)
const Real rubber_poisson = 0.5;    // ratio
const Real rubber_planestrain = 
    ContactMaterial::calcPlaneStrainStiffness(rubber_young,rubber_poisson);
const Real rubber_dissipation = /*0.005*/10;

const ContactMaterial rubber(rubber_planestrain,rubber_dissipation,
                               mu_s,mu_d,mu_v);

// Concrete for ground
const Real concrete_density = 2300.;  // kg/m^3
const Real concrete_young   = 25e9;  // pascals (N/m)
const Real concrete_poisson = 0.15;    // ratio
const Real concrete_planestrain = 
    ContactMaterial::calcPlaneStrainStiffness(concrete_young,concrete_poisson);
const Real concrete_dissipation = 0.005;

const ContactMaterial concrete(concrete_planestrain,concrete_dissipation,
                               mu_s,mu_d,mu_v);

// Add one leg to the given torso T with the leg frame's pose in T given.
void addOneLeg(Visualizer& viz, MobilizedBody& torso, const Transform& X_TL,
               MobilizedBody& crank, const Vec3& crankConnect);

const Rotation YtoX(-Pi/2,ZAxis); // some useful rotations
const Rotation YtoZ( Pi/2,XAxis);
}



//==============================================================================
//                                   MAIN
//==============================================================================
int main() {
    try { // catch errors if any
    // Create the system, with subsystems for the bodies and some forces.
    MultibodySystem system; 
    SimbodyMatterSubsystem matter(system);
    GeneralForceSubsystem forces(system);
    ContactTrackerSubsystem   tracker(system);
    CompliantContactSubsystem contact(system, tracker);
    contact.setTransitionVelocity(transitionVelocity);
    Force::Gravity(forces, matter, -YAxis, 9.81);

    // Set up visualization and ask for a frame every 1/30 second.
    Visualizer viz(system);
    viz.setShowSimTime(true); viz.setShowFrameRate(true);
    viz.addSlider("Speed", SpeedControlSlider, -10, 10, 0);
    Visualizer::InputSilo* silo = new Visualizer::InputSilo();
    viz.addInputListener(silo);   
    #ifdef ANIMATE
    system.addEventReporter(new Visualizer::Reporter(viz, 1./30));
    #endif
    DecorativeText help("Any input to start; ESC to quit");
    help.setIsScreenText(true);
    viz.addDecoration(MobilizedBodyIndex(0),Vec3(0),help);
    matter.setShowDefaultGeometry(false);

    // Add the Ground contact geometry. Contact half space has -XAxis normal
    // (right hand wall) so we have to rotate.
    MobilizedBody& Ground = matter.updGround(); // Nicer name for Ground.
    Ground.updBody().addContactSurface(Transform(YtoX,Vec3(0)),
        ContactSurface(ContactGeometry::HalfSpace(),concrete));

    // Add some speed bumps.
    const int NBumps = 2; const Vec3 BumpShape(.8,0.2,2);
    for (int i=0; i < NBumps; ++i) {
        const Real x = -2*(i+1);
        Ground.updBody().addContactSurface(Vec3(x,0,0),
            ContactSurface(ContactGeometry::Ellipsoid(BumpShape), rubber));
        Ground.updBody().addDecoration(Vec3(x,0,0),
            DecorativeEllipsoid(BumpShape).setColor(Gray).setResolution(3));
    }

    // TORSO
    const Real TorsoHeight = 1.1;
    const Vec3 torsoHDims(1,.08,.8);
    const Real torsoVolume = 8*torsoHDims[0]*torsoHDims[1]*torsoHDims[2];
    const Real torsoMass = torsoVolume*rubber_density/10;
    const Vec3 torsoCOM(0,-.75,0); // put it low for stability
    Body::Rigid torsoInfo(MassProperties(torsoMass,torsoCOM,
        UnitInertia::brick(torsoHDims).shiftFromCentroidInPlace(-torsoCOM)));
    torsoInfo.addDecoration(Vec3(0),
        DecorativeBrick(torsoHDims).setColor(Cyan));

    // CRANK
    const Vec3 crankCenter(0,0,0); // in torso frame
    const Vec3 crankOffset(0,0,torsoHDims[2]+LinkDepth); // left/right offset
    const Real MLen=15/100.; // crank radius
    Body::Rigid crankInfo(MassProperties(.1,Vec3(0),
                            UnitInertia::cylinderAlongZ(MLen, LinkDepth)));
    crankInfo.addDecoration(Vec3(0),
        DecorativeBrick(Vec3(LinkWidth,LinkWidth,torsoHDims[2]))
        .setColor(Black));
    const Vec3 CrankConnect(MLen,0,0); // in crank frame

    // Add the torso and crank mobilized bodies.
    MobilizedBody::Free torso(Ground,Vec3(0,TorsoHeight,0), torsoInfo,Vec3(0));
    MobilizedBody::Pin crank(torso,crankCenter, crankInfo, Vec3(0));
    
    // Add the legs.
    for (int i=-1; i<=1; ++i) {
        const Vec3 offset = crankCenter + i*crankOffset;
        const Vec3 linkSpace(0,0,2*LinkDepth);
        const Rotation R_CP(i*2*Pi/3,ZAxis);
        // Add crank bars for looks.
        crank.addBodyDecoration(
            Transform(R_CP, offset+1.5*MLen/2*R_CP.x()+(i==0?linkSpace:Vec3(0))),
            DecorativeBrick(Vec3(1.5*MLen/2,LinkWidth,LinkDepth))
                        .setColor(Yellow));

        addOneLeg(viz, torso, offset + i*linkSpace, 
                  crank, R_CP*CrankConnect);
        addOneLeg(viz, torso, Transform(Rotation(Pi,YAxis), offset + i*linkSpace), 
                  crank, R_CP*CrankConnect);
    }

    // Add speed control.
    Motion::Steady motor(crank, 0); // User controls speed.
    system.addEventHandler
       (new UserInputHandler(*silo, motor, Real(0.1))); //check input every 100ms
  
    // Initialize the system and state.    
    State state = system.realizeTopology();
    system.realize(state);
    printf("Theo Jansen Strandbeest in 3D:\n");
    printf("%d bodies, %d mobilities, -%d constraint equations -%d motions\n",
        matter.getNumBodies(), state.getNU(), state.getNMultipliers(), 
        matter.getMotionMultipliers(state).size());

    viz.report(state);
    printf("Hit any key to assemble ...");
    silo->waitForAnyUserInput(); silo->clear();
    Assembler(system).assemble(state);
    printf("ASSEMBLED\n");

    // Simulate.
    SemiExplicitEuler2Integrator integ(system);
    integ.setAccuracy(0.1);
    integ.setConstraintTolerance(.001);
    integ.setMaximumStepSize(1./60);
    TimeStepper ts(system, integ);
    ts.initialize(state);
    viz.report(ts.getState());
    printf("Hit ENTER to simulate ... (ESC to quit)\n");
    silo->waitForAnyUserInput(); silo->clear();

    const double startCPU  = cpuTime(), startTime = realTime();
    ts.stepTo(Infinity); // RUN
    dumpIntegratorStats(startCPU, startTime, integ);

    } catch (const std::exception& e) {
        std::cout << "ERROR: " << e.what() << std::endl;
        return 1;
    }
    return 0;
}

namespace {

//==============================================================================
//                               ADD ONE LEG
//==============================================================================
// This function can build a leg two different ways, depending on whether
// USE_MASSLESS_LINKS is defined:
// (1) A straightforward model where all links have mass, producing 6 mobilities
//     and requiring 6 constraints per leg. 
// (2) Only the shoulder and foot bodies have mass, so the model requires only 3
//     mobilities and 3 distance constraints instead, for much improved 
//     performance.    
void addOneLeg(Visualizer& viz, MobilizedBody& torso, const Transform& X_TL,
               MobilizedBody& crank, const Vec3& crankConnect)
{
    // Segment lettering is from TJ's drawing here: 
    //        http://www.strandbeest.com/beests_leg.php
    // These dimensions are what TJ calls the "holy numbers". These are scaled
    // from cm to m so that the mechanism is about 1m tall.
    const Real ALen=38/100., LLen=7.8/100.; 
    const Real BLen=41.5/100., ELen=55.8/100., DLen=40.1/100.; // shoulder sides
    const Real ILen=49/100., HLen=65.7/100., GLen=36.7/100.;   // foot sides

    const Real CLen = 39.3/100.; // Link lengths, TJ's lettering
    const Real JLen = 50/100.;
    const Real FLen = 39.4/100.;
    const Real KLen = 61.9/100.;

    // The pivot point is where the shoulder is pinned to the torso.
    const Vec3 pivotPt = X_TL*Vec3(-ALen,-LLen,0);  // to torso frame

    // SHOULDER (a triangular body)
    // Put the shoulder origin at the pivot, one side in the +Y.
    Body::Rigid shoulderInfo(MassProperties(1,Vec3(0),UnitInertia(1)));
    const Vec3 shoulderPivot(0,0,0);
    const Vec3 shoulderUpper(0,BLen,0);
    const Vec3 shoulderSide = findOtherVertex(shoulderPivot,shoulderUpper,
                                              DLen,ELen);
    const UnitVec3 BDir(shoulderUpper-shoulderPivot);
    const UnitVec3 DDir(shoulderSide-shoulderPivot);
    const UnitVec3 EDir(shoulderUpper-shoulderSide);

    Rotation R_SB(BDir, XAxis, Vec3(0,0,1), ZAxis);
    Rotation R_SD(DDir, XAxis, Vec3(0,0,1), ZAxis);
    Rotation R_SE(EDir, XAxis, Vec3(0,0,1), ZAxis);
    shoulderInfo.addDecoration(Transform(R_SB, shoulderPivot+BLen/2*BDir),
        DecorativeBrick(Vec3(BLen/2,LinkWidth,LinkDepth)).setColor(Orange));
    shoulderInfo.addDecoration(Transform(R_SD,shoulderPivot+DLen/2*DDir),
        DecorativeBrick(Vec3(DLen/2,LinkWidth,LinkDepth)).setColor(Orange));
    shoulderInfo.addDecoration(Transform(R_SE, shoulderSide+ELen/2*EDir),
        DecorativeBrick(Vec3(ELen/2,LinkWidth,LinkDepth)).setColor(Orange));

    // FOOT (a triangular body)
    // Put the foot origin at the pivot, one side in the -Y.
    Body::Rigid footInfo(MassProperties(10,Vec3(0),UnitInertia(1)));
    const Vec3 footPivot(0,0,0);
    const Vec3 footLower(0,-ILen,0);
    const Vec3 footSide = findOtherVertex(footLower,footPivot,HLen,GLen);

    const UnitVec3 IDir(footLower-footPivot);
    const UnitVec3 GDir(footSide-footPivot);
    const UnitVec3 HDir(footLower-footSide);

    Rotation R_SI(IDir, XAxis, Vec3(0,0,1), ZAxis);
    Rotation R_SG(GDir, XAxis, Vec3(0,0,1), ZAxis);
    Rotation R_SH(HDir, XAxis, Vec3(0,0,1), ZAxis);
    footInfo.addDecoration(Transform(R_SI, footPivot+ILen/2*IDir),
        DecorativeBrick(Vec3(ILen/2,LinkWidth,LinkDepth)).setColor(Orange));
    footInfo.addDecoration(Transform(R_SG, footPivot+GLen/2*GDir),
        DecorativeBrick(Vec3(GLen/2,LinkWidth,LinkDepth)).setColor(Orange));
    footInfo.addDecoration(Transform(R_SH, footSide+HLen/2*HDir),
        DecorativeBrick(Vec3(HLen/2,LinkWidth,LinkDepth)).setColor(Orange));

    const Real FootRad = .05;
    footInfo.addContactSurface(footLower-Vec3(0,FootRad/2,0), 
        ContactSurface(ContactGeometry::Sphere(FootRad), rubber));
    footInfo.addDecoration(footLower-Vec3(0,FootRad/2,0), 
        DecorativeSphere(FootRad).setColor(Orange));

    // LINKS

    // Link C connects foot to pivot point. Start aligned with Y.
    const Vec3 CDims(LinkWidth,CLen/2,LinkDepth);
    Body::Rigid linkCInfo(MassProperties(.1,Vec3(0), UnitInertia::brick(CDims)));
    linkCInfo.addDecoration(Vec3(0), DecorativeBrick(CDims).setColor(Orange));

    // Link J connects upper shoulder to crank. Start aligned with X.
    const Vec3 JDims(JLen/2,LinkWidth,LinkDepth);
    Body::Rigid linkJInfo(MassProperties(.1,Vec3(0), UnitInertia::brick(JDims)));
    linkJInfo.addDecoration(Vec3(0), DecorativeBrick(JDims).setColor(Orange));

    // Link F connects shoulder to foot. Start aligned with Y.
    const Vec3 FDims(LinkWidth,FLen/2,LinkDepth);
    Body::Rigid linkFInfo(MassProperties(.1,Vec3(0), UnitInertia::brick(FDims)));
    linkFInfo.addDecoration(Vec3(0), DecorativeBrick(FDims).setColor(Orange));


    // Link K connects foot to crank. Start aligned with X.
    const Vec3 KDims(KLen/2,LinkWidth,LinkDepth);
    Body::Rigid linkKInfo(MassProperties(.1,Vec3(0), UnitInertia::brick(KDims)));
    linkKInfo.addDecoration(Vec3(0), DecorativeBrick(KDims).setColor(Orange));

    // Create the tree of mobilized bodies.
    MobilizedBody::Pin shoulder(torso, Transform(X_TL.R(), pivotPt), 
                                shoulderInfo, shoulderPivot);
    MobilizedBody::Pin linkC(torso,    Transform(X_TL.R(), pivotPt),  
                             linkCInfo, Vec3(0,CLen/2,0));
    MobilizedBody::Pin foot( linkC,     Vec3(0,-CLen/2,0), 
                             footInfo,  footPivot);

    #ifdef USE_MASSLESS_LINKS
    Vec3 crankAttach(crankConnect[0],crankConnect[1],X_TL.p()[2]);
    DecorativeLine line; line.setColor(Gray).setLineThickness(3);
    Constraint::Rod linkF(shoulder, shoulderSide, foot, footSide, FLen);
    viz.addRubberBandLine(shoulder, shoulderSide, foot, footSide, line);
    Constraint::Rod linkJ(shoulder, shoulderUpper, crank, crankAttach, JLen);
    viz.addRubberBandLine(shoulder, shoulderUpper, crank, crankAttach, line);
    Constraint::Rod linkK(foot, footPivot, crank, crankAttach, KLen);
    viz.addRubberBandLine(foot, footPivot, crank, crankAttach, line);
    #else
    MobilizedBody::Pin linkJ(shoulder,  shoulderUpper,
                             linkJInfo, Vec3(-JLen/2,0,0));
    MobilizedBody::Pin linkF(shoulder,  shoulderSide,
                             linkFInfo, Vec3(0,FLen/2,0));
    MobilizedBody::Pin linkK(foot,      footPivot, 
                             linkKInfo, Vec3(-KLen/2,0,0));
    linkJ.setDefaultAngle(-Pi/6); // set default angles to guide assembly
    linkK.setDefaultAngle( Pi/4);


    // Add 2d pin joint constraints (each pair of point-in-planes is a pin).
    Constraint::PointInPlane f2footx(foot, XAxis, footSide[0],
                                     linkF, Vec3(0,-FLen/2,0));
    Constraint::PointInPlane f2footy(foot, YAxis, footSide[1],
                                     linkF, Vec3(0,-FLen/2,0));

    Constraint::PointInPlane k2crankx(crank, XAxis, crankConnect[0],
                                      linkK, Vec3(KLen/2,0,0));
    Constraint::PointInPlane k2cranky(crank, YAxis, crankConnect[1],
                                      linkK, Vec3(KLen/2,0,0));

    Constraint::PointInPlane j2crankx(crank, XAxis, crankConnect[0],
                                      linkJ, Vec3(JLen/2,0,0));
    Constraint::PointInPlane j2cranky(crank, YAxis, crankConnect[1],
                                      linkJ, Vec3(JLen/2,0,0));
    #endif
}


//==============================================================================
//                           USER INPUT HANDLER
//==============================================================================
UserInputHandler::UserInputHandler(Visualizer::InputSilo& silo, 
                                   const Motion::Steady&  motor, 
                                   Real                   interval) 
:   PeriodicEventHandler(interval), m_silo(silo), m_motor(motor) {}

void UserInputHandler::handleEvent(State& state, Real accuracy,
                                   bool& shouldTerminate) const  {
    while (m_silo.isAnyUserInput()) {
        unsigned key, modifiers;
        while (m_silo.takeKeyHit(key,modifiers))
            if (key == Visualizer::InputListener::KeyEsc) {
                shouldTerminate = true;
                m_silo.clear();
                return;
            }

        int whichSlider; Real sliderValue;
        while (m_silo.takeSliderMove(whichSlider, sliderValue))
            if (whichSlider == SpeedControlSlider)
                m_motor.setRate(state, sliderValue);
    }  
}


//==============================================================================
//                           FIND OTHER VERTEX
//==============================================================================
// Given two vertices v1, v2 of a triangle in the x-y plane and the lengths of 
// the other two sides, find the location of the third vertex, assuming 
// v1-v2-v3 have counterclockwise ordering about the plane normal.
//
//                           v2
//                            * 
//                             \
//                           .  \ s0
//                               \
//                          s2    \
//                               a * v1
//                          .    .
//                             s1
//                           .
//                         *
//                         v3
//
// Our strategy will be to find the angle a and rotate the unit vector 
// v=(v2-v1)/|v2-v1| ccw by a, giving unit vector w along v1v3. Then v3=v1+s1*w.

// Ignore z component of vectors -- we're working in x-y plane.
Vec3 findOtherVertex(const Vec3& v1, const Vec3& v2, 
                     Real s1, Real s2)
{
    const Real s0 = (v2-v1).norm();
    const Real ca = (s0*s0 + s1*s1 - s2*s2) / (2*s0*s1);  // cos(a)
    const Real a = std::acos(ca);
    const Real sa = std::sin(a);
    const Mat22 R(ca, -sa,  // 2d rotation matrix
                  sa,  ca);
    const Vec2 v = (v2.drop1(2)-v1.drop1(2))/s0;
    const Vec2 w = R*v;
    const Vec2 v3 = v1.drop1(2) + s1*w;
    return v3.append1(0);
}

//==============================================================================
//                        DUMP INTEGRATOR STATS
//==============================================================================
void dumpIntegratorStats(double startCPU, double startTime, 
                         const Integrator& integ) {
    std::cout << "DONE: Simulated " << integ.getTime() << " seconds in " <<
        realTime()-startTime << " elapsed s, CPU="<< cpuTime()-startCPU << "s\n";
    #ifdef ANIMATE
    printf("***CAUTION: CPU time not accurate when animation is enabled.\n");
    #endif

    const int evals = integ.getNumRealizations();
    std::cout << "\nUsed "  << integ.getNumStepsTaken() << " steps, avg step=" 
        << (1000*integ.getTime())/integ.getNumStepsTaken() << "ms " 
        << (1000*integ.getTime())/evals << "ms/eval\n";

    printf("Used Integrator %s at accuracy %g:\n", 
        integ.getMethodName(), integ.getAccuracyInUse());
    printf("# STEPS/ATTEMPTS = %d/%d\n",  integ.getNumStepsTaken(), 
                                          integ.getNumStepsAttempted());
    printf("# ERR TEST FAILS = %d\n",     integ.getNumErrorTestFailures());
    printf("# REALIZE/PROJECT = %d/%d\n", integ.getNumRealizations(), 
                                          integ.getNumProjections());
}
}