1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
|
/* -------------------------------------------------------------------------- *
* Simbody(tm) Example: TheoJansenStrandbeest *
* -------------------------------------------------------------------------- *
* This is part of the SimTK biosimulation toolkit originating from *
* Simbios, the NIH National Center for Physics-Based Simulation of *
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody. *
* *
* Portions copyright (c) 2013 Stanford University and the Authors. *
* Authors: Michael Sherman *
* Contributors: *
* *
* Licensed under the Apache License, Version 2.0 (the "License"); you may *
* not use this file except in compliance with the License. You may obtain a *
* copy of the License at http://www.apache.org/licenses/LICENSE-2.0. *
* *
* Unless required by applicable law or agreed to in writing, software *
* distributed under the License is distributed on an "AS IS" BASIS, *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
* See the License for the specific language governing permissions and *
* limitations under the License. *
* -------------------------------------------------------------------------- */
#include "Simbody.h"
#include <iostream>
using namespace SimTK;
using std::cout; using std::endl; using std::cin;
/* This is a walking mechanism due to Theo Jansen. See strandbeest.com and
many YouTube videos. This is a full 3D simulation although each leg moves
only in 2D. The user controls the speed. I haven't yet figured out how to
steer one of these things though so it's not a very exciting drive!
Two different ways of building this model are demonstrated here based on the
compile-time flag below. One models all the links as they appear; the other
treats some links as massless resulting in halving the model size and better
than a 2X speedup.
*/
// Define this to use a simplified model that replaces some of the links
// with distance constraints. That reduces the model size by about half without
// changing the functionality at all.
//#define USE_MASSLESS_LINKS
// Undefine this to get more accurate CPU times.
#define ANIMATE
// Put local classes and definitions in the file-scope anonymous namespace.
namespace {
// This is a periodic event handler that interrupts the simulation on a regular
// basis to poll the InputSilo for user input, mostly for speed control.
const int SpeedControlSlider = 1;
class UserInputHandler : public PeriodicEventHandler {
public:
UserInputHandler(Visualizer::InputSilo& silo,
const Motion::Steady& motor,
Real interval);
void handleEvent(State& state, Real accuracy,
bool& shouldTerminate) const override;
private:
Visualizer::InputSilo& m_silo;
Motion::Steady m_motor;
};
// Handy utility routine: given two vertices v1, v2 of a triangle in the x-y
// plane and the lengths of the other two sides, find the location of the third
// vertex, assuming v1-v2-v3 have counterclockwise ordering about the plane
// normal. z coordinate is ignored on input and zero on output.
Vec3 findOtherVertex(const Vec3& v1, const Vec3& v2, Real s1, Real s2);
// Write interesting integrator info to stdout at end of simulation.
void dumpIntegratorStats(double startCPU, double startTime,
const Integrator& integ);
const Real LinkDepth = .01; // half depth of links
const Real LinkWidth = .02; // half width of links
const Real mu_s = 0.7; // Friction coefficients.
const Real mu_d = 0.5;
const Real mu_v = 0;
const Real transitionVelocity = 1e-3; // slide->stick velocity
// Rubber for feet
const Real rubber_density = 1100.; // kg/m^3
const Real rubber_young = 0.01e9/10; // pascals (N/m)
const Real rubber_poisson = 0.5; // ratio
const Real rubber_planestrain =
ContactMaterial::calcPlaneStrainStiffness(rubber_young,rubber_poisson);
const Real rubber_dissipation = /*0.005*/10;
const ContactMaterial rubber(rubber_planestrain,rubber_dissipation,
mu_s,mu_d,mu_v);
// Concrete for ground
const Real concrete_density = 2300.; // kg/m^3
const Real concrete_young = 25e9; // pascals (N/m)
const Real concrete_poisson = 0.15; // ratio
const Real concrete_planestrain =
ContactMaterial::calcPlaneStrainStiffness(concrete_young,concrete_poisson);
const Real concrete_dissipation = 0.005;
const ContactMaterial concrete(concrete_planestrain,concrete_dissipation,
mu_s,mu_d,mu_v);
// Add one leg to the given torso T with the leg frame's pose in T given.
void addOneLeg(Visualizer& viz, MobilizedBody& torso, const Transform& X_TL,
MobilizedBody& crank, const Vec3& crankConnect);
const Rotation YtoX(-Pi/2,ZAxis); // some useful rotations
const Rotation YtoZ( Pi/2,XAxis);
}
//==============================================================================
// MAIN
//==============================================================================
int main() {
try { // catch errors if any
// Create the system, with subsystems for the bodies and some forces.
MultibodySystem system;
SimbodyMatterSubsystem matter(system);
GeneralForceSubsystem forces(system);
ContactTrackerSubsystem tracker(system);
CompliantContactSubsystem contact(system, tracker);
contact.setTransitionVelocity(transitionVelocity);
Force::Gravity(forces, matter, -YAxis, 9.81);
// Set up visualization and ask for a frame every 1/30 second.
Visualizer viz(system);
viz.setShowSimTime(true); viz.setShowFrameRate(true);
viz.addSlider("Speed", SpeedControlSlider, -10, 10, 0);
Visualizer::InputSilo* silo = new Visualizer::InputSilo();
viz.addInputListener(silo);
#ifdef ANIMATE
system.addEventReporter(new Visualizer::Reporter(viz, 1./30));
#endif
DecorativeText help("Any input to start; ESC to quit");
help.setIsScreenText(true);
viz.addDecoration(MobilizedBodyIndex(0),Vec3(0),help);
matter.setShowDefaultGeometry(false);
// Add the Ground contact geometry. Contact half space has -XAxis normal
// (right hand wall) so we have to rotate.
MobilizedBody& Ground = matter.updGround(); // Nicer name for Ground.
Ground.updBody().addContactSurface(Transform(YtoX,Vec3(0)),
ContactSurface(ContactGeometry::HalfSpace(),concrete));
// Add some speed bumps.
const int NBumps = 2; const Vec3 BumpShape(.8,0.2,2);
for (int i=0; i < NBumps; ++i) {
const Real x = -2*(i+1);
Ground.updBody().addContactSurface(Vec3(x,0,0),
ContactSurface(ContactGeometry::Ellipsoid(BumpShape), rubber));
Ground.updBody().addDecoration(Vec3(x,0,0),
DecorativeEllipsoid(BumpShape).setColor(Gray).setResolution(3));
}
// TORSO
const Real TorsoHeight = 1.1;
const Vec3 torsoHDims(1,.08,.8);
const Real torsoVolume = 8*torsoHDims[0]*torsoHDims[1]*torsoHDims[2];
const Real torsoMass = torsoVolume*rubber_density/10;
const Vec3 torsoCOM(0,-.75,0); // put it low for stability
Body::Rigid torsoInfo(MassProperties(torsoMass,torsoCOM,
UnitInertia::brick(torsoHDims).shiftFromCentroidInPlace(-torsoCOM)));
torsoInfo.addDecoration(Vec3(0),
DecorativeBrick(torsoHDims).setColor(Cyan));
// CRANK
const Vec3 crankCenter(0,0,0); // in torso frame
const Vec3 crankOffset(0,0,torsoHDims[2]+LinkDepth); // left/right offset
const Real MLen=15/100.; // crank radius
Body::Rigid crankInfo(MassProperties(.1,Vec3(0),
UnitInertia::cylinderAlongZ(MLen, LinkDepth)));
crankInfo.addDecoration(Vec3(0),
DecorativeBrick(Vec3(LinkWidth,LinkWidth,torsoHDims[2]))
.setColor(Black));
const Vec3 CrankConnect(MLen,0,0); // in crank frame
// Add the torso and crank mobilized bodies.
MobilizedBody::Free torso(Ground,Vec3(0,TorsoHeight,0), torsoInfo,Vec3(0));
MobilizedBody::Pin crank(torso,crankCenter, crankInfo, Vec3(0));
// Add the legs.
for (int i=-1; i<=1; ++i) {
const Vec3 offset = crankCenter + i*crankOffset;
const Vec3 linkSpace(0,0,2*LinkDepth);
const Rotation R_CP(i*2*Pi/3,ZAxis);
// Add crank bars for looks.
crank.addBodyDecoration(
Transform(R_CP, offset+1.5*MLen/2*R_CP.x()+(i==0?linkSpace:Vec3(0))),
DecorativeBrick(Vec3(1.5*MLen/2,LinkWidth,LinkDepth))
.setColor(Yellow));
addOneLeg(viz, torso, offset + i*linkSpace,
crank, R_CP*CrankConnect);
addOneLeg(viz, torso, Transform(Rotation(Pi,YAxis), offset + i*linkSpace),
crank, R_CP*CrankConnect);
}
// Add speed control.
Motion::Steady motor(crank, 0); // User controls speed.
system.addEventHandler
(new UserInputHandler(*silo, motor, Real(0.1))); //check input every 100ms
// Initialize the system and state.
State state = system.realizeTopology();
system.realize(state);
printf("Theo Jansen Strandbeest in 3D:\n");
printf("%d bodies, %d mobilities, -%d constraint equations -%d motions\n",
matter.getNumBodies(), state.getNU(), state.getNMultipliers(),
matter.getMotionMultipliers(state).size());
viz.report(state);
printf("Hit any key to assemble ...");
silo->waitForAnyUserInput(); silo->clear();
Assembler(system).assemble(state);
printf("ASSEMBLED\n");
// Simulate.
SemiExplicitEuler2Integrator integ(system);
integ.setAccuracy(0.1);
integ.setConstraintTolerance(.001);
integ.setMaximumStepSize(1./60);
TimeStepper ts(system, integ);
ts.initialize(state);
viz.report(ts.getState());
printf("Hit ENTER to simulate ... (ESC to quit)\n");
silo->waitForAnyUserInput(); silo->clear();
const double startCPU = cpuTime(), startTime = realTime();
ts.stepTo(Infinity); // RUN
dumpIntegratorStats(startCPU, startTime, integ);
} catch (const std::exception& e) {
std::cout << "ERROR: " << e.what() << std::endl;
return 1;
}
return 0;
}
namespace {
//==============================================================================
// ADD ONE LEG
//==============================================================================
// This function can build a leg two different ways, depending on whether
// USE_MASSLESS_LINKS is defined:
// (1) A straightforward model where all links have mass, producing 6 mobilities
// and requiring 6 constraints per leg.
// (2) Only the shoulder and foot bodies have mass, so the model requires only 3
// mobilities and 3 distance constraints instead, for much improved
// performance.
void addOneLeg(Visualizer& viz, MobilizedBody& torso, const Transform& X_TL,
MobilizedBody& crank, const Vec3& crankConnect)
{
// Segment lettering is from TJ's drawing here:
// http://www.strandbeest.com/beests_leg.php
// These dimensions are what TJ calls the "holy numbers". These are scaled
// from cm to m so that the mechanism is about 1m tall.
const Real ALen=38/100., LLen=7.8/100.;
const Real BLen=41.5/100., ELen=55.8/100., DLen=40.1/100.; // shoulder sides
const Real ILen=49/100., HLen=65.7/100., GLen=36.7/100.; // foot sides
const Real CLen = 39.3/100.; // Link lengths, TJ's lettering
const Real JLen = 50/100.;
const Real FLen = 39.4/100.;
const Real KLen = 61.9/100.;
// The pivot point is where the shoulder is pinned to the torso.
const Vec3 pivotPt = X_TL*Vec3(-ALen,-LLen,0); // to torso frame
// SHOULDER (a triangular body)
// Put the shoulder origin at the pivot, one side in the +Y.
Body::Rigid shoulderInfo(MassProperties(1,Vec3(0),UnitInertia(1)));
const Vec3 shoulderPivot(0,0,0);
const Vec3 shoulderUpper(0,BLen,0);
const Vec3 shoulderSide = findOtherVertex(shoulderPivot,shoulderUpper,
DLen,ELen);
const UnitVec3 BDir(shoulderUpper-shoulderPivot);
const UnitVec3 DDir(shoulderSide-shoulderPivot);
const UnitVec3 EDir(shoulderUpper-shoulderSide);
Rotation R_SB(BDir, XAxis, Vec3(0,0,1), ZAxis);
Rotation R_SD(DDir, XAxis, Vec3(0,0,1), ZAxis);
Rotation R_SE(EDir, XAxis, Vec3(0,0,1), ZAxis);
shoulderInfo.addDecoration(Transform(R_SB, shoulderPivot+BLen/2*BDir),
DecorativeBrick(Vec3(BLen/2,LinkWidth,LinkDepth)).setColor(Orange));
shoulderInfo.addDecoration(Transform(R_SD,shoulderPivot+DLen/2*DDir),
DecorativeBrick(Vec3(DLen/2,LinkWidth,LinkDepth)).setColor(Orange));
shoulderInfo.addDecoration(Transform(R_SE, shoulderSide+ELen/2*EDir),
DecorativeBrick(Vec3(ELen/2,LinkWidth,LinkDepth)).setColor(Orange));
// FOOT (a triangular body)
// Put the foot origin at the pivot, one side in the -Y.
Body::Rigid footInfo(MassProperties(10,Vec3(0),UnitInertia(1)));
const Vec3 footPivot(0,0,0);
const Vec3 footLower(0,-ILen,0);
const Vec3 footSide = findOtherVertex(footLower,footPivot,HLen,GLen);
const UnitVec3 IDir(footLower-footPivot);
const UnitVec3 GDir(footSide-footPivot);
const UnitVec3 HDir(footLower-footSide);
Rotation R_SI(IDir, XAxis, Vec3(0,0,1), ZAxis);
Rotation R_SG(GDir, XAxis, Vec3(0,0,1), ZAxis);
Rotation R_SH(HDir, XAxis, Vec3(0,0,1), ZAxis);
footInfo.addDecoration(Transform(R_SI, footPivot+ILen/2*IDir),
DecorativeBrick(Vec3(ILen/2,LinkWidth,LinkDepth)).setColor(Orange));
footInfo.addDecoration(Transform(R_SG, footPivot+GLen/2*GDir),
DecorativeBrick(Vec3(GLen/2,LinkWidth,LinkDepth)).setColor(Orange));
footInfo.addDecoration(Transform(R_SH, footSide+HLen/2*HDir),
DecorativeBrick(Vec3(HLen/2,LinkWidth,LinkDepth)).setColor(Orange));
const Real FootRad = .05;
footInfo.addContactSurface(footLower-Vec3(0,FootRad/2,0),
ContactSurface(ContactGeometry::Sphere(FootRad), rubber));
footInfo.addDecoration(footLower-Vec3(0,FootRad/2,0),
DecorativeSphere(FootRad).setColor(Orange));
// LINKS
// Link C connects foot to pivot point. Start aligned with Y.
const Vec3 CDims(LinkWidth,CLen/2,LinkDepth);
Body::Rigid linkCInfo(MassProperties(.1,Vec3(0), UnitInertia::brick(CDims)));
linkCInfo.addDecoration(Vec3(0), DecorativeBrick(CDims).setColor(Orange));
// Link J connects upper shoulder to crank. Start aligned with X.
const Vec3 JDims(JLen/2,LinkWidth,LinkDepth);
Body::Rigid linkJInfo(MassProperties(.1,Vec3(0), UnitInertia::brick(JDims)));
linkJInfo.addDecoration(Vec3(0), DecorativeBrick(JDims).setColor(Orange));
// Link F connects shoulder to foot. Start aligned with Y.
const Vec3 FDims(LinkWidth,FLen/2,LinkDepth);
Body::Rigid linkFInfo(MassProperties(.1,Vec3(0), UnitInertia::brick(FDims)));
linkFInfo.addDecoration(Vec3(0), DecorativeBrick(FDims).setColor(Orange));
// Link K connects foot to crank. Start aligned with X.
const Vec3 KDims(KLen/2,LinkWidth,LinkDepth);
Body::Rigid linkKInfo(MassProperties(.1,Vec3(0), UnitInertia::brick(KDims)));
linkKInfo.addDecoration(Vec3(0), DecorativeBrick(KDims).setColor(Orange));
// Create the tree of mobilized bodies.
MobilizedBody::Pin shoulder(torso, Transform(X_TL.R(), pivotPt),
shoulderInfo, shoulderPivot);
MobilizedBody::Pin linkC(torso, Transform(X_TL.R(), pivotPt),
linkCInfo, Vec3(0,CLen/2,0));
MobilizedBody::Pin foot( linkC, Vec3(0,-CLen/2,0),
footInfo, footPivot);
#ifdef USE_MASSLESS_LINKS
Vec3 crankAttach(crankConnect[0],crankConnect[1],X_TL.p()[2]);
DecorativeLine line; line.setColor(Gray).setLineThickness(3);
Constraint::Rod linkF(shoulder, shoulderSide, foot, footSide, FLen);
viz.addRubberBandLine(shoulder, shoulderSide, foot, footSide, line);
Constraint::Rod linkJ(shoulder, shoulderUpper, crank, crankAttach, JLen);
viz.addRubberBandLine(shoulder, shoulderUpper, crank, crankAttach, line);
Constraint::Rod linkK(foot, footPivot, crank, crankAttach, KLen);
viz.addRubberBandLine(foot, footPivot, crank, crankAttach, line);
#else
MobilizedBody::Pin linkJ(shoulder, shoulderUpper,
linkJInfo, Vec3(-JLen/2,0,0));
MobilizedBody::Pin linkF(shoulder, shoulderSide,
linkFInfo, Vec3(0,FLen/2,0));
MobilizedBody::Pin linkK(foot, footPivot,
linkKInfo, Vec3(-KLen/2,0,0));
linkJ.setDefaultAngle(-Pi/6); // set default angles to guide assembly
linkK.setDefaultAngle( Pi/4);
// Add 2d pin joint constraints (each pair of point-in-planes is a pin).
Constraint::PointInPlane f2footx(foot, XAxis, footSide[0],
linkF, Vec3(0,-FLen/2,0));
Constraint::PointInPlane f2footy(foot, YAxis, footSide[1],
linkF, Vec3(0,-FLen/2,0));
Constraint::PointInPlane k2crankx(crank, XAxis, crankConnect[0],
linkK, Vec3(KLen/2,0,0));
Constraint::PointInPlane k2cranky(crank, YAxis, crankConnect[1],
linkK, Vec3(KLen/2,0,0));
Constraint::PointInPlane j2crankx(crank, XAxis, crankConnect[0],
linkJ, Vec3(JLen/2,0,0));
Constraint::PointInPlane j2cranky(crank, YAxis, crankConnect[1],
linkJ, Vec3(JLen/2,0,0));
#endif
}
//==============================================================================
// USER INPUT HANDLER
//==============================================================================
UserInputHandler::UserInputHandler(Visualizer::InputSilo& silo,
const Motion::Steady& motor,
Real interval)
: PeriodicEventHandler(interval), m_silo(silo), m_motor(motor) {}
void UserInputHandler::handleEvent(State& state, Real accuracy,
bool& shouldTerminate) const {
while (m_silo.isAnyUserInput()) {
unsigned key, modifiers;
while (m_silo.takeKeyHit(key,modifiers))
if (key == Visualizer::InputListener::KeyEsc) {
shouldTerminate = true;
m_silo.clear();
return;
}
int whichSlider; Real sliderValue;
while (m_silo.takeSliderMove(whichSlider, sliderValue))
if (whichSlider == SpeedControlSlider)
m_motor.setRate(state, sliderValue);
}
}
//==============================================================================
// FIND OTHER VERTEX
//==============================================================================
// Given two vertices v1, v2 of a triangle in the x-y plane and the lengths of
// the other two sides, find the location of the third vertex, assuming
// v1-v2-v3 have counterclockwise ordering about the plane normal.
//
// v2
// *
// \
// . \ s0
// \
// s2 \
// a * v1
// . .
// s1
// .
// *
// v3
//
// Our strategy will be to find the angle a and rotate the unit vector
// v=(v2-v1)/|v2-v1| ccw by a, giving unit vector w along v1v3. Then v3=v1+s1*w.
// Ignore z component of vectors -- we're working in x-y plane.
Vec3 findOtherVertex(const Vec3& v1, const Vec3& v2,
Real s1, Real s2)
{
const Real s0 = (v2-v1).norm();
const Real ca = (s0*s0 + s1*s1 - s2*s2) / (2*s0*s1); // cos(a)
const Real a = std::acos(ca);
const Real sa = std::sin(a);
const Mat22 R(ca, -sa, // 2d rotation matrix
sa, ca);
const Vec2 v = (v2.drop1(2)-v1.drop1(2))/s0;
const Vec2 w = R*v;
const Vec2 v3 = v1.drop1(2) + s1*w;
return v3.append1(0);
}
//==============================================================================
// DUMP INTEGRATOR STATS
//==============================================================================
void dumpIntegratorStats(double startCPU, double startTime,
const Integrator& integ) {
std::cout << "DONE: Simulated " << integ.getTime() << " seconds in " <<
realTime()-startTime << " elapsed s, CPU="<< cpuTime()-startCPU << "s\n";
#ifdef ANIMATE
printf("***CAUTION: CPU time not accurate when animation is enabled.\n");
#endif
const int evals = integ.getNumRealizations();
std::cout << "\nUsed " << integ.getNumStepsTaken() << " steps, avg step="
<< (1000*integ.getTime())/integ.getNumStepsTaken() << "ms "
<< (1000*integ.getTime())/evals << "ms/eval\n";
printf("Used Integrator %s at accuracy %g:\n",
integ.getMethodName(), integ.getAccuracyInUse());
printf("# STEPS/ATTEMPTS = %d/%d\n", integ.getNumStepsTaken(),
integ.getNumStepsAttempted());
printf("# ERR TEST FAILS = %d\n", integ.getNumErrorTestFailures());
printf("# REALIZE/PROJECT = %d/%d\n", integ.getNumRealizations(),
integ.getNumProjections());
}
}
|