1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
|
#ifndef SimTK_SimTKCOMMON_MEASURE_IMPLEMENTATION_H_
#define SimTK_SimTKCOMMON_MEASURE_IMPLEMENTATION_H_
/* -------------------------------------------------------------------------- *
* Simbody(tm): SimTKcommon *
* -------------------------------------------------------------------------- *
* This is part of the SimTK biosimulation toolkit originating from *
* Simbios, the NIH National Center for Physics-Based Simulation of *
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody. *
* *
* Portions copyright (c) 2008-14 Stanford University and the Authors. *
* Authors: Michael Sherman *
* Contributors: *
* *
* Licensed under the Apache License, Version 2.0 (the "License"); you may *
* not use this file except in compliance with the License. You may obtain a *
* copy of the License at http://www.apache.org/licenses/LICENSE-2.0. *
* *
* Unless required by applicable law or agreed to in writing, software *
* distributed under the License is distributed on an "AS IS" BASIS, *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
* See the License for the specific language governing permissions and *
* limitations under the License. *
* -------------------------------------------------------------------------- */
#include "SimTKcommon/basics.h"
#include "SimTKcommon/Simmatrix.h"
#include "SimTKcommon/internal/State.h"
#include "SimTKcommon/internal/Measure.h"
#include "SimTKcommon/internal/Subsystem.h"
#include "SimTKcommon/internal/System.h"
#include "SimTKcommon/internal/SubsystemGuts.h"
#include <cmath>
namespace SimTK {
//==============================================================================
// ABSTRACT MEASURE :: IMPLEMENTATION
//==============================================================================
/**
* The abstract parent of all Measure Implementation classes.
*/
class SimTK_SimTKCOMMON_EXPORT AbstractMeasure::Implementation {
protected:
/** This default constructor is for use by concrete measure implementation
classes. **/
Implementation() : copyNumber(0), mySubsystem(0), refCount(0) {}
/** Base class copy constructor removes the Subsystem
and sets the reference count to zero. This gets used by the clone()
methods in the concrete classes. **/
Implementation(const Implementation& src)
: copyNumber(src.copyNumber+1), mySubsystem(0), refCount(0) {}
/** Base class copy assignment operator removes the
Subsystem, and sets the reference count to zero. This is probably
not used. **/
Implementation& operator=(const Implementation& src) {
if (&src != this)
{ copyNumber=src.copyNumber+1;
refCount=0; mySubsystem=0; }
return *this;
}
// destructor is virtual; below
// Increment the reference count and return its new value.
int incrRefCount() const {return ++refCount;}
// Decrement the reference count and return its new value.
int decrRefCount() const {return --refCount;}
// Get the current value of the reference counter.
int getRefCount() const {return refCount;}
int getCopyNumber() const {return copyNumber;}
/** This is a deep copy of the concrete Implementation object, except the
Subsystem will have been removed. The reference count on the new object
will be zero; be sure to increment it if you put it in a handle. **/
Implementation* clone() const {return cloneVirtual();}
// realizeTopology() is pure virtual below for Measure_<T> to supply.
void realizeModel (State& s) const {realizeMeasureModelVirtual(s);}
void realizeInstance (const State& s) const {realizeMeasureInstanceVirtual(s);}
void realizeTime (const State& s) const {realizeMeasureTimeVirtual(s);}
void realizePosition (const State& s) const {realizeMeasurePositionVirtual(s);}
void realizeVelocity (const State& s) const {realizeMeasureVelocityVirtual(s);}
void realizeDynamics (const State& s) const {realizeMeasureDynamicsVirtual(s);}
void realizeAcceleration(const State& s) const {realizeMeasureAccelerationVirtual(s);}
void realizeReport (const State& s) const {realizeMeasureReportVirtual(s);}
/** This should be called at the start of a time stepping study to
cause this %Measure to set its state variables (if any) in the supplied
state to their initial conditions. **/
void initialize(State& s) const {initializeVirtual(s);}
int getNumTimeDerivatives() const {return getNumTimeDerivativesVirtual();}
Stage getDependsOnStage(int derivOrder) const {
SimTK_ERRCHK2(0 <= derivOrder && derivOrder <= getNumTimeDerivatives(),
"Measure::getDependsOnStage()",
"derivOrder %d was out of range; this Measure allows 0-%d.",
derivOrder, getNumTimeDerivatives());
return getDependsOnStageVirtual(derivOrder);
}
void setSubsystem(Subsystem& sub, MeasureIndex mx)
{ assert(!mySubsystem && mx.isValid());
mySubsystem = ⊂ myIndex = mx; }
bool isInSubsystem() const {return mySubsystem != 0;}
const Subsystem& getSubsystem() const {assert(mySubsystem); return *mySubsystem;}
Subsystem& updSubsystem() {assert(mySubsystem); return *mySubsystem;}
MeasureIndex getSubsystemMeasureIndex() const {assert(mySubsystem); return myIndex;}
SubsystemIndex getSubsystemIndex() const
{ return getSubsystem().getMySubsystemIndex(); }
void invalidateTopologyCache() const
{ if (isInSubsystem()) getSubsystem().invalidateSubsystemTopologyCache(); }
Stage getStage(const State& s) const {return getSubsystem().getStage(s);}
// VIRTUALS //
virtual ~Implementation() {}
virtual Implementation* cloneVirtual() const = 0;
virtual void realizeTopology(State&)const = 0;
virtual void realizeMeasureModelVirtual(State&) const {}
virtual void realizeMeasureInstanceVirtual(const State&) const {}
virtual void realizeMeasureTimeVirtual(const State&) const {}
virtual void realizeMeasurePositionVirtual(const State&) const {}
virtual void realizeMeasureVelocityVirtual(const State&) const {}
virtual void realizeMeasureDynamicsVirtual(const State&) const {}
virtual void realizeMeasureAccelerationVirtual(const State&) const {}
virtual void realizeMeasureReportVirtual(const State&) const {}
virtual void initializeVirtual(State&) const {}
virtual int getNumTimeDerivativesVirtual() const {return 0;}
virtual Stage getDependsOnStageVirtual(int order) const = 0;
private:
int copyNumber; // bumped each time we do a deep copy
// These are set when this Measure is adopted by a Subsystem.
Subsystem* mySubsystem;
MeasureIndex myIndex;
// Measures have shallow copy semantics so they share the Implementation
// objects, which are only deleted when the refCount goes to zero.
mutable int refCount;
friend class AbstractMeasure;
friend class Subsystem::Guts;
};
//==============================================================================
// ABSTRACT MEASURE DEFINITIONS
//==============================================================================
// These had to wait for AbstractMeasure::Implementation to be defined.
inline AbstractMeasure::
AbstractMeasure(Implementation* g)
: impl(g)
{ if (impl) impl->incrRefCount(); }
inline AbstractMeasure::
AbstractMeasure(Subsystem& sub, Implementation* g, const SetHandle&)
: impl(g) {
SimTK_ERRCHK(hasImpl(), "AbstractMeasure::AbstractMeasure()",
"An empty Measure handle can't be put in a Subsystem.");
impl->incrRefCount();
sub.adoptMeasure(*this);
}
// Shallow copy constructor.
inline AbstractMeasure::AbstractMeasure(const AbstractMeasure& src)
: impl(0) {
if (src.impl) {
impl = src.impl;
impl->incrRefCount();
}
}
// Shallow assignment.
inline AbstractMeasure& AbstractMeasure::
shallowAssign(const AbstractMeasure& src) {
if (impl != src.impl) {
if (impl && impl->decrRefCount()==0) delete impl;
impl = src.impl;
impl->incrRefCount();
}
return *this;
}
// Note that even if the source and destination are currently pointing
// to the same Implementation, we still have to make a new copy so that
// afterwards the destination has its own, refcount==1 copy.
inline AbstractMeasure& AbstractMeasure::
deepAssign(const AbstractMeasure& src) {
if (&src != this) {
if (impl && impl->decrRefCount()==0) delete impl;
if (src.impl) {
impl = src.impl->clone();
impl->incrRefCount();
} else
impl = 0;
}
return *this;
}
inline AbstractMeasure::
~AbstractMeasure()
{ if (impl && impl->decrRefCount()==0) delete impl;}
inline bool AbstractMeasure::
isInSubsystem() const
{ return hasImpl() && getImpl().isInSubsystem(); }
inline const Subsystem& AbstractMeasure::
getSubsystem() const
{ return getImpl().getSubsystem(); }
inline bool AbstractMeasure::
isSameSubsystem(const Subsystem& other) const
{ return getSubsystem().isSameSubsystem(other); }
inline MeasureIndex AbstractMeasure::
getSubsystemMeasureIndex() const
{ return getImpl().getSubsystemMeasureIndex();}
inline int AbstractMeasure::
getNumTimeDerivatives() const
{ return getImpl().getNumTimeDerivatives(); }
inline Stage AbstractMeasure::
getDependsOnStage(int derivOrder) const
{ return getImpl().getDependsOnStage(derivOrder); }
inline int AbstractMeasure::
getRefCount() const
{ return getImpl().getRefCount(); }
/** @cond **/ // Hide from Doxygen.
// This is a helper class that makes it possible to treat Real, Vec, and
// Vector objects uniformly.
template <class T> class Measure_Num {
};
template <> class Measure_Num<float> {
public:
typedef float Element;
static int size(const float&) {return 1;}
static const float& get(const float& v, int i) {assert(i==0); return v;}
static float& upd(float& v, int i) {assert(i==0); return v;}
static void makeNaNLike(const float&, float& nanValue)
{ nanValue = CNT<float>::getNaN();}
static void makeZeroLike(const float&, float& zeroValue) {zeroValue=0.f;}
};
template <> class Measure_Num<double> {
public:
typedef double Element;
static int size(const double&) {return 1;}
static const double& get(const double& v, int i) {assert(i==0); return v;}
static double& upd(double& v, int i) {assert(i==0); return v;}
static void makeNaNLike(const double&, double& nanValue)
{ nanValue = CNT<double>::getNaN(); }
static void makeZeroLike(const double&, double& zeroValue) {zeroValue=0.;}
};
// We only support stride 1 (densely packed) Vec types.
template <int M, class E>
class Measure_Num< Vec<M,E,1> > {
typedef Vec<M,E,1> T;
public:
typedef E Element;
static int size(const T&) {return M;}
static const E& get(const T& v, int i) {return v[i];}
static E& upd(T& v, int i) {return v[i];}
static void makeNaNLike (const T&, T& nanValue) {nanValue.setToNaN();}
static void makeZeroLike(const T&, T& zeroValue) {zeroValue.setToZero();}
};
// We only support column major (densely packed) Mat types.
template <int M, int N, class E>
class Measure_Num< Mat<M,N,E> > {
typedef Mat<M,N,E> T;
public:
typedef E Element;
static int size(const T&) {return N;} // number of columns
static const typename T::TCol& get(const T& m, int j) {return m.col(j);}
static typename T::TCol& upd(T& m, int j) {return m.col(j);}
static void makeNaNLike (const T&, T& nanValue) {nanValue.setToNaN();}
static void makeZeroLike(const T&, T& zeroValue) {zeroValue.setToZero();}
};
template <class E>
class Measure_Num< Vector_<E> > {
typedef Vector_<E> T;
public:
typedef E Element;
static int size(const T& v) {return v.size();}
static const E& get(const T& v, int i) {return v[i];}
static E& upd(T& v, int i) {return v[i];}
static void makeNaNLike(const T& v, T& nanValue)
{ nanValue.resize(v.size()); nanValue.setToNaN(); }
static void makeZeroLike(const T& v, T& zeroValue)
{ zeroValue.resize(v.size()); zeroValue.setToZero(); }
};
template <class E>
class Measure_Num< Rotation_<E> > {
typedef Rotation_<E> T;
public:
typedef T Element;
static int size(const T&) {return 1;}
static const T& get(const T& v, int i) {assert(i==0); return v;}
static T& upd(T& v, int i) {assert(i==0); return v;}
static void makeNaNLike(const T&, T& nanValue)
{ nanValue.setRotationToNaN(); }
static void makeZeroLike(const T&, T& zeroValue)
{ zeroValue.setRotationToIdentityMatrix(); }
};
template <class E>
class Measure_Num< Transform_<E> > {
typedef Transform_<E> T;
public:
typedef T Element;
static int size(const T&) {return 1;}
static const T& get(const T& v, int i) {assert(i==0); return v;}
static T& upd(T& v, int i) {assert(i==0); return v;}
static void makeNaNLike(const T&, T& nanValue)
{ nanValue.setToNaN(); }
static void makeZeroLike(const T&, T& zeroValue)
{ zeroValue.setToZero(); }
};
/** @endcond **/
//==============================================================================
// MEASURE_<T> :: IMPLEMENTATION
//==============================================================================
/** This is the base Implementation class for all Measures whose value type is
known. This class is still abstract but provides many services related to the
values of the derived Measure and its derivatives, all of which require cache
entries of type T.
The constructor needs to be told how many type-T cache entries to allocate. **/
template <class T>
class Measure_<T>::Implementation : public AbstractMeasure::Implementation {
public:
const T& getValue(const State& s, int derivOrder) const {
SimTK_ERRCHK2(0 <= derivOrder && derivOrder <= getNumTimeDerivatives(),
"Measure_<T>::getValue()",
"derivOrder %d was out of range; this Measure allows 0-%d.",
derivOrder, getNumTimeDerivatives());
// We require the stage to have been advanced to at least the one
// before this measure's depends-on stage since this will get called
// towards the end of the depends-on stage realization.
if (getDependsOnStage(derivOrder) != Stage::Empty) {
#ifndef NDEBUG
Stage prevStage = getDependsOnStage(derivOrder).prev();
#endif
SimTK_ERRCHK2
( ( isInSubsystem() && getStage(s)>=prevStage)
|| (!isInSubsystem() && s.getSystemStage()>=prevStage),
"Measure_<T>::getValue()",
"Expected State to have been realized to at least stage "
"%s but stage was %s.",
prevStage.getName().c_str(),
(isInSubsystem() ? getStage(s) : s.getSystemStage())
.getName().c_str());
}
if (derivOrder < getNumCacheEntries()) {
if (!isCacheValueRealized(s,derivOrder)) {
T& value = updCacheEntry(s,derivOrder);
calcCachedValueVirtual(s, derivOrder, value);
markCacheValueRealized(s,derivOrder);
return value;
}
return getCacheEntry(s,derivOrder);
}
// We can't handle it here -- punt to the concrete Measure
// for higher order derivatives.
return getUncachedValueVirtual(s,derivOrder);
}
/** Set a new default value for this %Measure. This is a topological
change. **/
void setDefaultValue(const T& defaultValue) {
this->defaultValue = defaultValue;
Measure_Num<T>::makeZeroLike(defaultValue, zeroValue);
this->invalidateTopologyCache();
}
/** Return a reference to the value that this %Measure will use to
initialize its value-level state resource (state variable or cache entry)
during the next call to realizeTopology(). **/
const T& getDefaultValue() const {return defaultValue;}
void setIsPresumedValidAtDependsOnStage(bool presume)
{ presumeValidAtDependsOnStage = presume;
this->invalidateTopologyCache(); }
bool getIsPresumedValidAtDependsOnStage() const
{ return presumeValidAtDependsOnStage; }
protected:
explicit Implementation(const T& defaultValue, int numCacheEntries=1)
: presumeValidAtDependsOnStage(false),
defaultValue(defaultValue),
derivIx(numCacheEntries)
{
Measure_Num<T>::makeZeroLike(defaultValue, zeroValue);
}
/** Argument \a numCacheEntries should be one greater than the number of
derivatives; that is, there is room for the value ("0th" derivative) also.
The default is to allocate just room for the value. **/
explicit Implementation(int numCacheEntries=1)
: presumeValidAtDependsOnStage(false),
defaultValue(),
derivIx(numCacheEntries)
{
Measure_Num<T>::makeZeroLike(defaultValue, zeroValue);
}
/** Copy constructor copies the \e number of cache entries from the source,
but not the cache indices themselves as those must be allocated uniquely
for the copy. **/
Implementation(const Implementation& source)
: presumeValidAtDependsOnStage(source.presumeValidAtDependsOnStage),
defaultValue(source.defaultValue),
derivIx(source.derivIx.size())
{
Measure_Num<T>::makeZeroLike(defaultValue, zeroValue);
}
/** Return the number of elements in the data type of this %Measure; for
Vector measures this is determined by the size of the default value. **/
int size() const {return Measure_Num<T>::size(defaultValue);}
/** Return the number of cache entries allocated for the value and
derivatives of this %Measure. **/
int getNumCacheEntries() const {return (int)derivIx.size();}
/** Get a const reference to the value stored in one of this %Measure's
cache entries, indexed by the derivative order (with the value treated as
the 0th derivative). **/
const T& getCacheEntry(const State& s, int derivOrder) const {
SimTK_ERRCHK2(0 <= derivOrder && derivOrder < getNumCacheEntries(),
"Measure_<T>::Implementation::getCacheEntry()",
"Derivative order %d is out of range; only %d cache entries"
" were allocated.", derivOrder, getNumCacheEntries());
return Value<T>::downcast(
this->getSubsystem().getCacheEntry(s, derivIx[derivOrder]));
}
/** Get a writable reference to the value stored in one of this %Measure's
cache entries, indexed by the derivative order (with the value treated as
the 0th derivative). **/
T& updCacheEntry(const State& s, int derivOrder) const {
SimTK_ERRCHK2(0 <= derivOrder && derivOrder < getNumCacheEntries(),
"Measure_<T>::Implementation::updCacheEntry()",
"Derivative order %d is out of range; only %d cache entries"
" were allocated.", derivOrder, getNumCacheEntries());
return Value<T>::updDowncast(
this->getSubsystem().updCacheEntry(s, derivIx[derivOrder]));
}
/** Determine whether a particular one of this %Measure's cache entries has
already been realized since the given state was modified. **/
bool isCacheValueRealized(const State& s, int derivOrder) const {
SimTK_ERRCHK2(0 <= derivOrder && derivOrder < getNumCacheEntries(),
"Measure_<T>::Implementation::isCacheValueRealized()",
"Derivative order %d is out of range; only %d cache entries"
" were allocated.", derivOrder, getNumCacheEntries());
return this->getSubsystem().isCacheValueRealized(s, derivIx[derivOrder]);
}
/** Mark one of this %Measure's cache entries up to date; call this after
you have calculated a value or derivative and stored it in the
corresponding cache entry. **/
void markCacheValueRealized(const State& s, int derivOrder) const {
SimTK_ERRCHK2(0 <= derivOrder && derivOrder < getNumCacheEntries(),
"Measure_<T>::Implementation::markCacheValueRealized()",
"Derivative order %d is out of range; only %d cache entries"
" were allocated.", derivOrder, getNumCacheEntries());
this->getSubsystem().markCacheValueRealized(s, derivIx[derivOrder]);
}
/** Invalidate one of this %Measure's cache entries. This is not normally
necessary since the cache entries will be invalidated automatically when
state variables they depend on change. However, this can be useful in
some cases, particularly during debugging and testing. **/
void markCacheValueNotRealized(const State& s, int derivOrder) const {
SimTK_ERRCHK2(0 <= derivOrder && derivOrder < getNumCacheEntries(),
"Measure_<T>::Implementation::markCacheValueNotRealized()",
"Derivative order %d is out of range; only %d cache entries"
" were allocated.", derivOrder, getNumCacheEntries());
this->getSubsystem().markCacheValueNotRealized(s, derivIx[derivOrder]);
}
// VIRTUALS //
/** Concrete measures can override this to allocate Topology-stage
resources. **/
virtual void realizeMeasureTopologyVirtual(State&) const {}
/** Concrete measures must override this if the state cache is used for
precalculated values or derivatives. **/
virtual void
calcCachedValueVirtual(const State&, int derivOrder, T& value) const
{ SimTK_ERRCHK1_ALWAYS(!"implemented",
"Measure_<T>::Implementation::calcCachedValueVirtual()",
"This method should have been overridden by the derived"
" Measure but was not. It is needed to calculate the"
" cached value for derivOrder=%d.", derivOrder); }
/** This is only called when derivOrder >= the number of cache
entries we have, but still <= the number of derivatives the
%Measure says it can deliver. You don't need to override this if that
condition can't occur. This is commonly used for functions whose derivatives
above a certain order are zero. **/
virtual const T&
getUncachedValueVirtual(const State&, int derivOrder) const
{ SimTK_ERRCHK1_ALWAYS(!"implemented",
"Measure_<T>::Implementation::getUncachedValueVirtual()",
"This method should have been overridden by the derived"
" Measure but was not. It is needed to return the uncached"
" value at derivOrder=%d.", derivOrder);
return *reinterpret_cast<T*>(0);
}
/** Return a reference to a zero of the same type and size as this
%Measure's value. **/
const T& getValueZero() const {return zeroValue;}
private:
// Satisfy the realizeTopology() pure virtual here now that we know the
// data type T. Allocate lazy- or auto-validated- cache entries depending
// on the setting of presumeValidAtDependsOnStage.
void realizeTopology(State& s) const override final {
// Allocate cache entries. Initialize the value cache entry to
// the given defaultValue; all the derivative cache entries should be
// initialized to a NaN of the same size.
if (getNumCacheEntries()) {
derivIx[0] = presumeValidAtDependsOnStage
? this->getSubsystem().allocateCacheEntry
(s, getDependsOnStage(0), new Value<T>(defaultValue))
: this->getSubsystem().allocateLazyCacheEntry
(s, getDependsOnStage(0), new Value<T>(defaultValue));
if (getNumCacheEntries() > 1) {
T nanValue; Measure_Num<T>::makeNaNLike(defaultValue, nanValue);
for (int i=1; i < getNumCacheEntries(); ++i) {
derivIx[i] = presumeValidAtDependsOnStage
? this->getSubsystem().allocateCacheEntry
(s, getDependsOnStage(i), new Value<T>(nanValue))
: this->getSubsystem().allocateLazyCacheEntry
(s, getDependsOnStage(i), new Value<T>(nanValue));
}
}
}
// Call the concrete class virtual if any.
realizeMeasureTopologyVirtual(s);
}
//------------------------------------------------------------------------------
private:
// TOPOLOGY STATE
bool presumeValidAtDependsOnStage;
T defaultValue;
T zeroValue;
// TOPOLOGY CACHE
mutable Array_<CacheEntryIndex> derivIx;
};
//==============================================================================
// CONSTANT :: IMPLEMENTATION
//==============================================================================
template <class T>
class Measure_<T>::Constant::Implementation
: public Measure_<T>::Implementation
{
public:
// We don't want the base class to allocate *any* cache entries.
Implementation() : Measure_<T>::Implementation(0) {}
explicit Implementation(const T& value)
: Measure_<T>::Implementation(value,0) {}
/** Changing the value of a %Constant measure is a topological change;
if this is a Vector measure you can change the size here too. **/
void setValue(const T& v) {this->setDefaultValue(v);}
// Implementations of virtual methods.
// Measure_<T> virtuals:
// No cached values.
const T& getUncachedValueVirtual(const State&, int derivOrder) const
override
{ return derivOrder>0 ? this->getValueZero() : this->getDefaultValue(); }
// AbstractMeasure virtuals:
Implementation* cloneVirtual() const override
{ return new Implementation(*this); }
Stage getDependsOnStageVirtual(int derivOrder) const override
{ return derivOrder>0 ? Stage::Empty : Stage::Topology; }
int getNumTimeDerivativesVirtual() const override
{ return std::numeric_limits<int>::max(); }
};
//==============================================================================
// MEASURE ZERO and ONE
//==============================================================================
// These had to wait for Constant::Implementation to be declared.
template <class T> inline
Measure_<T>::Zero::Zero() : Constant(T(0)) {}
template <class T> inline
Measure_<T>::Zero::Zero(Subsystem& sub) : Constant(sub, T(0)) {}
inline Measure_< Vector >::Zero::Zero(int size)
: Constant(Vector(size, Real(0))) {}
inline Measure_< Vector >::Zero::Zero(Subsystem& sub, int size)
: Constant(sub, Vector(size, Real(0))) {}
template <class T> inline
Measure_<T>::One::One() : Constant(T(1)) {}
template <class T> inline
Measure_<T>::One::One(Subsystem& sub) : Constant(sub, T(1)) {}
inline Measure_< Vector >::One::One(int size)
: Constant(Vector(size, Real(1))) {}
inline Measure_< Vector >::One::One(Subsystem& sub, int size)
: Constant(sub, Vector(size, Real(1))) {}
//==============================================================================
// TIME :: IMPLEMENTATION
//==============================================================================
template <class T>
class Measure_<T>::Time::Implementation {};
template <>
class Measure_<Real>::Time::Implementation
: public Measure_<Real>::Implementation
{
public:
// We don't want the base class to allocate *any* cache entries.
Implementation() : Measure_<Real>::Implementation(0) {}
// Implementations of virtual methods.
// Measure_<Real> virtuals:
// No cached values.
const Real& getUncachedValueVirtual(const State& s, int derivOrder) const
override
{ return derivOrder==0 ? s.getTime()
: (derivOrder==1 ? SimTK::One
: SimTK::Zero); }
// AbstractMeasure virtuals:
Implementation* cloneVirtual() const override
{ return new Implementation(*this); }
Stage getDependsOnStageVirtual(int derivOrder) const override
{ return derivOrder>0 ? Stage::Empty : Stage::Time; }
// Value is t, 1st derivative is 1, the rest are 0.
int getNumTimeDerivativesVirtual() const override
{ return std::numeric_limits<int>::max(); }
};
//==============================================================================
// VARIABLE :: IMPLEMENTATION
//==============================================================================
template <class T>
class Measure_<T>::Variable::Implementation
: public Measure_<T>::Implementation
{
public:
// We don't want the base class to allocate *any* cache entries;
// we'll use the variable as its own value and zeroes for all
// the derivatives.
Implementation()
: Measure_<T>::Implementation(0),
invalidatedStage(Stage::Empty) {}
Implementation(Stage invalidated, const T& defaultValue)
: Measure_<T>::Implementation(defaultValue, 0),
invalidatedStage(invalidated) {}
// Copy constructor should not copy the variable.
Implementation(const Implementation& source)
: Measure_<T>::Implementation(source.getDefaultValue(), 0),
invalidatedStage(source.invalidatedStage) {}
void setInvalidatedStage(Stage invalidates) {
invalidatedStage = invalidates;
this->invalidateTopologyCache();
}
Stage getInvalidatedStage() const {return invalidatedStage;}
/** Change the value of this %Measure in the given \a state. Invalidates
cache entries in that \a state for any stage at or above the "invalidates"
stage that was set when this %Measure was constructed. **/
void setValue(State& state, const T& value) const
{ updVarValue(state) = value; }
// Implementations of virtual methods.
Implementation* cloneVirtual() const override
{ return new Implementation(*this); }
int getNumTimeDerivativesVirtual() const override
{ return std::numeric_limits<int>::max(); }
// Discrete variable is available after Model stage; but all its
// derivatives are zero so are always available.
Stage getDependsOnStageVirtual(int derivOrder) const override
{ return derivOrder>0 ? Stage::Empty : Stage::Model;}
const T& getUncachedValueVirtual(const State& s, int derivOrder) const
override
{ return derivOrder>0 ? this->getValueZero() : getVarValue(s); }
// No cached values.
void realizeMeasureTopologyVirtual(State& s) const override {
discreteVarIndex = this->getSubsystem().allocateDiscreteVariable
(s, invalidatedStage, new Value<T>(this->getDefaultValue()));
}
private:
const T& getVarValue(const State& s) const {
assert(discreteVarIndex.isValid());
return Value<T>::downcast(
this->getSubsystem().getDiscreteVariable(s, discreteVarIndex));
}
T& updVarValue(State& s) const {
assert(discreteVarIndex.isValid());
return Value<T>::downcast(
this->getSubsystem().updDiscreteVariable(s, discreteVarIndex));
}
// TOPOLOGY STATE
Stage invalidatedStage; // TODO this shouldn't be needed
// TOPOLOGY CACHE
mutable DiscreteVariableIndex discreteVarIndex;
};
//==============================================================================
// RESULT :: IMPLEMENTATION
//==============================================================================
template <class T>
class Measure_<T>::Result::Implementation
: public Measure_<T>::Implementation
{
public:
// We want the base class to allocate a single cache entry of type T.
Implementation()
: Measure_<T>::Implementation(1),
dependsOnStage(Stage::Topology), invalidatedStage(Stage::Infinity) {}
Implementation(Stage dependsOn, Stage invalidated)
: Measure_<T>::Implementation(1),
dependsOnStage(dependsOn==Stage::Empty ? Stage::Topology : dependsOn),
invalidatedStage(invalidated)
{ SimTK_ERRCHK2_ALWAYS(invalidated > dependsOn,"Measure::Result::ctor()",
"Got invalidated stage %s and dependsOn stage %s which is illegal "
"because the invalidated stage must be later than dependsOn.",
invalidated.getName().c_str(), dependsOn.getName().c_str());
}
// Copy constructor will not copy the cache entry index.
Implementation(const Implementation& source)
: Measure_<T>::Implementation(source),
dependsOnStage(source.dependsOnStage),
invalidatedStage(source.invalidatedStage) {}
void setDependsOnStage(Stage dependsOn) {
if (dependsOn == Stage::Empty) dependsOn = Stage::Topology;
SimTK_ERRCHK2_ALWAYS(dependsOn < getInvalidatedStage(),
"Measure::Result::setDependsOnStage()",
"The provided dependsOn stage %s is illegal because it is not "
"less than the current invalidated stage %s. Change the "
"invalidated stage first with setInvalidatedStage().",
dependsOn.getName().c_str(),
getInvalidatedStage().getName().c_str());
dependsOnStage = dependsOn;
this->invalidateTopologyCache();
}
void setInvalidatedStage(Stage invalidated) {
SimTK_ERRCHK2_ALWAYS(invalidated > getDependsOnStage(),
"Measure::Result::setInvalidatedStage()",
"The provided invalidated stage %s is illegal because it is not "
"greater than the current dependsOn stage %s. Change the "
"dependsOn stage first with setDependsOnStage().",
invalidated.getName().c_str(),
getDependsOnStage().getName().c_str());
invalidatedStage = invalidated;
this->invalidateTopologyCache();
}
Stage getDependsOnStage() const {return dependsOnStage;}
Stage getInvalidatedStage() const {return invalidatedStage;}
void markAsValid(const State& state) const
{ const Stage subsystemStage = this->getSubsystem().getStage(state);
SimTK_ERRCHK3_ALWAYS(subsystemStage >= getDependsOnStage().prev(),
"Measure::Result::markAsValid()",
"This Result Measure cannot be marked valid in a State where this "
"measure's Subsystem has been realized only to stage %s, because "
"its value was declared to depend on stage %s. To mark it valid, "
"we require that the State have been realized at least to the "
"previous stage (%s in this case); that is, you must at least be "
"*working on* the dependsOn stage in order to claim this result is "
"available.",
subsystemStage.getName().c_str(),
getDependsOnStage().getName().c_str(),
getDependsOnStage().prev().getName().c_str());
this->markCacheValueRealized(state, 0); }
bool isValid(const State& state) const
{ return this->isCacheValueRealized(state, 0); }
void markAsNotValid(const State& state) const
{ this->markCacheValueNotRealized(state, 0);
state.invalidateAllCacheAtOrAbove(invalidatedStage); }
T& updValue(const State& state) const
{ markAsNotValid(state); return this->updCacheEntry(state, 0); }
// Implementations of virtual methods.
Implementation* cloneVirtual() const override
{ return new Implementation(*this); }
int getNumTimeDerivativesVirtual() const override {return 0;}
/** Cache value is available after its "depends on" stage has been
realized; but all its derivatives are zero so are always available. **/
Stage getDependsOnStageVirtual(int derivOrder) const override
{ return derivOrder>0 ? Stage::Empty : dependsOnStage;}
void calcCachedValueVirtual(const State&, int derivOrder, T& value) const
override
{ SimTK_ERRCHK_ALWAYS(!"calcCachedValueVirtual() implemented",
"Measure_<T>::Result::getValue()",
"Measure_<T>::Result::getValue() was called when the value was not "
"yet valid. For most Measure types, this would have initiated "
"computation of the value, but Result measures must have their values "
"calculated and set externally, and then marked valid."); }
private:
// TOPOLOGY STATE
Stage dependsOnStage;
Stage invalidatedStage;
};
//==============================================================================
// SINUSOID :: IMPLEMENTATION
//==============================================================================
template <class T>
class Measure_<T>::Sinusoid::Implementation
: public Measure_<T>::Implementation
{
static const int NumDerivs = 3;
public:
Implementation()
: Measure_<T>::Implementation(NumDerivs+1),
a(CNT<T>::getNaN()), w(CNT<T>::getNaN()), p(CNT<T>::getNaN()) {}
Implementation(const T& amplitude,
const T& frequency,
const T& phase=T(0))
: Measure_<T>::Implementation(NumDerivs+1),
a(amplitude), w(frequency), p(phase) {}
// Default copy constructor is fine.
// Implementations of virtual methods.
Implementation* cloneVirtual() const override
{ return new Implementation(*this); }
int getNumTimeDerivativesVirtual() const override {return NumDerivs;}
Stage getDependsOnStageVirtual(int order) const override
{ return Stage::Time; }
void calcCachedValueVirtual(const State& s, int derivOrder, T& value) const
override
{
// We need to allow the compiler to select std::sin or SimTK::sin
// based on the argument type.
using std::sin; using std::cos;
assert(NumDerivs == 3);
const Real t = s.getTime();
const T arg = w*t + p;
switch (derivOrder) {
case 0: value = a*sin(arg); break;
case 1: value = w*a*cos(arg); break;
case 2: value = -w*w*a*sin(arg); break;
case 3: value = -w*w*w*a*cos(arg); break;
default: SimTK_ASSERT1_ALWAYS(!"out of range",
"Measure::Sinusoid::Implementation::calcCachedValueVirtual():"
" derivOrder %d is out of range 0-3.", derivOrder);
}
}
// There are no uncached values.
private:
// TOPOLOGY STATE
T a, w, p;
// TOPOLOGY CACHE
// nothing
};
//==============================================================================
// PLUS :: IMPLEMENTATION
//==============================================================================
template <class T>
class Measure_<T>::Plus::Implementation : public Measure_<T>::Implementation {
public:
// TODO: Currently allocates just one cache entry.
// left and right will be empty handles.
Implementation() {}
Implementation(const Measure_<T>& left,
const Measure_<T>& right)
: left(left), right(right) {}
// Default copy constructor gives us a new Implementation object,
// but with references to the *same* operand measures.
// Implementations of virtual methods.
// This uses the default copy constructor.
Implementation* cloneVirtual() const override
{ return new Implementation(*this); }
// TODO: Let this be settable up to the min number of derivatives
// provided by the arguments.
int getNumTimeDerivativesVirtual() const override {return 0;}
//{ return std::min(left.getNumTimeDerivatives(),
// right.getNumTimeDerivatives()); }
Stage getDependsOnStageVirtual(int order) const override
{ return Stage(std::max(left.getDependsOnStage(order),
right.getDependsOnStage(order))); }
void calcCachedValueVirtual(const State& s, int derivOrder, T& value) const
override
{
value = left.getValue(s,derivOrder) + right.getValue(s,derivOrder);
}
// There are no uncached values.
private:
// TOPOLOGY STATE
Measure_<T> left;
Measure_<T> right;
// TOPOLOGY CACHE
// nothing
};
//==============================================================================
// MINUS :: IMPLEMENTATION
//==============================================================================
template <class T>
class Measure_<T>::Minus::Implementation : public Measure_<T>::Implementation {
public:
// TODO: Currently allocates just one cache entry.
// left and right will be empty handles.
Implementation() {}
Implementation(const Measure_<T>& left,
const Measure_<T>& right)
: left(left), right(right) {}
// Default copy constructor gives us a new Implementation object,
// but with references to the *same* operand measures.
// Implementations of virtual methods.
// This uses the default copy constructor.
Implementation* cloneVirtual() const override
{ return new Implementation(*this); }
// TODO: Let this be settable up to the min number of derivatives
// provided by the arguments.
int getNumTimeDerivativesVirtual() const override {return 0;}
//{ return std::min(left.getNumTimeDerivatives(),
// right.getNumTimeDerivatives()); }
Stage getDependsOnStageVirtual(int order) const override
{ return Stage(std::max(left.getDependsOnStage(order),
right.getDependsOnStage(order))); }
void calcCachedValueVirtual(const State& s, int derivOrder, T& value) const
override
{
value = left.getValue(s,derivOrder) - right.getValue(s,derivOrder);
}
// There are no uncached values.
private:
// TOPOLOGY STATE
Measure_<T> left;
Measure_<T> right;
// TOPOLOGY CACHE
// nothing
};
//==============================================================================
// SCALE :: IMPLEMENTATION
//==============================================================================
template <class T>
class Measure_<T>::Scale::Implementation
: public Measure_<T>::Implementation
{
public:
// TODO: Currently allocates just one cache entry.
// scale will be uninitialized, operand will be empty handle.
Implementation() : factor(NaN) {}
Implementation(Real factor, const Measure_<T>& operand)
: factor(factor), operand(operand) {}
// Default copy constructor gives us a new Implementation object,
// but with references to the *same* operand measure.
void setScaleFactor(Real sf) {
factor = sf;
this->invalidateTopologyCache();
}
const Measure_<T>& getOperandMeasure() const
{
return operand;
}
// Implementations of virtual methods.
// This uses the default copy constructor.
Implementation* cloneVirtual() const override
{ return new Implementation(*this); }
// TODO: Let this be settable up to the min number of derivatives
// provided by the arguments.
int getNumTimeDerivativesVirtual() const override {return 0;}
//{ return std::min(left.getNumTimeDerivatives(),
// right.getNumTimeDerivatives()); }
Stage getDependsOnStageVirtual(int order) const override
{ return operand.getDependsOnStage(order); }
void calcCachedValueVirtual(const State& s, int derivOrder, T& value) const
override
{
value = factor * operand.getValue(s,derivOrder);
}
// There are no uncached values.
private:
// TOPOLOGY STATE
Real factor;
Measure_<T> operand;
// TOPOLOGY CACHE
// nothing
};
//==============================================================================
// INTEGRATE :: IMPLEMENTATION
//==============================================================================
/** The implementation for %Integrate measures allocates a continuous state
variable or variables from the State's z pool and generates zdot values to be
integrated into those z variables. The z's are then copied into a type T,
Time-stage cache entry so that we can return the value as a type T reference.
Derivative requests are passed through to the integrand so only one cache
entry is required here. **/
template <class T>
class Measure_<T>::Integrate::Implementation
: public Measure_<T>::Implementation {
public:
/** The derivative and initialConditions Measures will be empty handles if
this is default constructed. **/
Implementation() : Measure_<T>::Implementation(1) {}
/** Here we're shallow-copying the Measure handles so we'll be referring to
the original Measures. **/
Implementation(const Measure_<T>& deriv, const Measure_<T>& ic,
const T& defaultValue)
: Measure_<T>::Implementation(defaultValue, 1),
derivMeasure(deriv), icMeasure(ic) {}
/** Copy constructor shallow-copies the referenced measures, but we don't
want to share our state variables. **/
Implementation(const Implementation& source)
: Measure_<T>::Implementation(source.getDefaultValue(), 1),
derivMeasure(source.derivMeasure), icMeasure(source.icMeasure) {}
/** Set the value of the state variables(s) that hold the integral. This
cannot be used to change the size if the type T is a Vector; the supplied
\a value must be the same length as the default value of this %Measure. **/
void setValue(State& s, const T& value) const
{ assert(zIndex >= 0);
for (int i=0; i < this->size(); ++i)
this->getSubsystem().updZ(s)[zIndex+i] =
Measure_Num<T>::get(value, i); }
const Measure_<T>& getDerivativeMeasure() const
{ SimTK_ERRCHK(!derivMeasure.isEmptyHandle(),
"Measure_<T>::Integrate::getDerivativeMeasure()",
"No derivative measure is available for this integrated measure.");
return derivMeasure; }
const Measure_<T>& getInitialConditionMeasure() const
{ SimTK_ERRCHK(!icMeasure.isEmptyHandle(),
"Measure_<T>::Integrate::getInitialConditionMeasure()",
"No initial condition measure is available for this "
"integrated measure.");
return icMeasure; }
void setDerivativeMeasure(const Measure_<T>& d)
{ derivMeasure = d; this->invalidateTopologyCache(); }
void setInitialConditionMeasure(const Measure_<T>& ic)
{ icMeasure = ic; this->invalidateTopologyCache(); }
// Implementations of virtuals.
// This uses the copy constructor defined above.
Implementation* cloneVirtual() const override
{ return new Implementation(*this); }
/** This measure has one more time derivative than the integrand. **/
int getNumTimeDerivativesVirtual() const override
{ int integralDerivs = getDerivativeMeasure().getNumTimeDerivatives();
// Careful - can't add 1 to max int and stay an int.
if (integralDerivs < std::numeric_limits<int>::max())
++integralDerivs;
return integralDerivs; }
void calcCachedValueVirtual(const State& s, int derivOrder, T& value) const
override
{ assert(derivOrder == 0); // only one cache entry
assert(Measure_Num<T>::size(value) == this->size());
assert(zIndex.isValid());
const Vector& allZ = this->getSubsystem().getZ(s);
for (int i=0; i < this->size(); ++i)
Measure_Num<T>::upd(value,i) = allZ[zIndex+i];
}
const T& getUncachedValueVirtual(const State& s, int derivOrder) const
override
{ assert(derivOrder > 0); // 0th entry is cached
return getDerivativeMeasure().getValue(s, derivOrder-1);
}
Stage getDependsOnStageVirtual(int derivOrder) const override
{ return derivOrder>0
? getDerivativeMeasure().getDependsOnStage(derivOrder-1)
: Stage::Time; }
/** Initialize the state to the current value of the initial condition
measure, if there is one, otherwise to the default value. **/
void initializeVirtual(State& s) const override {
assert(zIndex.isValid());
Vector& allZ = this->getSubsystem().updZ(s);
if (!icMeasure.isEmptyHandle()) {
this->getSubsystem().getSystem()
.realize(s, icMeasure.getDependsOnStage());
const T& ic = icMeasure.getValue(s);
for (int i=0; i < this->size(); ++i)
allZ[zIndex+i] = Measure_Num<T>::get(ic,i);
} else {
for (int i=0; i < this->size(); ++i)
allZ[zIndex+i] = Measure_Num<T>::get(this->getDefaultValue(),i);
}
}
/** Allocate one Real continuous state variable z per element of this
%Measure's data type T, using the default value to determine
how many are needed (if that's not part of the type T), and initialize them
to the corresponding element from the default value. **/
void realizeMeasureTopologyVirtual(State& s) const override {
Vector init(this->size());
for (int i=0; i < this->size(); ++i)
init[i] = Measure_Num<T>::get(this->getDefaultValue(),i);
zIndex = this->getSubsystem().allocateZ(s, init);
}
/** Set the zdots to the integrand (derivative measure) value. If no
integrand was provided it is treated as though it were zero. **/
void realizeMeasureAccelerationVirtual(const State& s) const override {
assert(zIndex.isValid());
Vector& allZDot = this->getSubsystem().updZDot(s);
if (!derivMeasure.isEmptyHandle()) {
const T& deriv = derivMeasure.getValue(s);
for (int i=0; i < this->size(); ++i)
allZDot[zIndex+i] = Measure_Num<T>::get(deriv,i);
} else {
allZDot(zIndex,this->size()) = 0; // derivative is zero
}
}
private:
// TOPOLOGY STATE
Measure_<T> derivMeasure; // just handles
Measure_<T> icMeasure;
// TOPOLOGY CACHE
mutable ZIndex zIndex; // This is the first index if more than one z.
};
//==============================================================================
// DIFFERENTIATE :: IMPLEMENTATION
//==============================================================================
/** @cond **/ // Hide from Doxygen.
// This helper class is the contents of the discrete state variable and
// corresponding cache entry maintained by this measure. The variable is
// auto-update, meaning the value of the cache entry replaces the state
// variable at the start of each step.
// TODO: This was a local class in Measure_<T>::Differentiate::Implementation
// but VC++ 8 (2005) failed to properly instantiate the templatized operator<<()
// in that case; doing it this way is a workaround.
template <class T>
class Measure_Differentiate_Result {
public:
Measure_Differentiate_Result() : derivIsGood(false) {}
T operand; // previous value of operand
T operandDot; // previous value of derivative
bool derivIsGood; // do we think the deriv is a good one?
};
/** @endcond **/
template <class T>
class Measure_<T>::Differentiate::Implementation
: public Measure_<T>::Implementation
{
typedef Measure_Differentiate_Result<T> Result;
public:
// Don't allocate any cache entries in the base class.
Implementation() : Measure_<T>::Implementation(0) {}
Implementation(const Measure_<T>& operand)
: Measure_<T>::Implementation(0),
operand(operand), forceUseApprox(false), isApproxInUse(false) {}
// Default copy constructor gives us a new Implementation object,
// but with reference to the *same* operand measure.
void setForceUseApproximation(bool mustApproximate) {
forceUseApprox = mustApproximate;
this->invalidateTopologyCache();
}
void setOperandMeasure(const Measure_<T>& operand) {
this->operand = operand;
this->invalidateTopologyCache();
}
bool getForceUseApproximation() const {return forceUseApprox;}
bool isUsingApproximation() const {return isApproxInUse;}
const Measure_<T>& getOperandMeasure() const {return operand;}
// Implementations of virtual methods.
// This uses the default copy constructor.
Implementation* cloneVirtual() const override
{ return new Implementation(*this); }
// This has one fewer than the operand.
int getNumTimeDerivativesVirtual() const override
{ if (!isApproxInUse) return operand.getNumTimeDerivatives()-1;
else return 0; }
Stage getDependsOnStageVirtual(int order) const override
{ if (!isApproxInUse) return operand.getDependsOnStage(order+1);
else return operand.getDependsOnStage(order); }
// We're not using the Measure_<T> base class cache services, but
// we do have one of our own. It looks uncached from the base class
// point of view which is why we're implementing it here.
const T& getUncachedValueVirtual(const State& s, int derivOrder) const
override
{ if (!isApproxInUse)
return operand.getValue(s, derivOrder+1);
ensureDerivativeIsRealized(s);
const Subsystem& subsys = this->getSubsystem();
const Result& result = Value<Result>::downcast
(subsys.getDiscreteVarUpdateValue(s,resultIx));
return result.operandDot; // has a value but might not be a good one
}
void initializeVirtual(State& s) const override {
if (!isApproxInUse) return;
assert(resultIx.isValid());
const Subsystem& subsys = this->getSubsystem();
Result& result = Value<Result>::updDowncast
(subsys.updDiscreteVariable(s,resultIx));
this->getSubsystem().getSystem().realize(s,operand.getDependsOnStage());
result.operand = operand.getValue(s);
result.operandDot = this->getValueZero();
result.derivIsGood = false;
}
void realizeMeasureTopologyVirtual(State& s) const override {
isApproxInUse = (forceUseApprox || operand.getNumTimeDerivatives()==0);
if (!isApproxInUse)
return;
resultIx = this->getSubsystem()
.allocateAutoUpdateDiscreteVariable(s, operand.getDependsOnStage(0),
new Value<Result>(), operand.getDependsOnStage(0));
}
/** In case no one has updated the value of this measure yet, we have
to make sure it gets updated before the integration moves ahead. **/
void realizeMeasureAccelerationVirtual(const State& s) const override {
ensureDerivativeIsRealized(s);
}
void ensureDerivativeIsRealized(const State& s) const {
assert(resultIx.isValid());
const Subsystem& subsys = this->getSubsystem();
if (subsys.isDiscreteVarUpdateValueRealized(s,resultIx))
return;
const Real t0 = subsys.getDiscreteVarLastUpdateTime(s,resultIx);
const Result& prevResult = Value<Result>::downcast
(subsys.getDiscreteVariable(s,resultIx));
const T& f0 = prevResult.operand;
const T& fdot0 = prevResult.operandDot; // may be invalid
const bool good0 = prevResult.derivIsGood;
const Real t = s.getTime();
Result& result = Value<Result>::updDowncast
(subsys.updDiscreteVarUpdateValue(s,resultIx));
T& f = result.operand; // renaming
T& fdot = result.operandDot;
bool& good = result.derivIsGood;
f = operand.getValue(s);
good = false;
if (!isFinite(t0))
fdot = this->getValueZero();
else if (t == t0) {
fdot = fdot0;
good = good0;
} else {
fdot = (f-f0)/(t-t0); // 1st order
if (good0)
fdot = Real(2)*fdot - fdot0; // now 2nd order
good = true; // either 1st or 2nd order estimate
}
subsys.markDiscreteVarUpdateValueRealized(s,resultIx);
}
private:
// TOPOLOGY STATE
Measure_<T> operand;
bool forceUseApprox;
// TOPOLOGY CACHE
mutable bool isApproxInUse;
mutable DiscreteVariableIndex resultIx; // auto-update
};
//==============================================================================
// EXTREME :: IMPLEMENTATION
//==============================================================================
template <class T>
class Measure_<T>::Extreme::Implementation : public Measure_<T>::Implementation
{
typedef typename Measure_<T>::Extreme Extreme;
typedef typename Extreme::Operation Operation;
public:
/** Default constructor leaves the operand measure unspecified; no base
class cache entries are allocated. **/
Implementation()
: Measure_<T>::Implementation(0), operation(Extreme::MaxAbs) {}
/** Construct a measure that returns the extreme value taken on by the
operand measure during a time stepping study. **/
Implementation(const Measure_<T>& operand, Operation op)
: Measure_<T>::Implementation(0), operand(operand), operation(op) {}
// Default copy constructor gives us a new Implementation object,
// but with reference to the *same* operand measure.
/** Set the operand measure for this %Extreme measure; this is a Topology
stage change so you'll have to call realizeTopology() again if you call
this. **/
void setOperandMeasure(const Measure_<T>& operand) {
this->operand = operand;
this->invalidateTopologyCache();
}
/** Set the particular operation to be performed by this %Extreme measure;
this is a Topology stage change so you'll have to call realizeTopology()
again if you call this. **/
void setOperation(Operation op) {
this->operation = op;
this->invalidateTopologyCache();
}
/** Return a reference to the operand measure for this %Extreme measure. **/
const Measure_<T>& getOperandMeasure() const {return operand;}
/** Return the particular operation being performed by this %Extreme
measure. **/
Operation getOperation() const {return operation;}
/** Set the current extreme value stored in this %Extreme measure's state
variable. **/
void setValue(State& s, const T& value) const {
assert(extremeIx.isValid());
const Subsystem& subsys = this->getSubsystem();
T& prevMin = Value<T>::updDowncast
(subsys.updDiscreteVariable(s,extremeIx));
prevMin = value;
}
/** Return the time at which the extreme was last updated. This will be
the current time if the operand is currently at its most extreme value,
otherwise it will be sometime in the past. **/
Real getTimeOfExtremeValue(const State& s) const {
const Subsystem& subsys = this->getSubsystem();
const bool hasNewExtreme = ensureExtremeHasBeenUpdated(s);
Real tUpdate;
if (hasNewExtreme)
tUpdate = s.getTime(); // i.e., now
else
tUpdate = subsys.getDiscreteVarLastUpdateTime(s,extremeIx);
return tUpdate;
}
// Implementations of virtual methods.
// This uses the default copy constructor.
Implementation* cloneVirtual() const override
{ return new Implementation(*this); }
/** Extreme(f(t)) has the same number of derivatives as f except that
they are all zero unless f(t) is a new extreme. **/
int getNumTimeDerivativesVirtual() const override
{ return operand.getNumTimeDerivatives(); }
/** The depends-on stage for this measure is the same as for its
operand. **/
Stage getDependsOnStageVirtual(int order) const override
{ return operand.getDependsOnStage(order); }
/** We're not using the Measure_<T> base class cache services, but
we do have one of our own. It looks uncached from the base class
point of view which is why we're implementing it here. **/
const T& getUncachedValueVirtual(const State& s, int derivOrder) const
override
{
const Subsystem& subsys = this->getSubsystem();
const bool hasNewExtreme = ensureExtremeHasBeenUpdated(s);
if (derivOrder > 0) {
// TODO: should be handled elementwise and zero unless the
// derivative is acting in the direction that changes the
// extreme.
return hasNewExtreme ? operand.getValue(s, derivOrder)
: this->getValueZero();
}
if (hasNewExtreme) {
const T& newExt = Value<T>::downcast
(subsys.getDiscreteVarUpdateValue(s,extremeIx));
return newExt;
} else {
const T& currentExt = Value<T>::downcast
(subsys.getDiscreteVariable(s,extremeIx));
return currentExt;
}
}
/** At start of a time stepping study, this should be called to set the
current extreme value to the current value of the operand. **/
void initializeVirtual(State& s) const override {
this->getSubsystem().getSystem().realize(s,operand.getDependsOnStage());
setValue(s, operand.getValue(s));
}
/** Allocate the auto-updated state variable that holds the extreme seen
so far. We'll assume that changes to this variable invalidate Dynamics
(force) stage so that any forces that depend on it will be recomputed if
it changes. Also allocate an auxiliary boolean variable that is used to hold
whether the current value is a new extreme; that is private to the
implementation and not user-accessible since you can instead check the
time of last update. **/
void realizeMeasureTopologyVirtual(State& s) const override {
// TODO: this should be NaN once initialization is working properly.
T initVal = this->getDefaultValue();
switch(operation) {
case Minimum: initVal = Infinity; break;
case Maximum: initVal = -Infinity; break;
case MinAbs: initVal = Infinity; break;
case MaxAbs: initVal = 0; break;
};
extremeIx = this->getSubsystem()
.allocateAutoUpdateDiscreteVariable(s, Stage::Dynamics,
new Value<T>(initVal), operand.getDependsOnStage(0));
isNewExtremeIx = this->getSubsystem()
.allocateAutoUpdateDiscreteVariable(s, Stage::Dynamics,
new Value<bool>(false), operand.getDependsOnStage(0));
}
/** In case no one has updated the value of this measure yet, we have
to make sure it gets updated before the integration moves ahead. **/
void realizeMeasureAccelerationVirtual(const State& s) const override {
ensureExtremeHasBeenUpdated(s);
}
/** Here we make sure that the cache entry is updated if the current value
of the operand is more extreme than the previous one, and return a bool
indicating whether we have a new extreme. We don't want to create an update
entry unless the extreme value has changed, because we would like the state
variable's last update value to reflect the last actual change. **/
bool ensureExtremeHasBeenUpdated(const State& s) const {
assert(extremeIx.isValid() && isNewExtremeIx.isValid());
const Subsystem& subsys = this->getSubsystem();
// We may have already determined whether we're at a new extreme in
// which case we don't need to do it again.
if (subsys.isDiscreteVarUpdateValueRealized(s, isNewExtremeIx))
return Value<bool>::downcast
(subsys.getDiscreteVarUpdateValue(s,isNewExtremeIx));
// We're going to have to decide if we're at a new extreme, and if
// so record the new extreme value in the auto-update cache entry of
// the extreme value state variable.
// Get the previous extreme value and the current operand value.
const T& prevExtreme = Value<T>::downcast
(subsys.getDiscreteVariable(s,extremeIx));
const T& currentVal = operand.getValue(s);
// Search to see if any element has reached a new extreme.
bool foundNewExt = false;
for (int i=0; i < this->size() && !foundNewExt; ++i)
foundNewExt = isNewExtreme(Measure_Num<T>::get(currentVal,i),
Measure_Num<T>::get(prevExtreme,i));
// Record the result and mark the auto-update cache entry valid
// so we won't have to recalculate. When the integrator advances to the
// next step this cache entry will be swapped with the corresponding
// state and marked invalid so we'll be sure to recalculate each step.
Value<bool>::updDowncast
(subsys.updDiscreteVarUpdateValue(s,isNewExtremeIx)) = foundNewExt;
subsys.markDiscreteVarUpdateValueRealized(s,isNewExtremeIx);
// Don't update the auto-update cache entry if we didn't see a new
// extreme. That way no auto-update will occur and the state variable
// will remain unchanged with the existing update time preserved.
if (!foundNewExt)
return false;
// We have encountered a new extreme. We'll record the new extreme
// in the auto-update cache entry which will be used as the current
// result until the integrator advances to the next step at which time
// this will be swapped with the state variable to serve as the previous
// extreme value until a further extreme is encountered.
T& newExtreme = Value<T>::updDowncast
(subsys.updDiscreteVarUpdateValue(s,extremeIx));
for (int i=0; i < this->size(); ++i)
Measure_Num<T>::upd(newExtreme,i) =
extremeOf(Measure_Num<T>::get(currentVal,i),
Measure_Num<T>::get(prevExtreme,i));
// Marking this valid is what ensures that an auto-update occurs later.
subsys.markDiscreteVarUpdateValueRealized(s,extremeIx);
return true;
}
private:
// Return true if newVal is "more extreme" than oldExtreme, according
// to the operation we're performing.
bool isNewExtreme(const typename Measure_Num<T>::Element& newVal,
const typename Measure_Num<T>::Element& oldExtreme) const
{
switch (operation) {
case Extreme::Maximum: return newVal > oldExtreme;
case Extreme::Minimum: return newVal < oldExtreme;
case Extreme::MaxAbs: return std::abs(newVal) > std::abs(oldExtreme);
case Extreme::MinAbs: return std::abs(newVal) < std::abs(oldExtreme);
};
SimTK_ASSERT1_ALWAYS(!"recognized",
"Measure::Extreme::Implementation::isNewExtreme(): "
"unrecognized operation %d", (int)operation);
return false; /*NOTREACHED*/
}
// Given the value of one element of the operand, and that value's time
// derivative, determine whether the derivative is moving the element
// into the "more extreme" direction, according to the operation.
bool isExtremeDir(const typename Measure_Num<T>::Element& value,
const typename Measure_Num<T>::Element& deriv) const
{
const int sv = sign(value), sd = sign(deriv);
if (sd == 0) return false; // derivative is zero; not changing
switch (operation) {
case Extreme::Maximum: return sd == 1; // getting larger
case Extreme::Minimum: return sd == -1; // getting smaller
case Extreme::MaxAbs: return sv==0 || sd==sv; // abs is growing
case Extreme::MinAbs: return sd == -sv;
};
SimTK_ASSERT1_ALWAYS(!"recognized",
"Measure::Extreme::Implementation::isExtremeDir(): "
"unrecognized operation %d", (int)operation);
return false; /*NOTREACHED*/
}
typename Measure_Num<T>::Element
extremeOf(const typename Measure_Num<T>::Element& newVal,
const typename Measure_Num<T>::Element& oldExtreme) const
{
return isNewExtreme(newVal,oldExtreme) ? newVal : oldExtreme;
}
// TOPOLOGY STATE
Measure_<T> operand;
Operation operation;
// TOPOLOGY CACHE
mutable DiscreteVariableIndex extremeIx; // extreme so far; auto-update
// This auto-update flag records whether the current value is a new
// extreme. We don't really need to save it as a state variable since you
// can figure this out from the timestamp, but we need to to get invalidated
// by the auto-update swap so that we'll figure it out anew each step.
mutable DiscreteVariableIndex isNewExtremeIx;
};
//==============================================================================
// DELAY :: IMPLEMENTATION
//==============================================================================
/** @cond **/ // Hide from Doxygen.
// This helper class is the contents of the discrete state variable and
// corresponding cache entry maintained by this measure. The variable is
// auto-update, meaning the value of the cache entry replaces the state
// variable at the start of each step.
//
// Circular buffers look like this:
//
// oldest=0, n=0
// v
// Empty buffer: | available |
//
// By convention, oldest=0 whenever the buffer is empty.
//
//
// oldest next=(oldest+n)%capacity
// v v
// | available | | | | | | | available |
// ^ n=6 ^
// 0 capacity
// v v
// or | | | | | | available | | | | | | | | n=12
// ^ ^
// next oldest
// = (oldest+n)%capacity
//
// Number of entries = n (called size() below)
// Empty = n==0
// Full = n==capacity()
// Next available = (oldest+n)%capacity()
template <class T>
class Measure_Delay_Buffer {
public:
explicit Measure_Delay_Buffer() {initDataMembers();}
void clear() {initDataMembers();}
int size() const {return m_size;} // # saved entries, *not* size of arrays
int capacity() const {return m_times.size();}
bool empty() const {return size()==0;}
bool full() const {return size()==capacity();}
double getEntryTime(int i) const
{ assert(i < size()); return m_times[getArrayIndex(i)];}
const T& getEntryValue(int i) const
{ assert(i < size()); return m_values[getArrayIndex(i)];}
enum {
InitialAllocation = 8, // smallest allocation
GrowthFactor = 2, // how fast to grow (double)
MaxShrinkProofSize = 16, // won't shrink unless bigger
TooBigFactor = 5 // 5X too much->maybe shrink
};
// Add a new entry to the end of the list, throwing out old entries that
// aren't needed to answer requests at tEarliest or later.
void append(double tEarliest, double tNow, const T& valueNow) {
forgetEntriesMuchOlderThan(tEarliest);
removeEntriesLaterOrEq(tNow);
if (full())
makeMoreRoom();
else if (capacity() > std::max((int)MaxShrinkProofSize,
(int)TooBigFactor * (size()+1)))
makeLessRoom(); // less than 1/TooBigFactor full
const int nextFree = getArrayIndex(m_size++);
m_times[nextFree] = tNow;
m_values[nextFree] = valueNow;
m_maxSize = std::max(m_maxSize, size());
}
// Prepend an older entry to the beginning of the list. No cleanup is done.
void prepend(double tNewOldest, const T& value) {
assert(empty() || tNewOldest < m_times[m_oldest]);
if (full()) makeMoreRoom();
m_oldest = empty() ? 0 : getArrayIndex(-1);
m_times[m_oldest] = tNewOldest;
m_values[m_oldest] = value;
++m_size;
m_maxSize = std::max(m_maxSize, size());
}
// This is a specialized copy assignment for copying an old buffer
// to a new one with updated contents. We are told the earliest time we'll
// be asked about from now on, and won't copy any entries older than those
// needed to answer that earliest request. We won't copy anything at or
// newer than tNow, and finally we'll push (tNow,valueNow) as the newest
// entry.
void copyInAndUpdate(const Measure_Delay_Buffer& oldBuf, double tEarliest,
double tNow, const T& valueNow) {
// clear all current entries (no heap activity)
m_oldest = m_size = 0;
// determine how may old entries we have to keep
int firstNeeded = oldBuf.countNumUnneededOldEntries(tEarliest);
int lastNeeded = oldBuf.findLastEarlier(tNow); // might be -1
int numOldEntriesToKeep = lastNeeded-firstNeeded+1;
int newSize = numOldEntriesToKeep+1; // includes the new one
int newSizeRequest = -1;
if (capacity() < newSize) {
newSizeRequest = std::max((int)InitialAllocation,
(int)GrowthFactor * newSize);
++m_nGrows;
} else if (capacity() > std::max((int)MaxShrinkProofSize,
(int)TooBigFactor * newSize)) {
newSizeRequest = std::max((int)MaxShrinkProofSize,
(int)GrowthFactor * newSize);
++m_nShrinks;
}
// Reallocate space if advisable.
if (newSizeRequest != -1) {
const double dNaN = NTraits<double>::getNaN();
m_values.resize(newSizeRequest);
if (m_values.capacity() > m_values.size())
m_values.resize(m_values.capacity()); // don't waste any
m_times.resize(m_values.size(), dNaN);
}
m_maxCapacity = std::max(m_maxCapacity, capacity());
// Copy the entries we need to keep.
int nxt = 0;
for (int i=firstNeeded; i<=lastNeeded; ++i, ++nxt) {
m_times[nxt] = oldBuf.getEntryTime(i);
m_values[nxt] = oldBuf.getEntryValue(i);
}
// Now add the newest entry and set the size.
m_times[nxt] = tNow;
m_values[nxt] = valueNow;
assert(nxt+1==newSize);
m_size = nxt+1;
m_maxSize = std::max(m_maxSize, size());
}
// Given the current time and value and the earlier time at which the
// value is needed, use the buffer and (if necessary) the current value
// to estimate the delayed value.
T calcValueAtTime(double tDelay, double tNow, const T& valueNow) const;
// Given the current time but *not* the current value of the source measure,
// provide an estimate for the value at tDelay=tNow-delay using only the
// buffer contents and linear interpolation or extrapolation.
void calcValueAtTimeLinearOnly(double tDelay, T& delayedValue) const {
if (empty()) {
// Nothing in the buffer?? Shouldn't happen. Return empty Vector
// or NaN for fixed-size types.
Measure_Num<T>::makeNaNLike(T(), delayedValue);
return;
}
int firstLater = findFirstLaterOrEq(tDelay);
if (firstLater > 0) {
// Normal case: tDelay is between two buffer entries.
int firstEarlier = firstLater-1;
double t0=getEntryTime(firstEarlier), t1=getEntryTime(firstLater);
const T& v0=getEntryValue(firstEarlier);
const T& v1=getEntryValue(firstLater);
Real fraction = Real((tDelay-t0)/(t1-t0));
delayedValue = T(v0 + fraction*(v1-v0));
return;
}
if (firstLater==0) {
// Startup case: tDelay is at or before the oldest buffer entry.
// Assume the value was flat before that.
delayedValue = getEntryValue(firstLater);
return;
}
// tDelay is later than the latest entry in the buffer. We are going
// to have to extrapolate (yuck).
if (size() == 1) {
// Just one entry; we'll have to assume the value is flat.
delayedValue = getEntryValue(0);
return;
}
// Extrapolate using the last two entries.
double t0=getEntryTime(size()-2), t1=getEntryTime(size()-1);
const T& v0=getEntryValue(size()-2);
const T& v1=getEntryValue(size()-1);
Real fraction = Real((tDelay-t0)/(t1-t0)); // > 1
assert(fraction > 1.0);
delayedValue = T(v0 + fraction*(v1-v0)); // Extrapolate.
}
// Return the number of times we had to grow the buffer.
int getNumGrows() const {return m_nGrows;}
// Return the number of times we decided the buffer was so overallocated
// that we had to shrink it.
int getNumShrinks() const {return m_nShrinks;}
// Return the largest number of values we ever had in the buffer.
int getMaxSize() const {return m_maxSize;}
// Return the largest capacity the buffer ever had.
int getMaxCapacity() const {return m_maxCapacity;}
private:
// Return the i'th oldest entry
// (0 -> oldest, size-1 -> newest, size -> first free, -1 -> last free)
int getArrayIndex(int i) const
{ assert(-1<=i && i<=size());
const int rawIndex = m_oldest + i;
if (rawIndex < 0) return rawIndex + capacity();
else return rawIndex % capacity(); }
// Remove all but two entries older than the given time.
void forgetEntriesMuchOlderThan(double tEarliest) {
const int numToRemove = countNumUnneededOldEntries(tEarliest);
if (numToRemove) {
m_oldest = getArrayIndex(numToRemove);
m_size -= numToRemove;
}
}
// Count up how many old entries at the beginning of the buffer are so old
// that they wouldn't be needed to respond to a request at time tEarliest or
// later. We'll keep no more than two entries earlier than tEarliest.
int countNumUnneededOldEntries(double tEarliest) const {
const int firstLater = findFirstLaterOrEq(tEarliest);
return std::max(0, firstLater-2);
}
// Given the time now, delete anything at the end of the queue that is
// at that same time or later.
void removeEntriesLaterOrEq(double t) {
int lastEarlier = findLastEarlier(t);
m_size = lastEarlier+1;
if (m_size==0) m_oldest=0; // restart at beginning of array
}
// Return the entry number (0..size-1) of the first entry whose time
// is >= the given time, or -1 if there is none such.
int findFirstLaterOrEq(double tDelay) const {
for (int i=0; i < size(); ++i)
if (getEntryTime(i) >= tDelay)
return i;
return -1;
}
// Return the entry number(size-1..0) of the last entry whose time
// is < the given time, or -1 if there is none such.
int findLastEarlier(double t) const {
for (int i=size()-1; i>=0; --i)
if (getEntryTime(i) < t)
return i;
return -1;
}
// We don't have enough space. This is either the initial allocation or
// we need to double the current space.
void makeMoreRoom() {
const int newSizeRequest = std::max((int)InitialAllocation,
(int)GrowthFactor * size());
resize(newSizeRequest);
++m_nGrows;
m_maxCapacity = std::max(m_maxCapacity, capacity());
}
// We are wasting a lot of space, reduce the heap allocation to just
// double what we're using now.
void makeLessRoom() {
const int targetMaxSize = std::max((int)MaxShrinkProofSize,
(int)GrowthFactor * size());
if (capacity() > targetMaxSize) {
resize(targetMaxSize);
++m_nShrinks;
}
}
// Reallocate memory to get more space or stop wasting space. The new
// size request must be big enough to hold all the current contents. The
// amount we actually get may be somewhat larger than the request. On
// return, the times and values arrays will have been resized and the
// oldest entry will now be entry 0.
void resize(int newSizeRequest) {
assert(newSizeRequest >= size());
const double dNaN = NTraits<double>::getNaN();
Array_<T,int> newValues(newSizeRequest);
if (newValues.capacity() > newValues.size())
newValues.resize(newValues.capacity()); // don't waste any
Array_<double,int> newTimes(newValues.size(), dNaN);
// Pack existing values into start of new arrays.
for (int i=0; i < size(); ++i) {
const int ix = getArrayIndex(i);
newTimes[i] = m_times[ix];
newValues[i] = m_values[ix];
}
m_times.swap(newTimes); // switch heap space
m_values.swap(newValues);
m_oldest = 0; // starts at the beginning now; size unchanged
}
// Initialize everything to its default-constructed state.
void initDataMembers() {
m_times.clear(); m_values.clear();
m_oldest=m_size=0;
m_nGrows=m_nShrinks=m_maxSize=m_maxCapacity=0;
}
// These are circular buffers of the same size.
Array_<double,int> m_times;
Array_<T,int> m_values;
int m_oldest; // Array index of oldest (time,value)
int m_size; // number of entries in use
// Statistics.
int m_nGrows, m_nShrinks, m_maxSize, m_maxCapacity;
};
/** @endcond **/
template <class T>
class Measure_<T>::Delay::Implementation: public Measure_<T>::Implementation {
typedef Measure_Delay_Buffer<T> Buffer;
public:
// Allocate one cache entry in the base class for the value; we allocate
// a specialized one for the buffer.
Implementation()
: Measure_<T>::Implementation(1), m_delay(NaN),
m_canUseCurrentValue(false), m_useLinearInterpolationOnly(false) {}
Implementation(const Measure_<T>& source, Real delay)
: Measure_<T>::Implementation(1), m_source(source), m_delay(delay),
m_canUseCurrentValue(false), m_useLinearInterpolationOnly(false) {}
// Default copy constructor gives us a new Implementation object,
// but with reference to the *same* source measure.
void setSourceMeasure(const Measure_<T>& source) {
if (!source.isSameMeasure(this->m_source)) {
this->m_source = source;
this->invalidateTopologyCache();
}
}
void setDelay(Real delay) {
if (delay != this->m_delay) {
this->m_delay = delay;
this->invalidateTopologyCache();
}
}
void setUseLinearInterpolationOnly(bool linearOnly) {
if (linearOnly != this->m_useLinearInterpolationOnly) {
this->m_useLinearInterpolationOnly = linearOnly;
this->invalidateTopologyCache();
}
}
void setCanUseCurrentValue(bool canUseCurrentValue) {
if (canUseCurrentValue != this->m_canUseCurrentValue) {
this->m_canUseCurrentValue = canUseCurrentValue;
this->invalidateTopologyCache();
}
}
const Measure_<T>& getSourceMeasure() const {return this->m_source;}
Real getDelay() const {return this->m_delay;}
bool getUseLinearInterpolationOnly() const
{ return this->m_useLinearInterpolationOnly; }
bool getCanUseCurrentValue() const
{ return this->m_canUseCurrentValue; }
// Implementations of virtual methods.
// This uses the default copy constructor.
Implementation* cloneVirtual() const override
{ return new Implementation(*this); }
// Currently no derivative supported.
int getNumTimeDerivativesVirtual() const override
{ return 0; }
// If we are allowed to use the current value of the source measure to
// determine the delayed value, the depends-on stage here is the same as
// for the source; otherwise it is Stage::Time.
Stage getDependsOnStageVirtual(int order) const override
{ return this->m_canUseCurrentValue ? m_source.getDependsOnStage(order)
: Stage::Time; }
// Calculate the delayed value and return it to the Measure base class to
// be put in a cache entry.
void calcCachedValueVirtual(const State& s, int derivOrder, T& value) const
override
{ const Subsystem& subsys = this->getSubsystem();
const Buffer& buffer = Value<Buffer>::downcast
(subsys.getDiscreteVariable(s,m_bufferIx));
//TODO: use cubic interpolation if allowed
buffer.calcValueAtTimeLinearOnly(s.getTime()-m_delay, value);
}
void initializeVirtual(State& s) const override {
assert(m_bufferIx.isValid());
const Subsystem& subsys = this->getSubsystem();
Buffer& buffer = Value<Buffer>::updDowncast
(subsys.updDiscreteVariable(s,m_bufferIx));
buffer.clear();
this->getSubsystem().getSystem().realize(s,m_source.getDependsOnStage());
buffer.append(s.getTime()-m_delay, s.getTime(), m_source.getValue(s));
}
void realizeMeasureTopologyVirtual(State& s) const override {
m_bufferIx = this->getSubsystem()
.allocateAutoUpdateDiscreteVariable(s, Stage::Report,
new Value<Buffer>(), getDependsOnStageVirtual(0));
}
/** In case no one has updated the value of this measure yet, we have
to make sure it gets updated before the integration moves ahead. **/
void realizeMeasureAccelerationVirtual(const State& s) const override {
updateBuffer(s);
}
// This uses the buffer from the state to update the one in the
// corresponding cache entry. The update adds the current value of the
// source to the end of the buffer and tosses out unneeded old entries.
void updateBuffer(const State& s) const {
assert(m_bufferIx.isValid());
const Subsystem& subsys = this->getSubsystem();
const Buffer& prevBuffer = Value<Buffer>::downcast
(subsys.getDiscreteVariable(s,m_bufferIx));
Buffer& nextBuffer = Value<Buffer>::updDowncast
(subsys.updDiscreteVarUpdateValue(s,m_bufferIx));
const Real t = s.getTime();
nextBuffer.copyInAndUpdate(prevBuffer, t-m_delay,
t, m_source.getValue(s));
subsys.markDiscreteVarUpdateValueRealized(s,m_bufferIx);
}
private:
// TOPOLOGY STATE
Measure_<T> m_source;
Real m_delay;
bool m_canUseCurrentValue;
bool m_useLinearInterpolationOnly;
// TOPOLOGY CACHE
mutable DiscreteVariableIndex m_bufferIx; // auto-update
};
} // namespace SimTK
#endif // SimTK_SimTKCOMMON_MEASURE_IMPLEMENTATION_H_
|