1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
|
/* -------------------------------------------------------------------------- *
* SimTK Simbody: SimTKcommon *
* -------------------------------------------------------------------------- *
* This is part of the SimTK biosimulation toolkit originating from *
* Simbios, the NIH National Center for Physics-Based Simulation of *
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody. *
* *
* Portions copyright (c) 2005-12 Stanford University and the Authors. *
* Authors: Michael Sherman *
* Contributors: *
* *
* Licensed under the Apache License, Version 2.0 (the "License"); you may *
* not use this file except in compliance with the License. You may obtain a *
* copy of the License at http://www.apache.org/licenses/LICENSE-2.0. *
* *
* Unless required by applicable law or agreed to in writing, software *
* distributed under the License is distributed on an "AS IS" BASIS, *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
* See the License for the specific language governing permissions and *
* limitations under the License. *
* -------------------------------------------------------------------------- */
#include "SimTKcommon.h"
#include <cstdlib> // for rand()
#include <cstdio>
#include <ctime>
#include <string>
#include <complex>
#include <iostream>
using std::cout;
using std::endl;
using std::complex;
using namespace SimTK;
// Numerical Recipes declarations.
namespace NR {
template <class DP>
void lubksb(const int N, const DP* a/*N,N*/, const int* indx/*N*/,
DP* b/*N*/);
template <class DP>
void ludcmp(const int N, DP* a/*N,N*/, int* indx/*N*/, DP &d);
template <class DP>
void luinvert(int N, DP* a/*N,N*/, DP* y/*N,N*/);
}
// Some explicit instantiations just to make sure everything's there.
namespace SimTK {
template class Matrix_<Real>;
template class Vector_<Complex>;
template class RowVector_< conjugate<float> >;
//template class MatrixBase< Mat<3,4,Vec2> >;
template class MatrixView_< complex<double> >;
template class VectorView_< negator<float> >;
template class RowVectorView_< negator< conjugate<float> > >;
}
template <class NT>
void dump(const String& s, const Matrix_<NT>& mm) {
cout << s << ":" << endl;
for (int i=0; i<mm.nrow(); ++i) {
for (int j=0; j<mm.ncol(); ++j)
cout << mm(i,j) << " ";
cout << endl;
}
}
template <class NT>
void dump(const String& s, const MatrixView_<NT>& mv)
{ dump(s,(const Matrix_<NT>&)mv); }
extern "C" {
void SimTK_version_SimTKlapack(int* major, int* minor, int* build);
void SimTK_about_SimTKlapack(const char* key, int maxlen, char* value);
}
void testSums() {
Matrix m(Mat22(1,2,
3,4));
SimTK_TEST_EQ(m.colSum(), RowVector(Row2(4,6)));
SimTK_TEST_EQ(m.rowSum(), Vector(Vec2(3,7)));
SimTK_TEST_EQ(m.sum(), m.colSum()); // should be exact
Matrix_<Complex> mc(Mat<2,2,Complex>(1+2*I, 3+4*I,
5+6*I, 7+8*I));
typedef Row<2,Complex> CRow2;
typedef Vec<2,Complex> CVec2;
typedef RowVector_<Complex> CRowVector;
typedef Vector_<Complex> CVector;
SimTK_TEST_EQ(mc.colSum(), CRowVector(CRow2(6+8*I, 10+12*I)));
SimTK_TEST_EQ(mc.rowSum(), CVector(CVec2(4+6*I, 12+14*I)));
SimTK_TEST_EQ(mc.sum(), mc.colSum()); // should be exact
}
void testCharacter() {
MatrixCommitment mc;
// mc = MatrixCommitment::Symmetric();
//mc.commitOutline(MatrixOutline::Square);
cout << mc;
cout << mc.calcDefaultCharacter(0,0);
Matrix m(mc);
m.resize(2,3);
m = 5;
m.dump("m");
cout << "NOW: " << m.getMatrixCharacter();
cout << "m.diag()=" << m.diag() << endl;
cout << "m.diag() " << m.diag().getMatrixCharacter();
cout << "m[1]=" << m[1] << endl;
Matrix mm = m*3;
cout << "mm=" << mm;
MatrixView mmv = mm(0,1,2,2);
cout << "mmv(mm(0,1,2,2):" << mmv;
cout << "mm(0,0,2,2):" << mm(0,0,2,2);
mmv.clear();
mmv = mm(0,0,1,2);
cout << "mmv.clear(), then mmv=mm(0,0,1,2): " << mmv;
mc = MatrixCommitment( MatrixStructure(MatrixStructure::Triangular, MatrixStructure::Upper) );
cout << "mc=" << mc << " actual=" << mc.calcDefaultCharacter(0,0);
Matrix t(mc);
t.resize(5,3);
t.dump("t");
t.clear();
t.commitTo(MatrixStructure(MatrixStructure::Hermitian, MatrixStructure::Upper));
t.dump("t now hermitian, prior to resize");
cout << "t commit=" << t.getCharacterCommitment() << "t actual=" << t.getMatrixCharacter();
t.resize(3,5);
t.dump("t after resize");
cout << "t commit=" << t.getCharacterCommitment() << "t actual=" << t.getMatrixCharacter();
t = 123;
t(0,2)=-2;
t.dump("t now hermitian");
cout << "t commit=" << t.getCharacterCommitment() << "t actual=" << t.getMatrixCharacter();
Vector v(10);
for (int i=0; i<10; ++i) v[i] = i*.1;
v[4] = -17.3;
cout << "v commitment: " << v.getCharacterCommitment();
cout << "v character: " << v.getMatrixCharacter();
cout << "v=" << v << endl;
Vector w1(10, Real(1));
cout << "weights w1=" << w1 << endl;
int worst;
cout << "|w1*v|_rms=" << v.weightedNormRMS(w1,&worst) << "\n";
cout << "(worst=" << worst << ")\n";
cout << "|w1*v|_inf=" << v.weightedNormInf(w1,&worst) << "\n";
cout << "(worst=" << worst << ")\n";
cout << "|v|_rms=" << v.normRMS(&worst) << "\n";
cout << "(worst=" << worst << ")\n";
cout << "|v|_inf=" << v.normInf(&worst) << "\n";
cout << "(worst=" << worst << ")\n";
cout << "2nd sig: |v|_rms=" << v.normRMS() << "\n";
cout << "2nd sig: |v|_inf=" << v.normInf() << "\n";
w1(9) = 100;
cout << "weights w1=" << w1 << endl;
cout << "|w1*v|_rms=" << v.weightedNormRMS(w1,&worst) << "\n";
cout << "(worst=" << worst << ")\n";
cout << "|w1*v|_inf=" << v.weightedNormInf(w1,&worst) << "\n";
cout << "(worst=" << worst << ")\n";
cout << "2nd sig: |w1*v|_rms=" << v.weightedNormRMS(w1) << "\n";
cout << "2nd sig: |w1*v|_inf=" << v.weightedNormInf(w1) << "\n";
cout << "rms(zero length)=" << Vector().normRMS(&worst) << "\n";
cout << " worst=" << worst << "\n";
cout << "inf(zero length)=" << Vector().normInf(&worst) << "\n";
cout << " worst=" << worst << "\n";
Array_<int> vx;
vx.push_back(2); vx.push_back(5); vx.push_back(7); vx.push_back(8);
VectorView vxx = v(vx);
cout << "vxx character: " << vxx.getMatrixCharacter();
cout << "vxx=" << vxx << endl;
cout << "vxx(1,2)=" << vxx(1,2) << endl;
Complex cmplx[] = {Complex(1,2), Complex(3,4), Complex(-.2,.3),
Complex(-100,200), Complex(20,40), Complex(-.001,.002)};
ComplexMatrix cm(2,3,2,cmplx); // shared data is in column order
cout << "cm(2,3,lda=2,cmplx)=" << cm;
ComplexMatrix cm2(2,3,cmplx); // init constructor takes data in row order
cout << "cm(2,3,cmplx)=" << cm2;
// Share data but note that it is row order. Using MatrixBase to get to
// a general constructor.
MatrixCharacter::LapackFull mchar(2,3);
mchar.setStorage(MatrixStorage(MatrixStorage::NoPacking,MatrixStorage::RowOrder));
MatrixBase<Complex> cm3(MatrixCommitment(), mchar, 3, cmplx);
cout << "cm3(RowOrder,2,3,lda=3,cmplx)=" << cm3;
cm3(0,1)=99;
cout << "cm3(0,1)=99 ->" << cm3;
cout << "cm (should have changed too) ->" << cm;
cout << "cm2 (should not have changed) ->" << cm2;
}
// Test "scalar" multiply for Vectors and RowVectors that have CNT types
// as elements.
// NOTE: the Vector elements and the "scalar" CNT must conform for this
// to work; nonconforming will cause obscure compile errors.
void testScalarMultiply() {
cout << "\n------ TEST SCALAR MULTIPLY ------\n";
Mat33 m33( .03, .04, .05,
.06, .08, .09,
.07, .10, .11 );
Vector_< SpatialVec > vs(3, SpatialVec(Vec3(1,2,3), Vec3(4,5,6)));
cout << "vs=" << vs << endl;
cout << "vs*SpatialRow=" << vs*SpatialRow(Row3(.1)) << endl;
cout << "SpatialRow*vs=" << SpatialRow(Row3(.1))*vs << endl;
cout << "m33 * SpatialVec=" << m33 * SpatialVec(Vec3(1,2,3), Vec3(4,5,6)) << endl;
cout << "m33 * vs=" << SpatialMat(m33) * vs << endl; // note cast to conforming diagonal matrix
cout << "SpatialRow * m33=" << ~SpatialVec(Vec3(1,2,3), Vec3(4,5,6)) * m33 << endl;
cout << "~vs*m33=" << ~vs * SpatialMat(m33) << endl; // note cast to conforming diagonal matrix
RowVector_< SymMat22 > rv(3, SymMat22(1,2,3));
cout << "rv=" << rv << endl;
cout << "rv*Vec2=" << rv*Vec2(.1,.2) << endl;
cout << "Row2*rv=" << Row2(.1,.2)*rv << endl;
cout << "------ END TEST SCALAR MULTIPLY ------\n\n";
}
void testAjaysBlock() {
cout << "\n------ TEST AJAY'S BLOCK ------\n";
const int nu =7, nm=4;
Matrix J(6,nu);
for (int i=0; i<6; ++i)
for (int j=0; j<nu; ++j)
J(i,j) = 1000*i+j;
Matrix t = ~J(0,3,3,nm);
cout << "J=" << J << endl;
cout << "t=" << t;
cout << "\n------ END TEST AJAY'S BLOCK ------\n";
}
int main()
{
try {
SimTK_DEBUG("Running BigMatrixTest ...\n");
testSums();
Matrix assignToMe(5,4);
assignToMe.elementwiseAssign(1.);
std::cout << "assignToMe=" << assignToMe;
assignToMe.elementwiseAssign(14);
std::cout << "assignToMe=" << assignToMe;
testAjaysBlock();
testScalarMultiply();
testCharacter();
int major,minor,build;
char out[100];
const char* keylist[] = { "version", "library", "type", "debug", "authors", "copyright", "svn_revision", 0 };
//SimTK_version_SimTKlapack(&major,&minor,&build);
//std::printf("SimTKlapack library version: %d.%d.%d\n", major, minor, build);
SimTK_version_SimTKcommon(&major,&minor,&build);
std::printf("==> SimTKcommon library version: %d.%d.%d\n", major, minor, build);
std::printf(" SimTK_about_SimTKcommon():\n");
for (const char** p = keylist; *p; ++p) {
SimTK_about_SimTKcommon(*p, 100, out);
std::printf(" about(%s)='%s'\n", *p, out);
}
const Real vvvdata[] = {1,2,.1,.2,9,10,-22,-23,-24,25};
Vector vvv(10,vvvdata);
cout << "vvv=" << vvv << endl;
cout << "vvv(2,5)=" << vvv(2,5) << endl;
Vector vvv25;
vvv25.viewAssign(vvv(2,5));
cout << "vvv25=" << vvv25 << endl;
cout << "vvv(2,0)=" << vvv(2,0) << endl;
Vector vvv20;
vvv20.viewAssign(vvv(2,0));
cout << "vvv20=" << vvv20 << endl;
cout << "vvv(0,0)=" << vvv(0,0) << endl;
Vector vvv00;
vvv00.viewAssign(vvv(0,0));
cout << "vvv00=" << vvv00 << endl;
Vector vb;
vvv00 = vb;
cout << "after vvv00=vb [null], vvv00(" << vvv00.nrow() << "," << vvv00.ncol() << ")=" << vvv00 << endl;
const Complex mdc[] = { Complex(1.,2.),
Complex(3.,4.),
Complex(5.,6.),
Complex(7.,8.),
Complex(9.,10.),
Complex(10.,11.),
Complex(.1,.26),
Complex(.3,.45),
Complex(.5,.64),
Complex(.7,.83),
Complex(.9,.102),
Complex(.10,.111)
};
Matrix_<Complex> md(2,2,mdc);
cout << "2x2 complex Matrix md=" << md;
Mat<2,2,Complex> md_mat(mdc);
cout << "2x2 complex Mat md_mat=" << md_mat;
cout << " sizeof(Complex)=" << sizeof(Complex) << " sizeof(md_mat)=" << sizeof(md_mat) << endl;
Matrix_<Mat<2,2,Complex> > mm22c;
Mat<2,2, Mat<2,2,Complex> > mm22c_mat;
cout << " sizeof(mm22c_mat)=" << sizeof(mm22c_mat) << " should be " << 16*sizeof(Complex) << endl;
mm22c.resize(2,2); cout << " sizeof(mm22c(2,2))=" << ((char*)(&mm22c(1,1)(1,1)+1)) - ((char*)&mm22c(0,0)(0,0)) << endl;
cout << "scalar md.normRMS: " << md.normRMS() << endl;
try {
cout << "nonscalar mm22c.normRMS: " << mm22c.normRMS() << endl;
} catch(const std::exception& e) {
cout << "SHOULD FAIL FOR NONSCALAR ELEMENTS: " << e.what() << endl;
}
mm22c.setToZero(); cout << "mm22c after setToZero():" << mm22c;
mm22c.setToNaN(); cout << "mm22c after setToNaN():" << mm22c;
mm22c.dump("**** mm22c ****");
cout << "~md=" << ~md;
cout << "~md(1)=" << ~md(1) << endl;
cout << "(~md)(1)=" << (~md)(1) << endl;
cout << "~md[1]=" << ~md[1] << endl;
cout << "(~md)[1]=" << (~md)[1] << endl;
dump("2x2 complex md",md);
dump("md(0,1,2,1)",md(0,1,2,1));
const ComplexMatrixView& mvc = md(0,1,2,1);
dump("mvc=md(0,1,2,1)", mvc);
md(1,0) *= 10.;
dump("md after md(1,0) *= 10.",md);
md(0,1,2,1) *= Complex(10.,100.);
dump("md after md(0,1,2,1)*=(10+100i)",md);
Matrix_<Complex> mm(3,4);
mm = 2390.;
cout << "after [3x4 complex] mm = 2390, mm: " << mm << endl;
for (int i=0; i<mm.nrow(); ++i) {
for (int j=0; j<mm.ncol(); ++j)
mm(i,j)=(i+1)*(j+1);
}
cout << "after mm(i,j)=(i+1)*(j+1), mm: " << mm << endl;
Vector mmColScale(4), mmRowScale(3);
mmColScale[0]=1; mmColScale[1]=10; mmColScale[2]=100; mmColScale[3]=1000;
mmRowScale[0]=-1000; mmRowScale[1]=-100; mmRowScale[2]=-10;
Vector_<double> mmRowScaleR(3); for(int i=0;i<3;++i) mmRowScaleR[i]=(float)mmRowScale[i];
cout << "mm=" << mm << " mmColScale=" << mmColScale << endl;
mm.colScaleInPlace(mmColScale);
cout << "after col scale, mm=" << mm;
mm.colScaleInPlace(mmColScale.elementwiseInvert());
cout << "after col UNscale mm=" << mm;
cout << " mmRowScale=" << mmRowScale << endl;
mm.rowScaleInPlace(mmRowScale);
cout << "after row scale, mm=" << mm;
mm.rowScaleInPlace(mmRowScale.elementwiseInvert());
cout << "after row UNscale mm=" << mm;
mm.rowScaleInPlace(mmRowScaleR);
cout << "after LONG DOUBLE row scale mm=" << mm;
cout << "mm.rowScale(double)=" << mm.rowScale(mmRowScaleR);
cout << "type(mm.rowScale(double))=" << typeid(mm.rowScale(mmRowScaleR)).name() << endl;
Vector_<Vec2> mmVCol(4); for (int i=0; i<4; ++i) mmVCol[i] = Vec2(4*i, 4*i+1);
cout << "mm Vec2 colScale=" << mmVCol << endl;
cout << "mm.colScale(Vec2)=" << mm.colScale(mmVCol);
cout << "type(mm.colScale(Vec2))=" << typeid(mm.colScale(mmVCol)).name() << endl;
mm *= 1000.; dump("mm(3,4) after *=1000", mm);
mm.dump("*** mm ***");
cout << "mm using << op: " << mm;
cout << "~mm: " << ~mm;
cout << "mm.norm()=" << mm.norm() << endl;
cout << "mm(3)=" << mm(3) << endl;
cout << "mm[2]=" << mm[2] << endl;
cout << "mm + 2*(-mm)=" << mm + 2*(-mm) << endl;
Matrix_<Complex> mm2 = mm;
cout << "mm2=" << mm2;
cout << "mm2(1,1,1,2)=" << mm2(1,1,1,2);
mm2(1,1,1,2)=7;
cout << "after mm2(1112)=7, mm2=" << mm2;
cout << "mm=" << mm;
(~mm)(1,1,1,2)=99;
cout << "after (~mm)(1112)=99, mm=" << mm;
cout << "\n--- DIAGONAL TEST ---\n";
cout << "mm2.diag()=" << mm2.diag() << endl;
mm2 = 99;
cout << "after mm2=99: mm2=" << mm2;
mm2(0,2,2,2) = std::complex<double>(-99,-99);
cout << "after mm2(0,2,2,2) = (-99,-99): mm2=" << mm2;
mm2.updDiag() *= .001;
cout << "after mm2.updDiag()*=.001: mm2=" << mm2;
// scalar assign to a row-shaped matrix should set only
// the first element to the scalar and all else zero
// (since that's the diagonal), while
// scalar assign to a row should set all the elements.
mm2(0,0,1,mm2.ncol()) = 1; // row shaped block of first row
mm2[mm2.nrow()-1] = 1; // last row
cout << "after mm2(0,0,1,n)=1 and mm2[m-1]=1: mm2=" << mm2;
// ditto for columns
mm2(0,1,mm2.nrow(),1) = 2;
mm2(2) = 2;
cout << "after mm2(0,1,m,1)=2 and mm2(2)=2: mm2=" << mm2;
cout << "\n-------- ASSIGN TEST --------\n";
Matrix_< Vec<2,Complex> > rr(2,3);
for (int i=0;i<2;++i) for (int j=0;j<3;++j)
rr(i,j) = Vec<2,Complex>(mdc[i]*(j+1), mdc[i]*(j-1));
Matrix_< Vec<2,Complex> > rrAssign;
(rrAssign = rr(0,1,2,2)) *= 1000.;
cout << "rr=" << rr;
cout << "(rrAssign=rr(0,1,2,2)) *= 1000.; rrAssign=" << rrAssign;
cout << "rr=" << rr;
(rrAssign.viewAssign(rr(0,1,2,2))) *= 100.;
cout << "(rrAssign.viewAssign(rr(0,1,2,2))) *= 100; rrAssign=" << rrAssign;
cout << "rr=" << rr;
cout << "-------- END ASSIGN TEST --------\n\n";
cout << "\n-------- RESIZE KEEP TEST --------\n";
Vector resizeMe(5); for (int i=0; i<5; ++i) resizeMe[i]=i;
cout << "resizeMe=" << resizeMe << endl;
resizeMe.resize(10);
cout << "after resize(10), resizeMe=" << resizeMe << endl;
Vector resizeMe2(5); for (int i=0; i<5; ++i) resizeMe2[i]=i;
cout << "resizeMe2=" << resizeMe2 << endl;
resizeMe2.resizeKeep(10);
cout << "after resizeKeep(10), resizeMe2=" << resizeMe2 << endl;
Matrix resizeMem(2,3); for (int i=0; i<2; ++i) for (int j=0; j<3; ++j) resizeMem(i,j)=(i+1)*(j+1);
cout << "resizeMem(2,3)=" << resizeMem << endl;
resizeMem.resizeKeep(3,5);
cout << "after resizeKeep(3,5), resizeMem=" << resizeMem << endl;
resizeMem.resizeKeep(2,2);
cout << "after resizeKeep(2,2), resizeMem=" << resizeMem << endl;
resizeMem.resize(3,4);
cout << "after resize(3,4), resizeMem=" << resizeMem << endl;
cout << "-------- END RESIZE KEEP TEST --------\n\n";
Mat<3,4,Complex> cm34;
for (int i=0; i<3; ++i)
for (int j=0; j<4; ++j)
cm34(i,j) = mdc[i+j*3];
cout << "Mat<3,4,Complex>=" << cm34 << endl;
Vec<4,Complex> cv4(&mdc[6]);
cout << "Vec<4,Complex>=" << cv4 << endl;
cout << "Mat<3,4>*Vec<4>=" << cm34*cv4 << endl;
cout << "Mat<3,4>*Mat<4,3>=" << cm34*~cm34;
complex<float> zzzz(1.,2.);
conjugate<float> jjjj(0.3f,0.4f);
negator<float> nnnn(7.1);
cout << "zzzz=" << zzzz << " jjjj=" << jjjj << " nnnn=" << nnnn << endl;
cout << "zzzz*jjjj=" << zzzz*jjjj << endl;
Matrix_<Complex> cMatrix34(3,4);
Vector_<Complex> cVector4(4);
for (int i=0; i<3; ++i) for (int j=0; j<4; ++j) cMatrix34(i,j)=cm34(i,j);
for (int i=0; i<4; ++i) cVector4[i] = cv4[i];
cout << "cMatrix34=" << cMatrix34;
cout << "cVector4=" << cVector4 << endl;
cout << "cMatrix34*cVector4=" << cMatrix34*cVector4 << endl;
cout << "cMatrix34*cMatrix43=" << cMatrix34*~cMatrix34;
Matrix_<Complex> cMatrix34N = -cMatrix34;
//TODO: not allowed yet
//Matrix_<Complex> cMatrix34H = ~cMatrix34;
Vector vv(4), ww;
vv[0] = 1.; vv[1] = 2.; vv[2] = 3.; vv[3] = 4.;
cout << "vv(4)=" << vv << endl;
vv *= 9.; cout << "vv*=9:" << vv << endl;
Vector vvvv;
vvvv = vv[2] * vv;
cout << "vvvv = vv[2]*vv = " << vvvv << endl;
Matrix_<Mat<2,2, Mat<2,2,double> > > mmm(2,1);
mmm = Mat<2,2, Mat<2,2,double> >(Mat<2,2,double>(1));
cout << "*****>>> mmm=" << mmm << endl;
Matrix mnm(4,2), nn;
cout << "mnm(4,2)=" << mnm;
mnm(0) = vv;
mnm(1) = -0.01 * vv;
cout << "mnm(vv,-.01*vv)=" << mnm;
cout << "===> mnm.abs()=" << mnm.abs();
cout << "mnm(1)=" << mnm(1) << endl;
cout << "mnm(1).abs()=" << mnm(1).abs() << endl;
cout << "mnm[1]=" << mnm[1] << endl;
cout << "mnm[1].abs()=" << mnm[1].abs() << endl;
ww = vv;
ww *= 0.1;
vv += ww;
cout << "ww=vv, *=0.1:" << ww << endl;
cout << "vv+=ww:" << vv << endl;
const Real rdata[]={1,2,3,
9,.1,14,
2,6,9};
Matrix_<negator<Real> > A(3,3, (negator<Real>*)rdata);
Matrix AI = A.invert();
cout << "A=" << A << "AI=" << AI << " A*AI=" << A*AI;
cout << "A(1,2).real()=" << A(1,2).real() << endl;
Matrix AH = ~A;
cout << "~A=" << ~A << "inv(~A)=" << (~A).invert() << "~(inv(A))=" << ~AI;
A.invertInPlace();
cout << "after A=inv(A), A=" << A << "norm(A-AI)=" << (A-AI).norm() << endl;
A.dump("*** A ***");
AI.dump("*** AI ***");
Mat<3,3,negator<Real> > smallNegA((negator<Real>*)rdata);
Mat<3,3,negator<Real> >::TInvert smallNegAI(smallNegA.invert());
cout << "smallNegA=" << smallNegA << " inv(smallNegA)=" << smallNegAI;
cout << "smallNegA*inv(smallNegA)=" << smallNegA*smallNegAI << "NORM="
<< (smallNegA*smallNegAI).norm() << endl;
cout << "inverse(smallNegA)=" << inverse(smallNegA) << endl;
negator<Real> nnn = smallNegA(0,0)-smallNegA(1,1);
Real nnnr = smallNegA(0,0)-smallNegA(1,1);
cout << "negator nnn=" << nnn << " real nnnr=" << nnnr << endl;
nnn = smallNegA(0,1)-smallNegA(1,0);
nnnr = smallNegA(0,1)-smallNegA(1,0);
cout << "negator nnn=" << nnn << " real nnnr=" << nnnr << endl;
cout << "det(smallNegA)=" << det(smallNegA)
<< " det(inv(smallNegA))=" << det(smallNegAI) << endl;
const Real cjdata[]={1,1, 2,2, 3,3, 4,4,
9,9, .1,.1, 14,14, 22,22,
2,2, 6,6, 9,9, 11,11,
.2,.2, .7,.7, 5,5, 10,10};
// General Lapack inverse.
Mat<4,4,conjugate<Real> > smallConjA4((conjugate<Real>*)cjdata);
Mat<4,4,conjugate<Real> >::TInvert smallConjAI4(smallConjA4.invert());
cout << "smallConjA4=" << smallConjA4 << " inv(smallConjA4)=" << smallConjAI4;
cout << "smallConjA4*inv(smallConjA4)=" << smallConjA4*smallConjAI4;
cout << "NORM=" << (smallConjA4*smallConjAI4).norm() << endl;
cout << "inverse(smallConjA4)=" << inverse(smallConjA4) << endl;
cout << "norm(inverse-lapackInverse4)=" << (inverse(smallConjA4)-lapackInverse(smallConjA4)).norm() << endl;
cout << "det(smallConjA4)=" << det(smallConjA4)
<< " det(inv(smallConjA4))=" << det(smallConjAI4) << endl;
// Specialized inverse.
Mat<3,3,conjugate<Real> > smallConjA3((conjugate<Real>*)cjdata);
Mat<3,3,conjugate<Real> >::TInvert smallConjAI3(smallConjA3.invert());
cout << "smallConjA3=" << smallConjA3 << " inv(smallConjA3)=" << smallConjAI3;
cout << "smallConjA3*inv(smallConjA3)=" << smallConjA3*smallConjAI3 << "NORM="
<< (smallConjA3*smallConjAI3).norm() << endl;
cout << "inverse(smallNegA3)=" << inverse(smallConjA3) << endl;
cout << "norm(inverse-lapackInverse3)=" << (inverse(smallConjA3)-lapackInverse(smallConjA3)).norm() << endl;
cout << "det(smallConjA3)=" << det(smallConjA3)
<< " det(inv(smallConjA3))=" << det(smallConjAI3) << endl;
cout << "Mat<1,1,conj>=" << smallConjA3.getSubMat<1,1>(1,0) << "inv(...)=" <<
smallConjA3.getSubMat<1,1>(1,0).invert();
cout << "Mat11*inv(Mat11)=" <<
smallConjA3.getSubMat<1,1>(1,0)*smallConjA3.getSubMat<1,1>(1,0).invert();
cout << "Mat<2,2,conj>=" << smallConjA3.getSubMat<2,2>(0,0) << "inv(...)=" <<
smallConjA3.getSubMat<2,2>(0,0).invert();
cout << "Mat22*inv(Mat22)=" <<
smallConjA3.getSubMat<2,2>(0,0)*smallConjA3.getSubMat<2,2>(0,0).invert();
try {
const double ddd[] = { 11, 12, 13, 14, 15, 16 };
const float fddd[] = { 11, 12, 13, 14, 15, 16 };
const complex<float> ccc[] = { complex<float>(1.,2.),
complex<float>(3.,4.),
complex<float>(5.,6.),
complex<float>(7.,8.) };
Vec< 2,complex<float> > cv2(ccc);
cout << "cv2=" << cv2 << endl;
cout << "(cv2+cv2)/1000:" << (cv2 + cv2) / complex<float>(1000,0)
<< endl;
cout << "cv2: " << cv2 << endl;
cout << "cv2T: " << cv2.transpose() << endl;
cout << "-cv2: " << -cv2 << endl;
cout << "~cv2: " << ~cv2 << endl;
cout << "-~cv2: " << -(~cv2) << endl;
cout << "~-cv2: " << ~(-cv2) << endl;
cout << "~-cv2*10000: " << (~(-cv2))*10000.f << endl;
(~cv2)[1]=complex<float>(101.1f,202.3f);
cout << "after ~cv2[1]=(101.1f,202.3f), cv2= " << cv2 << endl;
-(~cv2)[1]=complex<float>(11.1f,22.3f);
cout << "after -~cv2[1]=(11.1f,22.3f), cv2= " << cv2 << endl;
Vec<3,float> dv2(fddd), ddv2(fddd+3);
dv2[2] = 1000;
cout << 100.* (ddv2 - dv2) / 1000. << endl;
cout << "dv2=" << dv2 << " dv2.norm()=" << dv2.norm() << endl;
cout << "cv2=" << cv2 << " cv2.norm()=" << cv2.norm() << endl;
dv2 = 100*dv2;
const Vec<3,float> v3c[] = {Vec<3,float>(fddd),Vec<3,float>(fddd+1)};
Vector_< Vec<2, Vec<3,float> > > vflt(2);
vflt[0] = Vec<2, Vec<3,float> >(v3c);
vflt[1] = vflt[0]*100;
vflt[1] = 100*vflt[0];
cout << "vflt 2xvec3=" << vflt << endl;
cout << "vflt.getNScalarsPerElement()=" << vflt.getNScalarsPerElement() << endl;
cout << "vflt.getPackedSizeofElement()=" << vflt.getPackedSizeofElement() << endl;
cout << "sizeof(vflt)=" << sizeof(vflt) << " sizeof(vflt[0])=" << sizeof(vflt[0]) << endl;
cout << "vflt.hasContiguousData()=" << vflt.hasContiguousData() << endl;
cout << "vflt.getContiguousScalarDataLength()=" << vflt.getContiguousScalarDataLength() << endl;
const float* p = vflt.getContiguousScalarData();
cout << "vflt's raw data: " << endl;
for (int i=0; i<vflt.getContiguousScalarDataLength(); ++i)
cout << " " << p[i];
cout << endl;
float* newData = new float[12];
float* oldData;
for (int i=0; i<12; ++i) newData[i]=(float)-i;
vflt.swapOwnedContiguousScalarData(newData, 12, oldData);
cout << "after data swap, vflt=" << vflt << endl;
cout << "old data =";
for (int i=0; i<12; ++i) cout << " " << oldData[i];
cout << endl;
delete[] oldData;
}
catch(const Exception::Base& b)
{
cout << b.getMessage() << endl;
}
typedef double P;
const int N = 1000;
const int LUP = 1;
Matrix_<P> big(N,N);
for (int j=0; j<N; ++j)
for (int i=0; i<N; ++i)
big(i,j) = 1+(float)std::rand()/RAND_MAX;
cout << "big.norm()=" << big.norm() << endl;
cout << "INVERTING " << LUP << "x" << N << "x" << N
<< (sizeof(P)==4 ? std::string(" float") : std::string(" double")) << endl << std::flush;
Matrix_<P> flip(N,N), nrflip(N,N);
std::clock_t start = std::clock();
for (int i=0; i<LUP; ++i)
flip = big.invert();
cout << "... DONE -- " << (double)(std::clock()-start)/CLOCKS_PER_SEC << " seconds" << endl << std::flush;
cout << "initial norm=" << big.norm() << " invert.norm()=" << flip.norm() << endl << std::flush;
Matrix_<P> nrbig(N,N); nrbig=big;
cout << "NOW INVERT WITH NR, initial norm=" << nrbig.norm() << endl << std::flush;
start = std::clock();
for (int i=0; i<LUP; ++i) {
nrbig=big;
NR::luinvert(N, &nrbig(0,0), &nrflip(0,0));
}
cout << "... DONE -- " << (double)(std::clock()-start)/CLOCKS_PER_SEC << " seconds" << endl << std::flush;
cout << " nrinverse.norm()=" << nrflip.norm() << endl << std::flush;
cout << "big.norm()=" << big.norm() << " flip.norm()=" << flip.norm() << endl << std::flush;
Matrix_<P> ans(N,N);
cout << "Multiplying ..." << endl << std::flush;
start = std::clock();
for (int i=0; i<LUP; ++i)
Lapack::gemm('n','n',N,N,N,P(1),&big(0,0),N,&flip(0,0),N,P(0),&ans(0,0),N);
cout << "... DONE -- " << (double)(std::clock()-start)/CLOCKS_PER_SEC << " seconds" << endl << std::flush;
cout << "RMS (big*flip).norm() - 1=" << std::sqrt(ans.normSqr()/N)-1. << endl << std::flush;
cout << "Multiplying with NR result ..." << endl << std::flush;
start = std::clock();
for (int i=0; i<LUP; ++i)
Lapack::gemm('n','n',N,N,N,P(1),&big(0,0),N,&nrflip(0,0),N,P(0),&ans(0,0),N);
cout << "... DONE -- " << (double)(std::clock()-start)/CLOCKS_PER_SEC << " seconds" << endl << std::flush;
cout << "RMS (big*nrflip).norm() - 1=" << std::sqrt(ans.normSqr()/N)-1. << endl << std::flush;
cout << "Multiplying by hand ..." << endl << std::flush;
start = std::clock();
const P* bigp = &big(0,0);
const P* flipp = &flip(0,0);
P* ansp = &ans(0,0);
for (int l=0; l<LUP; ++l) {
for (int j=0; j<N; ++j) {
for (int i=0; i<N; ++i) {
P sum = P(0); const int jN=j*N;
for (int k=0; k<N; ++k)
sum += bigp[k*N+i] * flipp[jN+k];
ansp[jN+i] = sum;
}
}
}
cout << "... DONE -- " << (double)(std::clock()-start)/CLOCKS_PER_SEC << " seconds" << endl << std::flush;
cout << "RMS (big*flip).norm() - 1=" << std::sqrt(ans.normSqr()/N)-1. << endl << std::flush;
return 0;
}
catch (const std::exception& e) {
cout << e.what() << endl;
}
}
// Numerical Recipes version 2.11 LU decomp and inversion via backsolve.
// This is the C++ version modified to use column-ordered consecutive
// storage.
namespace NR {
// Return 1d index for column ordered matrix with leading dim N.
#define X(i,j) j*N+i
template <class DP>
void luinvert(const int N, DP* a/*N,N*/, DP* y/*N,N*/) {
assert(a && y);
int* indx = new int[N];
DP d;
NR::ludcmp(N, a, indx, d);
for (int j=0; j<N; ++j) {
DP* col = &y[X(0,j)];
for (int i=0; i<N; ++i) col[i]=DP(0);
col[j] = DP(1);
NR::lubksb(N,a,indx,col); // writes directly into y
}
delete[] indx;
}
template <class DP>
void lubksb(const int N, const DP* a/*N,N*/, const int* indx/*N*/,
DP* b/*N*/)
{
int i,ii=0,ip,j;
DP sum;
for (i=0;i<N;i++) {
ip=indx[i];
sum=b[ip];
b[ip]=b[i];
if (ii != 0)
for (j=ii-1;j<i;j++) sum -= a[X(i,j)]*b[j];
else if (sum != 0.0)
ii=i+1;
b[i]=sum;
}
for (i=N-1;i>=0;i--) {
sum=b[i];
for (j=i+1;j<N;j++) sum -= a[X(i,j)]*b[j];
b[i]=sum/a[X(i,i)];
}
}
template <class DP>
void ludcmp(const int N, DP* a/*N,N*/, int* indx/*N*/, DP &d)
{
const DP TINY=DP(1.0e-20);
int i,imax,j,k;
DP big,dum,sum,temp;
DP* vv = new DP[N];
d=DP(1);
for (i=0;i<N;i++) {
big=0.0;
for (j=0;j<N;j++)
if ((temp=fabs(a[X(i,j)])) > big) big=temp;
if (big == 0.0) {
std::cerr << "Singular matrix in routine ludcmp" << endl;
assert(false);
exit(1);
}
vv[i]=DP(1)/big;
}
for (j=0;j<N;j++) {
for (i=0;i<j;i++) {
sum=a[X(i,j)];
for (k=0;k<i;k++) sum -= a[X(i,k)]*a[X(k,j)];
a[X(i,j)]=sum;
}
big=0.0;
for (i=j;i<N;i++) {
sum=a[X(i,j)];
for (k=0;k<j;k++) sum -= a[X(i,k)]*a[X(k,j)];
a[X(i,j)]=sum;
if ((dum=vv[i]*fabs(sum)) >= big) {
big=dum;
imax=i;
}
}
if (j != imax) {
for (k=0;k<N;k++) {
dum=a[X(imax,k)];
a[X(imax,k)]=a[X(j,k)];
a[X(j,k)]=dum;
}
d = -d;
vv[imax]=vv[j];
}
indx[j]=imax;
if (a[X(j,j)] == 0.0) a[X(j,j)]=TINY;
if (j != N-1) {
dum=DP(1)/(a[X(j,j)]);
for (i=j+1;i<N;i++) a[X(i,j)] *= dum;
}
}
delete[] vv;
}
} // namespace NR
|