File: BigMatrixTest.cpp

package info (click to toggle)
simbody 3.7%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 72,892 kB
  • sloc: cpp: 248,827; ansic: 18,240; sh: 29; makefile: 25
file content (859 lines) | stat: -rw-r--r-- 31,830 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
/* -------------------------------------------------------------------------- *
 *                       SimTK Simbody: SimTKcommon                           *
 * -------------------------------------------------------------------------- *
 * This is part of the SimTK biosimulation toolkit originating from           *
 * Simbios, the NIH National Center for Physics-Based Simulation of           *
 * Biological Structures at Stanford, funded under the NIH Roadmap for        *
 * Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody.  *
 *                                                                            *
 * Portions copyright (c) 2005-12 Stanford University and the Authors.        *
 * Authors: Michael Sherman                                                   *
 * Contributors:                                                              *
 *                                                                            *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may    *
 * not use this file except in compliance with the License. You may obtain a  *
 * copy of the License at http://www.apache.org/licenses/LICENSE-2.0.         *
 *                                                                            *
 * Unless required by applicable law or agreed to in writing, software        *
 * distributed under the License is distributed on an "AS IS" BASIS,          *
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.   *
 * See the License for the specific language governing permissions and        *
 * limitations under the License.                                             *
 * -------------------------------------------------------------------------- */

#include "SimTKcommon.h"

#include <cstdlib> // for rand()
#include <cstdio>
#include <ctime>
#include <string>
#include <complex>
#include <iostream>
using std::cout;
using std::endl;
using std::complex;

using namespace SimTK;

// Numerical Recipes declarations.
namespace NR {
    template <class DP>
    void lubksb(const int N, const DP* a/*N,N*/, const int* indx/*N*/, 
                DP* b/*N*/);

    template <class DP>
    void ludcmp(const int N, DP* a/*N,N*/, int* indx/*N*/, DP &d);

    template <class DP>
    void luinvert(int N, DP* a/*N,N*/, DP* y/*N,N*/);
}

// Some explicit instantiations just to make sure everything's there.
namespace SimTK {
template class Matrix_<Real>;
template class Vector_<Complex>;
template class RowVector_< conjugate<float> >;
//template class MatrixBase< Mat<3,4,Vec2> >;

template class MatrixView_< complex<double> >;
template class VectorView_< negator<float> >;
template class RowVectorView_< negator< conjugate<float> > >;
}

template <class NT>
void dump(const String& s,  const Matrix_<NT>& mm) {
    cout << s << ":" << endl; 
    for (int i=0; i<mm.nrow(); ++i) {
        for (int j=0; j<mm.ncol(); ++j)
            cout << mm(i,j) << " ";
        cout << endl;
    }
}

template <class NT>
void dump(const String& s, const MatrixView_<NT>& mv)
    { dump(s,(const Matrix_<NT>&)mv); }

extern "C" {
    void SimTK_version_SimTKlapack(int* major, int* minor, int* build);
    void SimTK_about_SimTKlapack(const char* key, int maxlen, char* value);
}

void testSums() {
    Matrix m(Mat22(1,2,
                   3,4));
    SimTK_TEST_EQ(m.colSum(), RowVector(Row2(4,6)));
    SimTK_TEST_EQ(m.rowSum(), Vector(Vec2(3,7)));
    SimTK_TEST_EQ(m.sum(), m.colSum()); // should be exact

    Matrix_<Complex> mc(Mat<2,2,Complex>(1+2*I, 3+4*I,
                                         5+6*I, 7+8*I));
    typedef Row<2,Complex> CRow2;
    typedef Vec<2,Complex> CVec2;
    typedef RowVector_<Complex> CRowVector;
    typedef Vector_<Complex> CVector;
    SimTK_TEST_EQ(mc.colSum(), CRowVector(CRow2(6+8*I, 10+12*I)));
    SimTK_TEST_EQ(mc.rowSum(), CVector(CVec2(4+6*I, 12+14*I)));
    SimTK_TEST_EQ(mc.sum(), mc.colSum()); // should be exact
}

void testCharacter() {
    MatrixCommitment mc;
   // mc = MatrixCommitment::Symmetric();
    //mc.commitOutline(MatrixOutline::Square);
    cout << mc;
    cout << mc.calcDefaultCharacter(0,0);
    Matrix m(mc);
    m.resize(2,3);
    m = 5;
    m.dump("m");
    cout << "NOW: " << m.getMatrixCharacter();
    cout << "m.diag()=" << m.diag() << endl;
    cout << "m.diag() " << m.diag().getMatrixCharacter();
    cout << "m[1]=" << m[1] << endl;
    Matrix mm = m*3;
    cout << "mm=" << mm;

    MatrixView mmv = mm(0,1,2,2);
    cout << "mmv(mm(0,1,2,2):" << mmv;
    cout << "mm(0,0,2,2):" << mm(0,0,2,2);
    mmv.clear();
    mmv = mm(0,0,1,2);
    cout << "mmv.clear(), then mmv=mm(0,0,1,2): " << mmv;


    mc = MatrixCommitment( MatrixStructure(MatrixStructure::Triangular, MatrixStructure::Upper) );
    cout << "mc=" << mc << " actual=" << mc.calcDefaultCharacter(0,0);
    Matrix t(mc);
    t.resize(5,3);
    t.dump("t");

    t.clear(); 
    t.commitTo(MatrixStructure(MatrixStructure::Hermitian, MatrixStructure::Upper));
    t.dump("t now hermitian, prior to resize");
    cout << "t commit=" << t.getCharacterCommitment() << "t actual=" << t.getMatrixCharacter();
    t.resize(3,5);
    t.dump("t after resize");
    cout << "t commit=" << t.getCharacterCommitment() << "t actual=" << t.getMatrixCharacter();
    t = 123;
    t(0,2)=-2;
    t.dump("t now hermitian");
    cout << "t commit=" << t.getCharacterCommitment() << "t actual=" << t.getMatrixCharacter();

    Vector v(10);
    for (int i=0; i<10; ++i) v[i] = i*.1;
    v[4] = -17.3;
    cout << "v commitment: " << v.getCharacterCommitment();
    cout << "v character: " << v.getMatrixCharacter();
    cout << "v=" << v << endl;
    Vector w1(10, Real(1));
    cout << "weights w1=" << w1 << endl;
    int worst;
    cout << "|w1*v|_rms=" << v.weightedNormRMS(w1,&worst) << "\n";
    cout << "(worst=" << worst << ")\n";
    cout << "|w1*v|_inf=" << v.weightedNormInf(w1,&worst) << "\n";
    cout << "(worst=" << worst << ")\n";
    cout << "|v|_rms=" << v.normRMS(&worst) << "\n";
    cout << "(worst=" << worst << ")\n";
    cout << "|v|_inf=" << v.normInf(&worst) << "\n";
    cout << "(worst=" << worst << ")\n";
    cout << "2nd sig: |v|_rms=" << v.normRMS() << "\n";
    cout << "2nd sig: |v|_inf=" << v.normInf() << "\n";

    w1(9) = 100;
    cout << "weights w1=" << w1 << endl;
    cout << "|w1*v|_rms=" << v.weightedNormRMS(w1,&worst) << "\n";
    cout << "(worst=" << worst << ")\n";
    cout << "|w1*v|_inf=" << v.weightedNormInf(w1,&worst) << "\n";
    cout << "(worst=" << worst << ")\n";
    cout << "2nd sig: |w1*v|_rms=" << v.weightedNormRMS(w1) << "\n";
    cout << "2nd sig: |w1*v|_inf=" << v.weightedNormInf(w1) << "\n";

    cout << "rms(zero length)=" << Vector().normRMS(&worst) << "\n";
    cout << "  worst=" << worst << "\n";
    cout << "inf(zero length)=" << Vector().normInf(&worst) << "\n";
    cout << "  worst=" << worst << "\n";


    Array_<int> vx;
    vx.push_back(2); vx.push_back(5); vx.push_back(7); vx.push_back(8);

    VectorView vxx = v(vx);
    cout << "vxx character: " << vxx.getMatrixCharacter();
    cout << "vxx=" << vxx << endl;
    cout << "vxx(1,2)=" << vxx(1,2) << endl;

    Complex cmplx[] = {Complex(1,2), Complex(3,4), Complex(-.2,.3),
                       Complex(-100,200), Complex(20,40), Complex(-.001,.002)};

    ComplexMatrix cm(2,3,2,cmplx); // shared data is in column order
    cout << "cm(2,3,lda=2,cmplx)=" << cm;

    ComplexMatrix cm2(2,3,cmplx); // init constructor takes data in row order
    cout << "cm(2,3,cmplx)=" << cm2;

    // Share data but note that it is row order. Using MatrixBase to get to
    // a general constructor.
    MatrixCharacter::LapackFull mchar(2,3); 
    mchar.setStorage(MatrixStorage(MatrixStorage::NoPacking,MatrixStorage::RowOrder));
    MatrixBase<Complex> cm3(MatrixCommitment(), mchar, 3, cmplx);
    cout << "cm3(RowOrder,2,3,lda=3,cmplx)=" << cm3;
    cm3(0,1)=99;
    cout << "cm3(0,1)=99 ->" << cm3;
    cout << "cm (should have changed too) ->" << cm;
    cout << "cm2 (should not have changed) ->" << cm2;
}

// Test "scalar" multiply for Vectors and RowVectors that have CNT types
// as elements.
// NOTE: the Vector elements and the "scalar" CNT must conform for this
// to work; nonconforming will cause obscure compile errors.
void testScalarMultiply() {
    cout << "\n------ TEST SCALAR MULTIPLY ------\n"; 
    Mat33 m33( .03, .04, .05,
               .06, .08, .09,
               .07, .10, .11 );
    Vector_< SpatialVec > vs(3, SpatialVec(Vec3(1,2,3), Vec3(4,5,6)));
    cout << "vs=" << vs << endl;
    cout << "vs*SpatialRow=" << vs*SpatialRow(Row3(.1)) << endl;
    cout << "SpatialRow*vs=" << SpatialRow(Row3(.1))*vs << endl;
    cout << "m33 * SpatialVec=" << m33 * SpatialVec(Vec3(1,2,3), Vec3(4,5,6)) << endl;
    cout << "m33 * vs=" << SpatialMat(m33) * vs << endl; // note cast to conforming diagonal matrix
    cout << "SpatialRow * m33=" << ~SpatialVec(Vec3(1,2,3), Vec3(4,5,6)) * m33 << endl;
    cout << "~vs*m33=" << ~vs * SpatialMat(m33) << endl; // note cast to conforming diagonal matrix
    RowVector_< SymMat22 > rv(3, SymMat22(1,2,3));
    cout << "rv=" << rv << endl;
    cout << "rv*Vec2=" << rv*Vec2(.1,.2) << endl;
    cout << "Row2*rv=" << Row2(.1,.2)*rv << endl;
    cout << "------ END TEST SCALAR MULTIPLY ------\n\n"; 
}


void testAjaysBlock() {
    cout << "\n------ TEST AJAY'S BLOCK ------\n"; 
    const int nu =7, nm=4;
    Matrix J(6,nu);
    for (int i=0; i<6; ++i)
        for (int j=0; j<nu; ++j)
            J(i,j) = 1000*i+j;
    Matrix t = ~J(0,3,3,nm);
    cout << "J=" << J << endl;
    cout << "t=" << t;
    cout << "\n------ END TEST AJAY'S BLOCK ------\n"; 
}

int main()
{
  try {
    SimTK_DEBUG("Running BigMatrixTest ...\n");

    testSums();

    Matrix assignToMe(5,4);
    assignToMe.elementwiseAssign(1.);
    std::cout << "assignToMe=" << assignToMe;
    assignToMe.elementwiseAssign(14);
    std::cout << "assignToMe=" << assignToMe;

    testAjaysBlock();
    testScalarMultiply();
    testCharacter();

    int major,minor,build;
    char out[100];
    const char* keylist[] = { "version", "library", "type", "debug", "authors", "copyright", "svn_revision", 0 };

    //SimTK_version_SimTKlapack(&major,&minor,&build);
    //std::printf("SimTKlapack library version: %d.%d.%d\n", major, minor, build);


    SimTK_version_SimTKcommon(&major,&minor,&build);
    std::printf("==> SimTKcommon library version: %d.%d.%d\n", major, minor, build);
    std::printf("    SimTK_about_SimTKcommon():\n");
    for (const char** p = keylist; *p; ++p) {
        SimTK_about_SimTKcommon(*p, 100, out);
        std::printf("      about(%s)='%s'\n", *p, out);
    }

    const Real vvvdata[] = {1,2,.1,.2,9,10,-22,-23,-24,25};
    Vector vvv(10,vvvdata);
    cout << "vvv=" << vvv << endl;
    cout << "vvv(2,5)=" << vvv(2,5) << endl;
    Vector vvv25;
    vvv25.viewAssign(vvv(2,5));
    cout << "vvv25=" << vvv25 << endl;
    cout << "vvv(2,0)=" << vvv(2,0) << endl;
    Vector vvv20;
    vvv20.viewAssign(vvv(2,0));
    cout << "vvv20=" << vvv20 << endl;
    cout << "vvv(0,0)=" << vvv(0,0) << endl;
    Vector vvv00;
    vvv00.viewAssign(vvv(0,0));
    cout << "vvv00=" << vvv00 << endl;
    Vector vb;
    vvv00 = vb;
    cout << "after vvv00=vb [null], vvv00(" << vvv00.nrow() << "," << vvv00.ncol() << ")=" << vvv00 << endl;

    const Complex mdc[] = { Complex(1.,2.),  
                            Complex(3.,4.),
                            Complex(5.,6.),
                            Complex(7.,8.),
                            Complex(9.,10.),
                            Complex(10.,11.),
                            Complex(.1,.26),  
                            Complex(.3,.45),
                            Complex(.5,.64),
                            Complex(.7,.83),
                            Complex(.9,.102),
                            Complex(.10,.111)   
                          };    
    Matrix_<Complex> md(2,2,mdc);
    cout << "2x2 complex Matrix md=" << md;
    Mat<2,2,Complex> md_mat(mdc);
    cout << "2x2 complex Mat md_mat=" << md_mat;
    cout << "  sizeof(Complex)=" << sizeof(Complex) << " sizeof(md_mat)=" << sizeof(md_mat) << endl;
    Matrix_<Mat<2,2,Complex> > mm22c;
    Mat<2,2, Mat<2,2,Complex> > mm22c_mat;
    cout << "  sizeof(mm22c_mat)=" << sizeof(mm22c_mat) << " should be " << 16*sizeof(Complex) << endl;
    mm22c.resize(2,2); cout << "  sizeof(mm22c(2,2))=" <<  ((char*)(&mm22c(1,1)(1,1)+1)) - ((char*)&mm22c(0,0)(0,0)) << endl;

    cout << "scalar md.normRMS: " << md.normRMS() << endl;
    try {
        cout << "nonscalar mm22c.normRMS: " << mm22c.normRMS() << endl;
    } catch(const std::exception& e) {
        cout << "SHOULD FAIL FOR NONSCALAR ELEMENTS: " << e.what() << endl;
    }


    mm22c.setToZero(); cout << "mm22c after setToZero():" << mm22c;
    mm22c.setToNaN(); cout << "mm22c after setToNaN():" << mm22c;

    mm22c.dump("**** mm22c ****");

    cout << "~md=" << ~md;
    cout << "~md(1)=" << ~md(1) << endl;
    cout << "(~md)(1)=" << (~md)(1) << endl;
    cout << "~md[1]=" << ~md[1] << endl;
    cout << "(~md)[1]=" << (~md)[1] << endl;

    dump("2x2 complex md",md);
    dump("md(0,1,2,1)",md(0,1,2,1));
    const ComplexMatrixView& mvc = md(0,1,2,1);
    dump("mvc=md(0,1,2,1)", mvc);
    md(1,0) *= 10.;
    dump("md after md(1,0) *= 10.",md);
    md(0,1,2,1) *= Complex(10.,100.);
    dump("md after md(0,1,2,1)*=(10+100i)",md);
        
    Matrix_<Complex> mm(3,4);
    mm = 2390.; 
    cout << "after [3x4 complex] mm = 2390, mm: " << mm << endl;
    for (int i=0; i<mm.nrow(); ++i) {
        for (int j=0; j<mm.ncol(); ++j)
            mm(i,j)=(i+1)*(j+1);
    }
    cout << "after mm(i,j)=(i+1)*(j+1), mm: " << mm << endl;

    Vector mmColScale(4), mmRowScale(3);
    mmColScale[0]=1; mmColScale[1]=10; mmColScale[2]=100; mmColScale[3]=1000;
    mmRowScale[0]=-1000; mmRowScale[1]=-100; mmRowScale[2]=-10;
    Vector_<double> mmRowScaleR(3); for(int i=0;i<3;++i) mmRowScaleR[i]=(float)mmRowScale[i];

    cout << "mm=" << mm << " mmColScale=" << mmColScale << endl;
    mm.colScaleInPlace(mmColScale);
    cout << "after col scale, mm=" << mm;

    mm.colScaleInPlace(mmColScale.elementwiseInvert());
    cout << "after col UNscale mm=" << mm;

    cout <<  " mmRowScale=" << mmRowScale << endl;
    mm.rowScaleInPlace(mmRowScale);
    cout << "after row scale, mm=" << mm;

    mm.rowScaleInPlace(mmRowScale.elementwiseInvert());
    cout << "after row UNscale mm=" << mm;

    mm.rowScaleInPlace(mmRowScaleR);
    cout << "after LONG DOUBLE row scale mm=" << mm;

    cout << "mm.rowScale(double)=" << mm.rowScale(mmRowScaleR);
    cout << "type(mm.rowScale(double))=" << typeid(mm.rowScale(mmRowScaleR)).name() << endl;

    Vector_<Vec2> mmVCol(4); for (int i=0; i<4; ++i) mmVCol[i] = Vec2(4*i, 4*i+1);
    cout << "mm Vec2 colScale=" << mmVCol << endl;
    cout << "mm.colScale(Vec2)=" << mm.colScale(mmVCol);
    cout << "type(mm.colScale(Vec2))=" << typeid(mm.colScale(mmVCol)).name() << endl;
    
    mm *= 1000.; dump("mm(3,4) after *=1000", mm);
    mm.dump("*** mm ***");

    cout << "mm using << op: " << mm;
    cout << "~mm: " << ~mm;
    cout << "mm.norm()=" << mm.norm() << endl;
    cout << "mm(3)=" << mm(3) << endl;
    cout << "mm[2]=" << mm[2] << endl;
    cout << "mm + 2*(-mm)=" << mm + 2*(-mm) << endl;

    Matrix_<Complex> mm2 = mm;
    cout << "mm2=" << mm2;
    cout << "mm2(1,1,1,2)=" << mm2(1,1,1,2);
    mm2(1,1,1,2)=7;
    cout << "after mm2(1112)=7, mm2=" << mm2;

    cout << "mm=" << mm;
    (~mm)(1,1,1,2)=99;
    cout << "after (~mm)(1112)=99, mm=" << mm;

    cout << "\n--- DIAGONAL TEST ---\n";
    cout << "mm2.diag()=" << mm2.diag() << endl;

    mm2 = 99;
    cout << "after mm2=99: mm2=" << mm2;

    mm2(0,2,2,2) = std::complex<double>(-99,-99);
    cout << "after mm2(0,2,2,2) = (-99,-99): mm2=" << mm2;

    mm2.updDiag() *= .001;
    cout << "after mm2.updDiag()*=.001: mm2=" << mm2;

    // scalar assign to a row-shaped matrix should set only
    // the first element to the scalar and all else zero
    // (since that's the diagonal), while
    // scalar assign to a row should set all the elements.
    mm2(0,0,1,mm2.ncol()) = 1; // row shaped block of first row
    mm2[mm2.nrow()-1]      = 1; // last row
    cout << "after mm2(0,0,1,n)=1 and mm2[m-1]=1: mm2=" << mm2;

    // ditto for columns
    mm2(0,1,mm2.nrow(),1) = 2;
    mm2(2) = 2;

    cout << "after mm2(0,1,m,1)=2 and mm2(2)=2: mm2=" << mm2;


    cout << "\n-------- ASSIGN TEST --------\n";
    Matrix_< Vec<2,Complex> > rr(2,3); 
    for (int i=0;i<2;++i) for (int j=0;j<3;++j) 
        rr(i,j) = Vec<2,Complex>(mdc[i]*(j+1), mdc[i]*(j-1));
    Matrix_< Vec<2,Complex> > rrAssign;
    (rrAssign = rr(0,1,2,2)) *= 1000.;
    cout << "rr=" << rr;
    cout << "(rrAssign=rr(0,1,2,2)) *= 1000.; rrAssign=" << rrAssign;
    cout << "rr=" << rr;
    (rrAssign.viewAssign(rr(0,1,2,2))) *= 100.;
    cout << "(rrAssign.viewAssign(rr(0,1,2,2))) *= 100; rrAssign=" << rrAssign;
    cout << "rr=" << rr;
    cout << "-------- END ASSIGN TEST --------\n\n";

    cout << "\n-------- RESIZE KEEP TEST --------\n";
    Vector resizeMe(5); for (int i=0; i<5; ++i) resizeMe[i]=i;
    cout << "resizeMe=" << resizeMe << endl;
    resizeMe.resize(10); 
    cout << "after resize(10), resizeMe=" << resizeMe << endl;
    Vector resizeMe2(5); for (int i=0; i<5; ++i) resizeMe2[i]=i;
    cout << "resizeMe2=" << resizeMe2 << endl;
    resizeMe2.resizeKeep(10); 
    cout << "after resizeKeep(10), resizeMe2=" << resizeMe2 << endl;
    Matrix resizeMem(2,3); for (int i=0; i<2; ++i) for (int j=0; j<3; ++j) resizeMem(i,j)=(i+1)*(j+1);
    cout << "resizeMem(2,3)=" << resizeMem << endl;
    resizeMem.resizeKeep(3,5); 
    cout << "after resizeKeep(3,5), resizeMem=" << resizeMem << endl;
    resizeMem.resizeKeep(2,2);
    cout << "after resizeKeep(2,2), resizeMem=" << resizeMem << endl;
    resizeMem.resize(3,4);
    cout << "after resize(3,4), resizeMem=" << resizeMem << endl;
    cout << "-------- END RESIZE KEEP TEST --------\n\n";

    Mat<3,4,Complex> cm34;
    for (int i=0; i<3; ++i)
        for (int j=0; j<4; ++j)
            cm34(i,j) = mdc[i+j*3];
    cout << "Mat<3,4,Complex>=" << cm34 << endl;
    Vec<4,Complex> cv4(&mdc[6]);
    cout << "Vec<4,Complex>=" << cv4 << endl;
    cout << "Mat<3,4>*Vec<4>=" << cm34*cv4 << endl;
    cout << "Mat<3,4>*Mat<4,3>=" << cm34*~cm34;

    complex<float> zzzz(1.,2.);
    conjugate<float> jjjj(0.3f,0.4f);
    negator<float> nnnn(7.1);
    cout << "zzzz=" << zzzz << " jjjj=" << jjjj << " nnnn=" << nnnn << endl;
    cout << "zzzz*jjjj=" << zzzz*jjjj << endl;

    Matrix_<Complex> cMatrix34(3,4);
    Vector_<Complex> cVector4(4);
    for (int i=0; i<3; ++i) for (int j=0; j<4; ++j) cMatrix34(i,j)=cm34(i,j);
    for (int i=0; i<4; ++i) cVector4[i] = cv4[i];
    cout << "cMatrix34=" << cMatrix34;
    cout << "cVector4=" << cVector4 << endl;
    cout << "cMatrix34*cVector4=" << cMatrix34*cVector4 << endl;
    cout << "cMatrix34*cMatrix43=" << cMatrix34*~cMatrix34;

    Matrix_<Complex> cMatrix34N = -cMatrix34;

    //TODO: not allowed yet
    //Matrix_<Complex> cMatrix34H = ~cMatrix34;

    Vector vv(4), ww;
    vv[0] = 1.; vv[1] = 2.; vv[2] = 3.; vv[3] = 4.;
    cout << "vv(4)=" << vv << endl;
    vv *= 9.; cout << "vv*=9:" << vv << endl;

    Vector vvvv;
    vvvv = vv[2] * vv;
    cout << "vvvv = vv[2]*vv = " << vvvv << endl;

    Matrix_<Mat<2,2, Mat<2,2,double> > > mmm(2,1); 
    mmm = Mat<2,2, Mat<2,2,double> >(Mat<2,2,double>(1));
    cout << "*****>>> mmm=" << mmm << endl;

    Matrix mnm(4,2), nn;
    cout << "mnm(4,2)=" << mnm;
    mnm(0) = vv; 
    mnm(1) = -0.01 * vv;
    cout << "mnm(vv,-.01*vv)=" << mnm;
    cout << "===> mnm.abs()=" << mnm.abs();
    cout << "mnm(1)=" << mnm(1) << endl;
    cout << "mnm(1).abs()=" << mnm(1).abs() << endl;
    cout << "mnm[1]=" << mnm[1] << endl;
    cout << "mnm[1].abs()=" << mnm[1].abs() << endl;
    
    ww = vv;
    ww *= 0.1;
    vv += ww;
    cout << "ww=vv, *=0.1:" << ww << endl;
    cout << "vv+=ww:" << vv << endl; 

    const Real rdata[]={1,2,3,
                        9,.1,14,
                        2,6,9};
    Matrix_<negator<Real> > A(3,3, (negator<Real>*)rdata);

    Matrix AI = A.invert();
    cout << "A=" << A << "AI=" << AI << " A*AI=" << A*AI;

    cout << "A(1,2).real()=" << A(1,2).real() << endl;

    Matrix AH = ~A;
    cout << "~A=" << ~A << "inv(~A)=" << (~A).invert() << "~(inv(A))=" << ~AI;

    A.invertInPlace();
    cout << "after A=inv(A), A=" << A << "norm(A-AI)=" << (A-AI).norm() << endl;

    A.dump("*** A ***");
    AI.dump("*** AI ***");

    Mat<3,3,negator<Real> > smallNegA((negator<Real>*)rdata);
    Mat<3,3,negator<Real> >::TInvert smallNegAI(smallNegA.invert());

    cout << "smallNegA=" << smallNegA << " inv(smallNegA)=" << smallNegAI;
    cout << "smallNegA*inv(smallNegA)=" << smallNegA*smallNegAI << "NORM="
         << (smallNegA*smallNegAI).norm() << endl;
    cout << "inverse(smallNegA)=" << inverse(smallNegA) << endl;

    negator<Real> nnn  = smallNegA(0,0)-smallNegA(1,1);
    Real          nnnr = smallNegA(0,0)-smallNegA(1,1);
    cout << "negator nnn=" << nnn << " real nnnr=" << nnnr << endl;

    nnn  = smallNegA(0,1)-smallNegA(1,0);
    nnnr = smallNegA(0,1)-smallNegA(1,0);
    cout << "negator nnn=" << nnn << " real nnnr=" << nnnr << endl;

    cout << "det(smallNegA)=" << det(smallNegA) 
         << " det(inv(smallNegA))=" << det(smallNegAI) << endl;

    const Real cjdata[]={1,1,  2,2,   3,3, 4,4,
                         9,9, .1,.1, 14,14, 22,22,
                         2,2,  6,6,   9,9,  11,11,
                         .2,.2, .7,.7, 5,5, 10,10};

    // General Lapack inverse.
    Mat<4,4,conjugate<Real> > smallConjA4((conjugate<Real>*)cjdata);
    Mat<4,4,conjugate<Real> >::TInvert smallConjAI4(smallConjA4.invert());


    cout << "smallConjA4=" << smallConjA4 << " inv(smallConjA4)=" << smallConjAI4;
    cout << "smallConjA4*inv(smallConjA4)=" << smallConjA4*smallConjAI4;
    cout << "NORM=" << (smallConjA4*smallConjAI4).norm() << endl;
    cout << "inverse(smallConjA4)=" << inverse(smallConjA4) << endl;
    cout << "norm(inverse-lapackInverse4)=" << (inverse(smallConjA4)-lapackInverse(smallConjA4)).norm() << endl;

    cout << "det(smallConjA4)=" << det(smallConjA4) 
         << " det(inv(smallConjA4))=" << det(smallConjAI4) << endl;

    // Specialized inverse.
    Mat<3,3,conjugate<Real> > smallConjA3((conjugate<Real>*)cjdata);
    Mat<3,3,conjugate<Real> >::TInvert smallConjAI3(smallConjA3.invert());

    cout << "smallConjA3=" << smallConjA3 << " inv(smallConjA3)=" << smallConjAI3;

    cout << "smallConjA3*inv(smallConjA3)=" << smallConjA3*smallConjAI3 << "NORM="
         << (smallConjA3*smallConjAI3).norm() << endl;

    cout << "inverse(smallNegA3)=" << inverse(smallConjA3) << endl;

    cout << "norm(inverse-lapackInverse3)=" << (inverse(smallConjA3)-lapackInverse(smallConjA3)).norm() << endl;

    cout << "det(smallConjA3)=" << det(smallConjA3) 
         << " det(inv(smallConjA3))=" << det(smallConjAI3) << endl;

    cout << "Mat<1,1,conj>=" << smallConjA3.getSubMat<1,1>(1,0) << "inv(...)=" <<
        smallConjA3.getSubMat<1,1>(1,0).invert();
    cout << "Mat11*inv(Mat11)=" << 
        smallConjA3.getSubMat<1,1>(1,0)*smallConjA3.getSubMat<1,1>(1,0).invert();
    cout << "Mat<2,2,conj>=" << smallConjA3.getSubMat<2,2>(0,0) << "inv(...)=" <<
        smallConjA3.getSubMat<2,2>(0,0).invert();
    cout << "Mat22*inv(Mat22)=" << 
        smallConjA3.getSubMat<2,2>(0,0)*smallConjA3.getSubMat<2,2>(0,0).invert();

    try {
    const double ddd[] = { 11, 12, 13, 14, 15, 16 }; 
    const float fddd[] = { 11, 12, 13, 14, 15, 16 }; 
    const complex<float> ccc[] = {  complex<float>(1.,2.),  
                                    complex<float>(3.,4.),
                                    complex<float>(5.,6.),
                                    complex<float>(7.,8.) };
    Vec< 2,complex<float> > cv2(ccc); 
    cout << "cv2=" << cv2 << endl;
    cout << "(cv2+cv2)/1000:" << (cv2 + cv2) / complex<float>(1000,0) 
              << endl; 
    
    cout << "cv2:  " << cv2 << endl;
    cout << "cv2T: " << cv2.transpose() << endl; 
    cout << "-cv2: " << -cv2 << endl;
    cout << "~cv2: " << ~cv2 << endl;
    cout << "-~cv2: " << -(~cv2) << endl;
    cout << "~-cv2: " << ~(-cv2) << endl; 
    cout << "~-cv2*10000: " << (~(-cv2))*10000.f << endl;  
        
    (~cv2)[1]=complex<float>(101.1f,202.3f);
    cout << "after ~cv2[1]=(101.1f,202.3f), cv2= " << cv2 << endl;    
    -(~cv2)[1]=complex<float>(11.1f,22.3f);
    cout << "after -~cv2[1]=(11.1f,22.3f), cv2= " << cv2 << endl; 
        
    Vec<3,float> dv2(fddd), ddv2(fddd+3);
    dv2[2] = 1000;
    cout << 100.* (ddv2 - dv2) / 1000. << endl; 
    
    cout << "dv2=" << dv2 << " dv2.norm()=" << dv2.norm() << endl;
    cout << "cv2=" << cv2 << " cv2.norm()=" << cv2.norm() << endl; 

    dv2 = 100*dv2;
       
    const Vec<3,float> v3c[] = {Vec<3,float>(fddd),Vec<3,float>(fddd+1)};

    Vector_< Vec<2, Vec<3,float> > > vflt(2);
    vflt[0] = Vec<2, Vec<3,float> >(v3c); 
    vflt[1] = vflt[0]*100; 
    vflt[1] = 100*vflt[0]; 
    cout << "vflt 2xvec3=" << vflt << endl;


    cout << "vflt.getNScalarsPerElement()=" << vflt.getNScalarsPerElement() << endl;
    cout << "vflt.getPackedSizeofElement()=" << vflt.getPackedSizeofElement() << endl;
    cout << "sizeof(vflt)=" << sizeof(vflt) << " sizeof(vflt[0])=" << sizeof(vflt[0]) << endl;
    cout << "vflt.hasContiguousData()=" << vflt.hasContiguousData() << endl;
    cout << "vflt.getContiguousScalarDataLength()=" << vflt.getContiguousScalarDataLength() << endl;

    const float* p = vflt.getContiguousScalarData();
    cout << "vflt's raw data: " << endl;
    for (int i=0; i<vflt.getContiguousScalarDataLength(); ++i)
        cout << " " << p[i];
    cout << endl;

    float* newData = new float[12];
    float* oldData;
    for (int i=0; i<12; ++i) newData[i]=(float)-i;
    vflt.swapOwnedContiguousScalarData(newData, 12, oldData);

    cout << "after data swap, vflt=" << vflt << endl;
    cout << "old data =";
    for (int i=0; i<12; ++i) cout << " " << oldData[i];
    cout << endl;
    delete[] oldData;

    }
    catch(const Exception::Base& b)
    {
        cout << b.getMessage() << endl;
    }  

    typedef double P;
    const int N = 1000;
    const int LUP = 1;
    Matrix_<P> big(N,N);
    for (int j=0; j<N; ++j)
        for (int i=0; i<N; ++i)
            big(i,j) = 1+(float)std::rand()/RAND_MAX;
    cout << "big.norm()=" << big.norm() << endl;


    cout << "INVERTING " << LUP << "x" << N << "x" << N 
        << (sizeof(P)==4 ? std::string(" float") : std::string(" double")) << endl << std::flush;

    Matrix_<P> flip(N,N), nrflip(N,N);

    std::clock_t start = std::clock();
    for (int i=0; i<LUP; ++i)
        flip = big.invert();
    cout << "... DONE -- " << (double)(std::clock()-start)/CLOCKS_PER_SEC << " seconds" << endl << std::flush;
    cout << "initial norm=" << big.norm() << " invert.norm()=" << flip.norm() << endl << std::flush;

    Matrix_<P> nrbig(N,N); nrbig=big;
    cout << "NOW INVERT WITH NR, initial norm=" << nrbig.norm() << endl << std::flush;
    start = std::clock();
    for (int i=0; i<LUP; ++i) {
        nrbig=big;
        NR::luinvert(N, &nrbig(0,0), &nrflip(0,0));
    }
    cout << "... DONE -- " << (double)(std::clock()-start)/CLOCKS_PER_SEC << " seconds" << endl << std::flush;
    cout << " nrinverse.norm()=" << nrflip.norm() << endl << std::flush;

    cout << "big.norm()=" << big.norm() << " flip.norm()=" << flip.norm() << endl << std::flush;
    Matrix_<P> ans(N,N);
    cout << "Multiplying ..." << endl << std::flush;
    start = std::clock();
    for (int i=0; i<LUP; ++i)
        Lapack::gemm('n','n',N,N,N,P(1),&big(0,0),N,&flip(0,0),N,P(0),&ans(0,0),N);
    cout << "... DONE -- " << (double)(std::clock()-start)/CLOCKS_PER_SEC << " seconds" << endl << std::flush;
    cout << "RMS (big*flip).norm() - 1=" << std::sqrt(ans.normSqr()/N)-1. << endl << std::flush;

    cout << "Multiplying with NR result ..." << endl << std::flush;
    start = std::clock();
    for (int i=0; i<LUP; ++i)
        Lapack::gemm('n','n',N,N,N,P(1),&big(0,0),N,&nrflip(0,0),N,P(0),&ans(0,0),N);
    cout << "... DONE -- " << (double)(std::clock()-start)/CLOCKS_PER_SEC << " seconds" << endl << std::flush;
    cout << "RMS (big*nrflip).norm() - 1=" << std::sqrt(ans.normSqr()/N)-1. << endl << std::flush;

    cout << "Multiplying by hand ..." << endl << std::flush;
    start = std::clock();
    const P* bigp = &big(0,0);
    const P* flipp = &flip(0,0);
    P*       ansp  = &ans(0,0);
    for (int l=0; l<LUP; ++l) {
        for (int j=0; j<N; ++j) {
            for (int i=0; i<N; ++i) {
                P sum = P(0); const int jN=j*N;
                for (int k=0; k<N; ++k)
                    sum += bigp[k*N+i] * flipp[jN+k];
                ansp[jN+i] = sum;
            }
        }
    }
    cout << "... DONE -- " << (double)(std::clock()-start)/CLOCKS_PER_SEC << " seconds" << endl << std::flush;
    cout << "RMS (big*flip).norm() - 1=" << std::sqrt(ans.normSqr()/N)-1. << endl << std::flush;
    return 0;
  }
  catch (const std::exception& e) {
      cout << e.what() << endl;
  }
}

// Numerical Recipes version 2.11 LU decomp and inversion via backsolve.
// This is the C++ version modified to use column-ordered consecutive
// storage.

namespace NR {

// Return 1d index for column ordered matrix with leading dim N.
#define X(i,j) j*N+i

template <class DP>
void luinvert(const int N, DP* a/*N,N*/, DP* y/*N,N*/) {
    assert(a && y);
    int* indx = new int[N];
    DP d;
    NR::ludcmp(N, a, indx, d);
    for (int j=0; j<N; ++j) {
        DP* col = &y[X(0,j)];
        for (int i=0; i<N; ++i) col[i]=DP(0);
        col[j] = DP(1);
        NR::lubksb(N,a,indx,col); // writes directly into y
    }

    delete[] indx;
}

template <class DP>
void lubksb(const int N, const DP* a/*N,N*/, const int* indx/*N*/, 
                DP* b/*N*/)
{
    int i,ii=0,ip,j;
    DP sum;

    for (i=0;i<N;i++) {
        ip=indx[i];
        sum=b[ip];
        b[ip]=b[i];
        if (ii != 0)
            for (j=ii-1;j<i;j++) sum -= a[X(i,j)]*b[j];
        else if (sum != 0.0)
            ii=i+1;
        b[i]=sum;
    }
    for (i=N-1;i>=0;i--) {
        sum=b[i];
        for (j=i+1;j<N;j++) sum -= a[X(i,j)]*b[j];
        b[i]=sum/a[X(i,i)];
    }
}

template <class DP>
void ludcmp(const int N, DP* a/*N,N*/, int* indx/*N*/, DP &d)
{
    const DP TINY=DP(1.0e-20);
    int i,imax,j,k;
    DP big,dum,sum,temp;

    DP* vv = new DP[N];
    d=DP(1);
    for (i=0;i<N;i++) {
        big=0.0;
        for (j=0;j<N;j++)
            if ((temp=fabs(a[X(i,j)])) > big) big=temp;
        if (big == 0.0) {
            std::cerr << "Singular matrix in routine ludcmp" << endl;
            assert(false);
            exit(1);
        }
        vv[i]=DP(1)/big;
    }
    for (j=0;j<N;j++) {
        for (i=0;i<j;i++) {
            sum=a[X(i,j)];
            for (k=0;k<i;k++) sum -= a[X(i,k)]*a[X(k,j)];
            a[X(i,j)]=sum;
        }
        big=0.0;
        for (i=j;i<N;i++) {
            sum=a[X(i,j)];
            for (k=0;k<j;k++) sum -= a[X(i,k)]*a[X(k,j)];
            a[X(i,j)]=sum;
            if ((dum=vv[i]*fabs(sum)) >= big) {
                big=dum;
                imax=i;
            }
        }
        if (j != imax) {
            for (k=0;k<N;k++) {
                dum=a[X(imax,k)];
                a[X(imax,k)]=a[X(j,k)];
                a[X(j,k)]=dum;
            }
            d = -d;
            vv[imax]=vv[j];
        }
        indx[j]=imax;
        if (a[X(j,j)] == 0.0) a[X(j,j)]=TINY;
        if (j != N-1) {
            dum=DP(1)/(a[X(j,j)]);
            for (i=j+1;i<N;i++) a[X(i,j)] *= dum;
        }
    }

    delete[] vv;
}


} // namespace NR