1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
|
/* -------------------------------------------------------------------------- *
* Simbody(tm): SimTKmath *
* -------------------------------------------------------------------------- *
* This is part of the SimTK biosimulation toolkit originating from *
* Simbios, the NIH National Center for Physics-Based Simulation of *
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody. *
* *
* Portions copyright (c) 2011-12 Stanford University and the Authors. *
* Authors: Michael Sherman *
* Contributors: *
* *
* Licensed under the Apache License, Version 2.0 (the "License"); you may *
* not use this file except in compliance with the License. You may obtain a *
* copy of the License at http://www.apache.org/licenses/LICENSE-2.0. *
* *
* Unless required by applicable law or agreed to in writing, software *
* distributed under the License is distributed on an "AS IS" BASIS, *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
* See the License for the specific language governing permissions and *
* limitations under the License. *
* -------------------------------------------------------------------------- */
/* Tests for low-level geometric primitives and algorithms. */
#include "SimTKmath.h"
#include <vector>
#include <exception>
using namespace SimTK;
using namespace std;
static double Tol = NTraits<double>::getSignificant();
static float fTol = NTraits<float>::getSignificant();
template <class P>
static void checkSphere(const Geo::Sphere_<P>& sph, const Array_<Vec<3,P> > pts) {
const P radius = sph.getRadius();
for (int i=0; i < (int)pts.size(); ++i) {
const P dist = (pts[i]-sph.getCenter()).norm();
SimTK_TEST(dist <= radius);
}
}
static void addOctohedron(vector<Vec3>& vertices, vector<int>& faceIndices,
Vec3 offset) {
int start = (int)vertices.size();
vertices.push_back(Vec3(0, 1, 0)+offset);
vertices.push_back(Vec3(1, 0, 0)+offset);
vertices.push_back(Vec3(0, 0, 1)+offset);
vertices.push_back(Vec3(-1, 0, 0)+offset);
vertices.push_back(Vec3(0, 0, -1)+offset);
vertices.push_back(Vec3(0, -1, 0)+offset);
int faces[8][3] = {{0, 2, 1}, {0, 3, 2}, {0, 4, 3}, {0, 1, 4},
{5, 1, 2}, {5, 2, 3}, {5, 3, 4}, {5, 4, 1}};
for (int i = 0; i < 8; i++)
for (int j = 0; j < 3; j++)
faceIndices.push_back(faces[i][j]+start);
}
// From Peter Eastman's tri mesh tests.
void testTriMeshBoundingSphere() {
Random::Uniform random(0, 10);
Real ratio=0, worst=0, best=Infinity;
const int NTrials = 100;
for (int i = 0; i < NTrials; i++) {
// Create a mesh consisting of a random number of octahedra at random
// places.
vector<Vec3> vertices;
vector<int> faceIndices;
int numOctohedra = random.getIntValue()+1;
for (int j = 0; j < numOctohedra; j++)
addOctohedron(vertices, faceIndices,
Vec3(random.getValue(), random.getValue(), random.getValue()));
ContactGeometry::TriangleMesh mesh(vertices, faceIndices);
// Verify that all points are inside the bounding sphere.
Vec3 center;
Real radius;
mesh.getBoundingSphere(center, radius);
for (int j = 0; j < mesh.getNumVertices(); j++) {
Real dist = (center-mesh.getVertexPosition(j)).norm();
SimTK_TEST(dist <= radius);
}
// Make sure the bounding sphere is reasonably compact.
Vec3 boxRadius = 0.5*mesh.getOBBTreeNode().getBounds().getSize();
SimTK_TEST(radius <= boxRadius.norm());
// Compare with fast & crude Ritter sphere. On lucky occasions the
// Ritter sphere can be just as good, and then roundoff might make
// it trivially better but it shouldn't ever actually *be* better.
Geo::Sphere ritter = Geo::Point::calcApproxBoundingSphere(vertices);
SimTK_TEST(radius <= ritter.getRadius()*(1.01));
const Real bsoas = cube(radius/ritter.getRadius());
ratio += bsoas;
if (bsoas > worst) worst=bsoas;
if (bsoas < best) best=bsoas;
}
ratio /= NTrials;
printf("avg ratio=%g worst=%g best=%g\n", ratio, worst, best);
SimTK_TEST(ratio <= Real(.85)); // volume ratio
SimTK_TEST(worst <= Real(1.3));
}
// Generate many sets of random points, at difficult far-away places, then
// generate single- and double-precision bounding spheres and check them
// for admissibility (all points in) and optimality (no bigger than needed).
// For these the right answer is hard to come by so we can only check that
// the minimal spheres are never larger than Ritter spheres.
void testRandomPoints() {
Random::Uniform random(0, 1000);
Array_<Vec3> pts;
Array_<fVec3> fpts;
Real ratio=0, fratio=0, worst=0, fworst=0, best=Infinity, fbest=Infinity;
const int NTrials = 10000;
// TODO: At around 5,000,000 a case is generated where the "minimal" sphere
// is more than 20% larger than the (bad) Ritter sphere.
//const int NTrials = 10000000;
for (int trial=0; trial<NTrials; ++trial) {
pts.clear(); fpts.clear();
int numPoints = random.getIntValue()+1;
Vec3 offs = Test::randDouble()*1000*Test::randVec3();
fVec3 foffs((float)offs[0],(float)offs[1],(float)offs[2]);
Real scale = offs.norm();
for (int p=0; p<numPoints; ++p) {
Vec3 pt(Test::randVec3());
fVec3 fpt((float)pt[0],(float)pt[1],(float)pt[2]);
pts.push_back(pt+offs); fpts.push_back(fpt+foffs);
}
Geo::Sphere bs = Geo::Point::calcBoundingSphere(pts);
checkSphere(bs, pts);
Geo::Sphere_<float> fbs =
Geo::Point_<float>::calcBoundingSphere(fpts);
checkSphere(fbs, fpts);
Geo::Sphere as = Geo::Point::calcApproxBoundingSphere(pts);
checkSphere(as, pts);
Geo::Sphere_<float> fas =
Geo::Point_<float>::calcApproxBoundingSphere(fpts);
checkSphere(fas, fpts);
const Real bsoas = cube(bs.getRadius()/as.getRadius());
const Real fbsofas = cube((Real)(fbs.getRadius()/fas.getRadius()));
ratio += bsoas; fratio += fbsofas;
if (bsoas > worst) worst=bsoas;
if (bsoas < best) best=bsoas;
if (fbsofas > fworst) fworst=fbsofas;
if (fbsofas < fbest) fbest=fbsofas;
// The single and double precision spheres should be the same size
// to within a small error. The Ritter sphere is more sensitive.
const float frac = std::max((float)scale,1.f)*NTraits<float>::getSqrtEps();
//if (!Test::numericallyEqual((float)bs.getRadius(), fbs.getRadius(), 1, frac))
// printf("bs=%g fbs=%g\n", bs.getRadius(), fbs.getRadius());
SimTK_TEST_EQ_TOL((float)bs.getRadius(), fbs.getRadius(), 0.2f);
SimTK_TEST_EQ_TOL((float)as.getRadius(), fas.getRadius(), 0.2f);
// Compare Welzl spheres with fast & crude Ritter spheres. On lucky
// occasions the Ritter spheres can be just as good, and then roundoff
// might make them trivially better but they shouldn't ever actually
// *be* better. TODO: check at the end. There are obscure cases
// where the minimal sphere is too big.
//SimTK_TEST(bs.getRadius() <= as.getRadius()*(1.2));
//SimTK_TEST(fbs.getRadius() <= fas.getRadius()*(1.2f));
}
ratio /= NTrials; fratio /= NTrials;
printf("avg ratio=%g worst=%g best=%g\n", ratio, worst, best);
printf("avg fratio=%g worst=%g best=%g\n", fratio, fworst, fbest);
SimTK_TEST(ratio <= Real(.85)); // volume ratio
SimTK_TEST(worst <= Real(1.3));
SimTK_TEST(fratio <= Real(.85)); // volume ratio
SimTK_TEST(fworst <= Real(1.3));}
void testCoplanarPoints() {
// TODO
}
void testCosphericalPoints() {
// TODO
}
void testCollinearPoints() {
Random::Uniform random(0, 1000);
Array_<Vec3> pts;
Array_<fVec3> fpts;
for (int trial=0; trial<1000; ++trial) {
pts.clear(); fpts.clear();
int numPoints = random.getIntValue()+1;
Vec3 offs = Test::randDouble()*1000*Test::randVec3();
UnitVec3 dir(Test::randVec3());
fVec3 foffs((float)offs[0],(float)offs[1],(float)offs[2]);
fUnitVec3 fdir((float)dir[0],(float)dir[1],(float)dir[2]);
int minpos, maxpos;
Real minval=Infinity, maxval=-Infinity;
for (int p=0; p<numPoints; ++p) {
Real pos = 100*Test::randDouble();
if (pos > maxval) maxval=pos, maxpos=p;
if (pos < minval) minval=pos, minpos=p;
Vec3 pt(offs+pos*dir);
fVec3 fpt((float)pt[0],(float)pt[1],(float)pt[2]);
pts.push_back(pt); fpts.push_back(fpt);
}
Real radius = (pts[maxpos]-pts[minpos]).norm()/2;
Geo::Sphere bs = Geo::Point::calcBoundingSphere(pts);
checkSphere(bs, pts);
Geo::Sphere_<float> fbs =
Geo::Point_<float>::calcBoundingSphere(fpts);
checkSphere(fbs, fpts);
Geo::Sphere as = Geo::Point::calcApproxBoundingSphere(pts);
checkSphere(as, pts);
Geo::Sphere_<float> fas =
Geo::Point_<float>::calcApproxBoundingSphere(fpts);
checkSphere(fas, fpts);
Real scale = std::max(std::max(max(offs.abs()), radius), One);
float ftol = float(scale)*fTol;
double tol = scale*Tol;
SimTK_TEST_EQ_TOL(bs.getRadius(), radius, tol);
SimTK_TEST_EQ_TOL(fbs.getRadius(), radius, ftol);
SimTK_TEST_EQ_TOL(as.getRadius(), radius, tol);
SimTK_TEST_EQ_TOL(fas.getRadius(), radius, ftol);
// Repeat test with random noise added.
for (int p=0; p<numPoints; ++p) {
Vec3 noise(Test::randVec3());
fVec3 fnoise((float)noise[0],(float)noise[1],(float)noise[2]);
pts[p] += SignificantReal*noise;
fpts[p] += NTraits<float>::getSignificant()*fnoise;
}
bs = Geo::Point::calcBoundingSphere(pts);
checkSphere(bs, pts);
fbs = Geo::Point_<float>::calcBoundingSphere(fpts);
checkSphere(fbs, fpts);
as = Geo::Point::calcApproxBoundingSphere(pts);
checkSphere(as, pts);
fas = Geo::Point_<float>::calcApproxBoundingSphere(fpts);
checkSphere(fas, fpts);
SimTK_TEST_EQ_TOL(bs.getRadius(), radius, tol);
SimTK_TEST_EQ_TOL(fbs.getRadius(), radius, ftol);
SimTK_TEST_EQ_TOL(as.getRadius(), radius, tol);
SimTK_TEST_EQ_TOL(fas.getRadius(), radius, ftol);
}
}
void testCollocatedPoints() {
Random::Uniform random(0, 1000);
Array_<Vec3> pts;
Array_<fVec3> fpts;
for (int trial=0; trial<1000; ++trial) {
pts.clear(); fpts.clear();
int numPoints = random.getIntValue()+1;
Vec3 offs = Test::randDouble()*1000*Test::randVec3();
fVec3 foffs((float)offs[0],(float)offs[1],(float)offs[2]);
Real scale = offs.norm();
for (int p=0; p<numPoints; ++p) {
Vec3 pt(offs);
fVec3 fpt((float)pt[0],(float)pt[1],(float)pt[2]);
pts.push_back(pt); fpts.push_back(fpt);
}
Geo::Sphere bs = Geo::Point::calcBoundingSphere(pts);
checkSphere(bs, pts);
Geo::Sphere_<float> fbs =
Geo::Point_<float>::calcBoundingSphere(fpts);
checkSphere(fbs, fpts);
Geo::Sphere as = Geo::Point::calcApproxBoundingSphere(pts);
checkSphere(as, pts);
Geo::Sphere_<float> fas =
Geo::Point_<float>::calcApproxBoundingSphere(fpts);
checkSphere(fas, fpts);
SimTK_TEST(bs.getRadius() < SqrtEps)
SimTK_TEST(fbs.getRadius() < NTraits<float>::getSqrtEps());
SimTK_TEST(as.getRadius() < SqrtEps)
SimTK_TEST(fas.getRadius() < NTraits<float>::getSqrtEps());
// Repeat test with random noise added.
for (int p=0; p<numPoints; ++p) {
Vec3 noise(Test::randVec3());
fVec3 fnoise((float)noise[0],(float)noise[1],(float)noise[2]);
pts[p] += SignificantReal*noise;
fpts[p] += NTraits<float>::getSignificant()*fnoise;
}
bs = Geo::Point::calcBoundingSphere(pts);
checkSphere(bs, pts);
fbs = Geo::Point_<float>::calcBoundingSphere(fpts);
checkSphere(fbs, fpts);
as = Geo::Point::calcApproxBoundingSphere(pts);
checkSphere(as, pts);
fas = Geo::Point_<float>::calcApproxBoundingSphere(fpts);
checkSphere(fas, fpts);
}
}
void testBox() {
Geo::Box box(Vec3(3,4,2)); // half lengths
SimTK_TEST(box.findVolume() == 8*24);
SimTK_TEST(box.getOrderedAxis(0) == ZAxis); // smallest
SimTK_TEST(box.getOrderedAxis(1) == XAxis); // medium
SimTK_TEST(box.getOrderedAxis(2) == YAxis); // largest
Geo::AlignedBox abox(Vec3(0), Vec3(1,2,3));
abox.setCenter(Vec3(3,4,2)+Vec3(1,2,3)-Vec3(1e-6));
SimTK_TEST(box.intersectsAlignedBox(abox));
abox.setCenter(Vec3(3,4,2)+Vec3(1,2,3)+Vec3(1e-6));
SimTK_TEST(!box.intersectsAlignedBox(abox));
Geo::OrientedBox obox(Transform(), Vec3(1,2,3));
SimTK_TEST(box.mayIntersectOrientedBox(obox)); // centers overlap
SimTK_TEST(box.intersectsOrientedBox(obox));
obox.setTransform(Vec3(10,0,0)); // x axis should separate
SimTK_TEST(!box.mayIntersectOrientedBox(obox));
SimTK_TEST(!box.intersectsOrientedBox(obox));
obox.setTransform(Vec3(3.123,-1.3,.7)); // parallel boxes that intersect
SimTK_TEST(box.mayIntersectOrientedBox(obox));
SimTK_TEST(box.intersectsOrientedBox(obox));
// Non-intersecting box for which no face will serve as separator.
// In this case the fast method can't tell they are separated.
obox.setTransform(Transform(
Rotation(BodyRotationSequence, Pi/4, XAxis, Pi/8, YAxis, -Pi/4, ZAxis),
Vec3(1.5, -5, 5.25)));
SimTK_TEST(box.mayIntersectOrientedBox(obox));
SimTK_TEST(!box.intersectsOrientedBox(obox));
// This should make them intersect.
obox.setTransform(Transform(
Rotation(BodyRotationSequence, Pi/4, XAxis, Pi/8, YAxis, -Pi/4, ZAxis),
Vec3(1.5, -5, 4.5)));
SimTK_TEST(box.mayIntersectOrientedBox(obox));
SimTK_TEST(box.intersectsOrientedBox(obox));
}
void testMiscGeo() {
// TEST GEO::POINT::POINTS ARE NUMERICALLY COINCIDENT
Vec3 p0, p1, p2, p3;
p1 = Vec3(1,2,3);
p2 = Vec3(2,3,4);
p3 = p1;
SimTK_TEST(!Geo::Point::pointsAreNumericallyCoincident(p1,p2));
SimTK_TEST(Geo::Point::pointsAreNumericallyCoincident(p1,p3));
p3 = p1 + Eps*p2;
// Default tolerance is larger than Eps.
SimTK_TEST(Geo::Point::pointsAreNumericallyCoincident(p1,p3));
// This should be enough to separate them if they are near the origin.
p3 = p1 + 10*Geo::getDefaultTol<Real>()*p2;
SimTK_TEST(!Geo::Point::pointsAreNumericallyCoincident(p1,p3));
// Shifting by 100 should mean that they are indistinguishable when
// perturbed by 10*tol.
p3 = 100.*p1 + 10*Geo::getDefaultTol<Real>()*p2;
SimTK_TEST(Geo::Point::pointsAreNumericallyCoincident(100.*p1,p3));
// But they should be distinguishable at 1000*tol.
p3 = 100.*p1 + 1000*Geo::getDefaultTol<Real>()*p2;
SimTK_TEST(!Geo::Point::pointsAreNumericallyCoincident(100.*p1,p3));
// And again indistinguishable at a looser tolerance.
SimTK_TEST(Geo::Point::pointsAreNumericallyCoincident(100.*p1,p3,
10000.*Geo::getDefaultTol<Real>()));
Vec3 q0, q1, x0, x1; UnitVec3 u0, u1;
Vec2 closest; bool parallel;
p0 = Vec3(-1.1,0,0); q0 = Vec3(2.1,0,0); u0 = UnitVec3(q0-p0);
p1 = Vec3(1.1,-1.2,0); q1 = Vec3(1.1,1.3,0); u1 = UnitVec3(q1-p1);
Geo::findClosestPointsOfTwoLines(p0, u0, p1, u1, x0, x1, parallel);
SimTK_TEST_EQ(x0, Vec3(1.1,0,0)); SimTK_TEST_EQ(x1, Vec3(1.1,0,0));
SimTK_TEST(!parallel);
// Lift line 1 up 3 units in z.
p1 = Vec3(1.1,-1,3); q1 = Vec3(1.1,1,3); u1 = UnitVec3(q1-p1);
Geo::findClosestPointsOfTwoLines(p0, u0, p1, u1, x0, x1, parallel);
SimTK_TEST_EQ(x0, Vec3(1.1,0,0)); SimTK_TEST_EQ(x1, Vec3(1.1,0,3));
SimTK_TEST(!parallel);
// Make p1 exactly parallel to p0 but offset in y and z
p1 = 3*p0+Vec3(0,1,2); q1 = 2*q0+Vec3(0,1,2); u1 = UnitVec3(q1-p1);
Geo::findClosestPointsOfTwoLines(p0, u0, p1, u1, x0, x1, parallel);
SimTK_TEST_EQ(x0, Vec3(-2.2,0,0)); SimTK_TEST_EQ(x1, Vec3(-2.2,1,2));
SimTK_TEST(parallel);
// Bend p1 a little but still effectively parallel.
q1 += 0.1*SignificantReal*Vec3(0,0,1); u1 = UnitVec3(q1-p1);
Geo::findClosestPointsOfTwoLines(p0, u0, p1, u1, x0, x1, parallel);
SimTK_TEST_EQ(x0, Vec3(-2.2,0,0)); SimTK_TEST_EQ(x1, Vec3(-2.2,1,2));
SimTK_TEST(parallel);
// Now bend it a lot.
q1 += 1000*SignificantReal*Vec3(0,0,1); u1 = UnitVec3(q1-p1);
Geo::findClosestPointsOfTwoLines(p0, u0, p1, u1, x0, x1, parallel);
SimTK_TEST(!parallel);
// Nearest points will be very far away from the origin, but
// should still be close to each other.
SimTK_TEST((x1-x0).norm() < 3);
}
int main() {
#ifdef __i386__
return 0;
#endif
SimTK_START_TEST("TestGeo");
SimTK_SUBTEST(testMiscGeo);
SimTK_SUBTEST(testBox);
SimTK_SUBTEST(testTriMeshBoundingSphere);
SimTK_SUBTEST(testRandomPoints);
SimTK_SUBTEST(testCollinearPoints);
SimTK_SUBTEST(testCollocatedPoints);
SimTK_END_TEST();
}
|