1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
|
/* -------------------------------------------------------------------------- *
* Simbody(tm): Gazebo Inelastic Collision *
* -------------------------------------------------------------------------- *
* This is part of the SimTK biosimulation toolkit originating from *
* Simbios, the NIH National Center for Physics-Based Simulation of *
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody. *
* *
* Portions copyright (c) 2013 Stanford University and the Authors. *
* Authors: Michael Sherman *
* Contributors: *
* *
* Licensed under the Apache License, Version 2.0 (the "License"); you may *
* not use this file except in compliance with the License. You may obtain a *
* copy of the License at http://www.apache.org/licenses/LICENSE-2.0. *
* *
* Unless required by applicable law or agreed to in writing, software *
* distributed under the License is distributed on an "AS IS" BASIS, *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
* See the License for the specific language governing permissions and *
* limitations under the License. *
* -------------------------------------------------------------------------- */
/* This test is drawn from the Open Source Robotics Foundation Gazebo physics
regression test "CollisionTest". In the original test there is a cube and
a sphere, both of unit mass and same half-dimension 0.5. Initially they are 1
unit apart in x, with the block to the left of the sphere. The block is
accelerated to the right with a discrete applied force of 1000 applied for 1ms
for a total impulse of 1, which should produce a velocity of +1 that is steady
until the block hits the stationary sphere. The collision is supposed to be
fully inelastic (coefficient of restitution=0), so there should be no rebound
and the two objects should move off to the right together at half the impact
velocity.
The test runs with fixed 1ms steps and calculates the expected result by
integrating manually. The position and velocity changes during the first step
with the 1000 unit force active are
x(.001) = 1/2 a t^2 = 1/2 1e3 1e-6 = .0005 length units
v(.001) = a t = 1e3 1e-3 = 1 velocity unit
After that first step, all subsequent steps prior to the collision have
deltaX = v t = 1 1e-3 = .001 length units
deltaV = 0
We would like the collision to occur exactly at 1s, that is, between steps 1000
and 1001. The position x(1)=.0005 + 999*.001=.9995. So if we were going to apply
the entire impulse during the first step we would place the sphere initially so
that the block surface and sphere surface are separated by .9995. But read on.
NOTE: to avoid problems with first-order integrators (explanation below), we're
modifying the test here to apply 1/10th of the impulse over the first 10 steps
(.01 seconds) rather than all in the first step. Then
x(.01) = 1/2 a t^2 = 1/2 1e2 1e-4 = .005 length units
v(.01) = a t = 1e2 1e-2 = 1 velocity unit
At 1s we'll have x(1)=.005 + 990*.001=.995. So we'll set the initial separation
to .995 to get a collision at 1s (between steps 1000 and 1001).
Why first order integrators cause trouble
-----------------------------------------
While any integrator can get the velocity correct in one step, no first order
integrator will be able to calculate x(.001) correctly in a single step.
Explicit Euler: v(.001)=v(0) + h*a(0)=1
x(.001)=x(0) + h*v(0)=0 <--
Semi-explicit Euler: v(.001)=v(0) + h*a(0)=1
x(.001)=x(0) + h*v(.001)=.001. <--
Semi-explicit Euler 2: v'(.0005)=v(0)+h/2 a(0)=.5
x'(.0005)=x(0)+h/2 v'(.0005)=.00025
v(.001)=v'(.0005)+h/2 a'(.0005)=1
x(.001)=x'(.0005)+h/2 v(.001)=.00075 <--
But any 2nd order integrator would give the correct result, for example
Explicit trapezoid rule: v'(.001)=v(0)+h*a(0)=1
x(.001)=x(0)+h*(v(0)+v'(.001))/2 =.0005 <--
Explicit midpoint rule: v'(.0005)=v(0)+h/2*a(0)=1/2
x(.001)=x(0)+h*v'(.0005)=.0005 <--
By spreading the impulse over several steps we substantially reduce the overall
error. For example, after ten steps we get
ExplicitEuler: x(.01)=.0045
Semi-explicit Euler: x(.01)=.0055
Semi-explicit Euler 2: x(.01)=.00525
any of which we'll deem close enough to the right answer of .005.
*/
#include "Simbody.h"
#include <cassert>
#include <iostream>
using std::cout; using std::endl;
using namespace SimTK;
//#define USE_VISUALIZER
// Write interesting integrator info to stdout.
static void dumpIntegratorStats(const Integrator& integ);
const Real Radius = 0.5;
const Real Mass = 1;
// Define an extremely stiff, lossy material.
const Real Stiffness = 1e8;
const Real Dissipation = 1000;
const Real MaxStepSize = Real(1/1000.); // 1 ms (1000 Hz)
const int DrawEveryN = 33; // 33 ms frame update (30.3 Hz)
const Real SimTime = 2;
const int NSteps = // make this a whole number of viz frames
DrawEveryN*(int(SimTime/MaxStepSize/DrawEveryN+0.5));
const Real TotalImpulse = 1; // Applied only on the first step
const Real StepForce = TotalImpulse/MaxStepSize;
const Real IntegAccuracy = 1e-3;
const Real CheckAccuracy = 1e-3;
struct MyMultibodySystem {
MyMultibodySystem()
: m_system(), m_matter(m_system),
m_tracker(m_system), m_contact(m_system,m_tracker),
m_forces(m_system), m_discrete(m_forces,m_matter)
#ifdef USE_VISUALIZER
, m_viz(m_system)
#endif
{
ContactMaterial lossyMaterial(Stiffness,
Dissipation,
0, // mu_static
0, // mu_dynamic
0); // mu_viscous
// no gravity
Body::Rigid sphereBody
(MassProperties(Mass, Vec3(0), UnitInertia::sphere(Radius)));
sphereBody.addDecoration(Transform(), DecorativeSphere(Radius));
sphereBody.addContactSurface(Transform(),
ContactSurface(ContactGeometry::Sphere(Radius),
lossyMaterial));
// TODO: using inscribed sphere as contact shape within the block.
Body::Rigid cubeBody
(MassProperties(Mass, Vec3(0), UnitInertia::sphere(Radius)));
cubeBody.addDecoration(Transform(), DecorativeBrick(Vec3(Radius)));
cubeBody.addContactSurface(Transform(),
ContactSurface(ContactGeometry::Sphere(Radius), // TODO!
lossyMaterial));
MobilizedBody Ground = m_matter.Ground();
m_cube = MobilizedBody::Slider(Ground, Transform(Vec3(0,2,0)),
cubeBody, Transform(Vec3(0)));
m_sphere = MobilizedBody::Slider(Ground, Transform(Vec3(2-.005,2,0)),
sphereBody, Transform(Vec3(0)));
m_system.realizeTopology();
#ifdef USE_VISUALIZER
m_viz.setShowFrameNumber(true);
m_viz.setShowSimTime(true);
#endif
}
MultibodySystem m_system;
SimbodyMatterSubsystem m_matter;
ContactTrackerSubsystem m_tracker;
CompliantContactSubsystem m_contact;
GeneralForceSubsystem m_forces;
Force::DiscreteForces m_discrete;
#ifdef USE_VISUALIZER
Visualizer m_viz;
#endif
MobilizedBody m_cube;
MobilizedBody m_sphere;
};
void runOnce(const MyMultibodySystem& mbs, Integrator& integ, int nsteps)
{
integ.setAllowInterpolation(false);
integ.setAccuracy(IntegAccuracy);
integ.initialize(mbs.m_system.getDefaultState());
printf(
"\n--------------------------------------------------------------------\n");
printf(
"Test with order %d integator %s, Accuracy=%g, MaxStepSize=%g #steps=%d\n",
integ.getMethodMinOrder(), integ.getMethodName(),
integ.getAccuracyInUse(), MaxStepSize, nsteps);
// These variables are the manually calculated values for the cube's
// x coordinate and x velocity in Ground. We'll calculate these assuming
// a perfect inelastic collision occurring at t=1 and then compare with
// the approximate solution produced by the integrator.
Real x=0, v=0;
unsigned stepNum = 0;
while (true) {
// Get access to State being advanced by the integrator. Interpolation
// must be off so that we're modifying the actual trajectory.
State& state = integ.updAdvancedState();
#ifdef USE_VISUALIZER
// Output a frame to the Visualizer if it is time.
if (stepNum % DrawEveryN == 0)
mbs.m_viz.report(state);
#endif
if (stepNum == nsteps)
break;
++stepNum;
mbs.m_discrete.clearAllBodyForces(state);
if (stepNum <= 10)
mbs.m_discrete.setOneBodyForce(state, mbs.m_cube,
SpatialVec(Vec3(0), Vec3(StepForce/10,0,0)));
// Advance time by MaxStepSize. Might take multiple internal steps to
// get there, depending on difficulty and required accuracy.
const Real tNext = stepNum * MaxStepSize;
do {integ.stepTo(tNext,tNext);} while (integ.getTime() < tNext);
// From Gazebo test code in physics.cc:
// integrate here to see when the collision should happen
if (stepNum <= 10) {
const Real a = StepForce/10/Mass; // a is acceleration
x += v*MaxStepSize + a * square(MaxStepSize)/2; // dx = 1/2 a t^2
v += a * MaxStepSize; // dv = a t
} else {
const Real impulse = StepForce*MaxStepSize;
if (stepNum >= 1000)
v = impulse / (2*Mass); //inelastic col. w/equal mass
x += v * MaxStepSize;
}
mbs.m_system.realize(state);
//printf("after step %d t=%g (h=%g): px=%g,%g vx=%g,%g ax=%g,%g\n",
// stepNum, state.getTime(),integ.getPreviousStepSizeTaken(),
// mbs.m_cube.getBodyOriginLocation(state)[0],
// mbs.m_sphere.getBodyOriginLocation(state)[0],
// mbs.m_cube.getBodyOriginVelocity(state)[0],
// mbs.m_sphere.getBodyOriginVelocity(state)[0],
// mbs.m_cube.getBodyOriginAcceleration(state)[0],
// mbs.m_sphere.getBodyOriginAcceleration(state)[0]);
//printf(" x=%g v=%g\n", x, v);
// Allow some uncertainty between step 1000 and 1001.
if (stepNum != 1000) {
SimTK_TEST_EQ_TOL(mbs.m_cube.getBodyOriginLocation(state)[0], x,
CheckAccuracy);
SimTK_TEST_EQ_TOL(mbs.m_cube.getBodyOriginVelocity(state)[0], v,
CheckAccuracy);
}
}
dumpIntegratorStats(integ);
}
int main() {
SimTK_START_TEST("GazeboInelasticCollision");
// Create the system.
MyMultibodySystem mbs;
RungeKuttaMersonIntegrator rkm(mbs.m_system);
RungeKutta3Integrator rk3(mbs.m_system);
RungeKutta2Integrator rk2(mbs.m_system);
SemiExplicitEuler2Integrator sexpeul2(mbs.m_system);
ExplicitEulerIntegrator expeul(mbs.m_system);
// Fixed step integrators can't adjust to the compliant impact needs.
SemiExplicitEulerIntegrator sexpeul1(mbs.m_system, MaxStepSize);
ExplicitEulerIntegrator expeulFixed(mbs.m_system, MaxStepSize);
SimTK_SUBTEST3(runOnce, mbs, rkm, NSteps);
SimTK_SUBTEST3(runOnce, mbs, rk3, NSteps);
SimTK_SUBTEST3(runOnce, mbs, rk2, NSteps);
SimTK_SUBTEST3(runOnce, mbs, sexpeul2, NSteps);
SimTK_SUBTEST3(runOnce, mbs, expeul, NSteps);
// These are fixed-step integrators so can't handle the
// compliant impact which demands a few smaller steps for stability
SimTK_SUBTEST3(runOnce, mbs, sexpeul1, 990); // stop before impact
SimTK_SUBTEST3(runOnce, mbs, expeulFixed, 990);
//sherm 130617: this isn't accurate enough; I think it has a serious
// bug in its error estimator
//VerletIntegrator verlet(mbs.m_system);
//SimTK_SUBTEST2(runOnce, mbs, verlet);
//this has poor accuracy control also
//RungeKuttaFeldbergIntegrator rkf(mbs.m_system);
//SimTK_SUBTEST3(runOnce, mbs, rkf, NSteps);
SimTK_END_TEST();
}
//==============================================================================
// DUMP INTEGRATOR STATS
//==============================================================================
static void dumpIntegratorStats(const Integrator& integ) {
const int evals = integ.getNumRealizations();
std::cout << "\nDone -- simulated " << integ.getTime() << "s with "
<< integ.getNumStepsTaken() << " steps, avg step="
<< (1000*integ.getTime())/integ.getNumStepsTaken() << "ms "
<< (1000*integ.getTime())/evals << "ms/eval\n";
printf("Used Integrator %s at accuracy %g:\n",
integ.getMethodName(), integ.getAccuracyInUse());
printf("# STEPS/ATTEMPTS = %d/%d\n", integ.getNumStepsTaken(),
integ.getNumStepsAttempted());
printf("# ERR TEST FAILS = %d\n", integ.getNumErrorTestFailures());
printf("# REALIZE/PROJECT = %d/%d\n", integ.getNumRealizations(),
integ.getNumProjections());
}
|