1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
|
/* -------------------------------------------------------------------------- *
* Simbody(tm) *
* -------------------------------------------------------------------------- *
* This is part of the SimTK biosimulation toolkit originating from *
* Simbios, the NIH National Center for Physics-Based Simulation of *
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody. *
* *
* Portions copyright (c) 2008-12 Stanford University and the Authors. *
* Authors: Peter Eastman *
* Contributors: Michael Sherman *
* *
* Licensed under the Apache License, Version 2.0 (the "License"); you may *
* not use this file except in compliance with the License. You may obtain a *
* copy of the License at http://www.apache.org/licenses/LICENSE-2.0. *
* *
* Unless required by applicable law or agreed to in writing, software *
* distributed under the License is distributed on an "AS IS" BASIS, *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
* See the License for the specific language governing permissions and *
* limitations under the License. *
* -------------------------------------------------------------------------- */
#include "SimTKsimbody.h"
#include "SimTKcommon/Testing.h"
#include "../src/ConstraintImpl.h"
using namespace SimTK;
using namespace std;
const int NUM_BODIES = 10;
const Real BOND_LENGTH = 0.5;
// Keep constraints satisfied to this tolerance during testing.
static const Real ConstraintTol = 1e-10;
// Compare two quantities that are expected to agree to constraint tolerance.
#define CONSTRAINT_TEST(a,b) SimTK_TEST_EQ_TOL(a,b, ConstraintTol)
// Compare two quantities that should have been calculated to machine tolerance
// given the problem size, which we'll characterize by the number of mobilities.
// (times 10 after I mangled the numbers -- sherm 110831).
#define MACHINE_TEST(a,b) SimTK_TEST_EQ_SIZE(a,b, 10*state.getNU())
/**
* Create a system consisting of a chain of bodies.
*/
MultibodySystem& createSystem() {
MultibodySystem* system = new MultibodySystem();
SimbodyMatterSubsystem matter(*system);
GeneralForceSubsystem forces(*system);
const Real mass = 1.23;
Body::Rigid body(MassProperties(mass, Vec3(.1,.2,-.03),
mass*UnitInertia(1.1, 1.2, 1.3, .01, -.02, .07)));
Rotation R_PF(Pi/20, UnitVec3(1,2,3));
Rotation R_BM(-Pi/17, UnitVec3(2,.2,3));
for (int i = 0; i < NUM_BODIES; ++i) {
MobilizedBody& parent = matter.updMobilizedBody(MobilizedBodyIndex(matter.getNumBodies()-1));
if (i == NUM_BODIES-5) {
MobilizedBody::Universal b(
parent, Transform(R_PF, Vec3(-.1,.3,.2)),
body, Transform(R_BM, Vec3(BOND_LENGTH, 0, 0)));
} else if (i == NUM_BODIES-3) {
MobilizedBody::Ball b(
parent, Transform(R_PF, Vec3(-.1,.3,.2)),
body, Transform(R_BM, Vec3(BOND_LENGTH, 0, 0)));
} else {
MobilizedBody::Gimbal b(
parent, Transform(R_PF, Vec3(-.1,.3,.2)),
body, Transform(R_BM, Vec3(BOND_LENGTH, 0, 0)));
}
}
return *system;
}
/**
* Create a random state for the system.
*/
void createState(MultibodySystem& system, State& state, const Vector& qOverride=Vector()) {
system.realizeTopology();
state = system.getDefaultState();
Random::Uniform random;
for (int i = 0; i < state.getNY(); ++i)
state.updY()[i] = random.getValue();
if (qOverride.size())
state.updQ() = qOverride;
system.realize(state, Stage::Velocity);
Vector dummy;
system.project(state, ConstraintTol);
system.realize(state, Stage::Acceleration);
}
void testBallConstraint() {
State state;
MultibodySystem& system = createSystem();
SimbodyMatterSubsystem& matter = system.updMatterSubsystem();
MobilizedBody& first = matter.updMobilizedBody(MobilizedBodyIndex(1));
MobilizedBody& last = matter.updMobilizedBody(MobilizedBodyIndex(NUM_BODIES));
Constraint::Ball constraint(first, last);
createState(system, state);
Vec3 r1 = first.getBodyOriginLocation(state);
Vec3 r2 = last.getBodyOriginLocation(state);
Vec3 dr = r1-r2;
Vec3 v1 = first.getBodyOriginVelocity(state);
Vec3 v2 = last.getBodyOriginVelocity(state);
Vec3 dv = v1-v2;
Vec3 a1 = first.getBodyOriginAcceleration(state);
Vec3 a2 = last.getBodyOriginAcceleration(state);
Vec3 da = a1-a2;
CONSTRAINT_TEST(dr.norm(), 0.0);
CONSTRAINT_TEST(dr, constraint.getPositionErrors(state));
CONSTRAINT_TEST(dv.norm(), 0.0);
CONSTRAINT_TEST(dv, constraint.getVelocityErrors(state));
// Accelerations should be satisfied to machine tolerance times the
// size of the problem.
MACHINE_TEST(da.norm(), 0);
MACHINE_TEST(da, constraint.getAccelerationErrors(state));
delete &system;
}
void testConstantAngleConstraint() {
State state;
MultibodySystem& system = createSystem();
SimbodyMatterSubsystem& matter = system.updMatterSubsystem();
MobilizedBody& first = matter.updMobilizedBody(MobilizedBodyIndex(1));
MobilizedBody& last = matter.updMobilizedBody(MobilizedBodyIndex(NUM_BODIES));
Constraint::ConstantAngle constraint(first, UnitVec3(1, 0, 0), last, UnitVec3(0, 1, 0), 1.1);
createState(system, state);
Vec3 dir1 = first.getBodyRotation(state)*Vec3(1, 0, 0);
Vec3 dir2 = last.getBodyRotation(state)*Vec3(0, 1, 0);
Vec3 perpDir = dir1%dir2;
Vec3 v1 = first.getBodyAngularVelocity(state);
Vec3 v2 = last.getBodyAngularVelocity(state);
CONSTRAINT_TEST(dot(dir1, dir2), cos(1.1));
CONSTRAINT_TEST(dot(dir1, dir2)-cos(1.1), constraint.getPositionError(state));
CONSTRAINT_TEST(dot(v1-v2, perpDir), 0.0);
CONSTRAINT_TEST(dot(v1-v2, perpDir), constraint.getVelocityError(state));
delete &system;
}
void testConstantOrientationConstraint() {
State state;
MultibodySystem& system = createSystem();
SimbodyMatterSubsystem& matter = system.updMatterSubsystem();
MobilizedBody& first = matter.updMobilizedBody(MobilizedBodyIndex(1));
MobilizedBody& last = matter.updMobilizedBody(MobilizedBodyIndex(NUM_BODIES));
Rotation r1(0.2, CoordinateAxis::XCoordinateAxis());
Rotation r2(Pi/2, CoordinateAxis::YCoordinateAxis());
Constraint::ConstantOrientation constraint(first, r1, last, r2);
createState(system, state);
Rotation R_G1 = first.getBodyRotation(state);
Rotation R_G2 = last.getBodyRotation(state);
Vec3 v1 = first.getBodyAngularVelocity(state);
Vec3 v2 = last.getBodyAngularVelocity(state);
Vec3 a1 = first.getBodyAngularAcceleration(state);
Vec3 a2 = last.getBodyAngularAcceleration(state);
// Extra constraints are required for assembly. Without them, this constraint only guarantees
// that the second body's X/Y/Z axis is perpendicular to the first body's Y/Z/X axis.
// Careful: constraint is x2 perp y1, y2 perp z1, z2 perp x1; this isn't the
// same if bodies are interchanged.
CONSTRAINT_TEST(dot(R_G2*r2*Vec3(1, 0, 0), R_G1*r1*Vec3(0, 1, 0)), 0.0);
CONSTRAINT_TEST(dot(R_G2*r2*Vec3(0, 1, 0), R_G1*r1*Vec3(0, 0, 1)), 0.0);
CONSTRAINT_TEST(dot(R_G2*r2*Vec3(0, 0, 1), R_G1*r1*Vec3(1, 0, 0)), 0.0);
CONSTRAINT_TEST(v1, v2);
// Should match to machine precision for this size problem.
MACHINE_TEST(a1, a2);
delete &system;
}
void testConstantSpeedConstraint() {
State state;
MultibodySystem& system = createSystem();
SimbodyMatterSubsystem& matter = system.updMatterSubsystem();
MobilizedBody& first = matter.updMobilizedBody(MobilizedBodyIndex(1));
Constraint::ConstantSpeed constraint(first, MobilizerUIndex(1), 0.8);
createState(system, state);
CONSTRAINT_TEST(first.getOneU(state, 1), 0.8);
CONSTRAINT_TEST(first.getOneU(state, 1)-0.8, constraint.getVelocityError(state));
MACHINE_TEST(first.getOneUDot(state, 1), 0.0);
MACHINE_TEST(first.getOneUDot(state, 1), constraint.getAccelerationError(state));
delete &system;
}
void testNoSlip1DConstraint() {
State state;
MultibodySystem& system = createSystem();
SimbodyMatterSubsystem& matter = system.updMatterSubsystem();
MobilizedBody& first = matter.updMobilizedBody(MobilizedBodyIndex(1));
MobilizedBody& last = matter.updMobilizedBody(MobilizedBodyIndex(NUM_BODIES));
Vec3 p(1, 0.5, -2.0);
UnitVec3 n(0, 1, 0);
Constraint::NoSlip1D constraint(matter.Ground(), p, n, first, last);
createState(system, state);
Vec3 p1 = first.findStationAtGroundPoint(state, p);
Vec3 p2 = last.findStationAtGroundPoint(state, p);
Vec3 v1 = first.findStationVelocityInGround(state, p1);
Vec3 v2 = last.findStationVelocityInGround(state, p2);
Vec3 a1 = first.findStationAccelerationInGround(state, p1);
Vec3 a2 = last.findStationAccelerationInGround(state, p2);
CONSTRAINT_TEST(dot(v1, n), dot(v2, n));
CONSTRAINT_TEST(dot(v1-v2, n), constraint.getVelocityError(state));
MACHINE_TEST(dot(a1-a2, n), 0.0);
MACHINE_TEST(dot(a1-a2, n), constraint.getAccelerationError(state));
delete &system;
}
void testPointInPlaneConstraint() {
State state;
MultibodySystem& system = createSystem();
SimbodyMatterSubsystem& matter = system.updMatterSubsystem();
MobilizedBody& first = matter.updMobilizedBody(MobilizedBodyIndex(1));
MobilizedBody& last = matter.updMobilizedBody(MobilizedBodyIndex(NUM_BODIES));
UnitVec3 normal(1, 0.5, 0);
Real height = 2.0;
Vec3 p(1.0, 2.5, -3.0);
Constraint::PointInPlane constraint(first, normal, height, last, p);
createState(system, state);
Vec3 p1 = last.findStationLocationInAnotherBody(state, p, first);
Vec3 v1 = last.findStationVelocityInAnotherBody(state, p, first);
CONSTRAINT_TEST(dot(p1, normal), height);
CONSTRAINT_TEST(dot(p1, normal)-height, constraint.getPositionError(state));
CONSTRAINT_TEST(dot(v1, normal), 0.0);
CONSTRAINT_TEST(dot(v1, normal), constraint.getVelocityError(state));
delete &system;
}
void testPointOnLineConstraint() {
State state;
MultibodySystem& system = createSystem();
SimbodyMatterSubsystem& matter = system.updMatterSubsystem();
MobilizedBody& first = matter.updMobilizedBody(MobilizedBodyIndex(1));
MobilizedBody& last = matter.updMobilizedBody(MobilizedBodyIndex(NUM_BODIES));
UnitVec3 dir(1, 0.5, 0);
Vec3 base(0.5, -0.5, 2.0);
Vec3 p(1.0, 2.5, -3.0);
Constraint::PointOnLine constraint(first, dir, base, last, p);
createState(system, state);
Vec3 p1 = last.findStationLocationInAnotherBody(state, p, first);
Vec3 v1 = last.findStationVelocityInAnotherBody(state, p, first);
CONSTRAINT_TEST(cross(p1-base, dir).norm(), 0.0);
CONSTRAINT_TEST(cross(v1, dir).norm(), 0.0);
delete &system;
}
void testRodConstraint() {
State state;
MultibodySystem& system = createSystem();
SimbodyMatterSubsystem& matter = system.updMatterSubsystem();
MobilizedBody& first = matter.updMobilizedBody(MobilizedBodyIndex(1));
MobilizedBody& last = matter.updMobilizedBody(MobilizedBodyIndex(NUM_BODIES));
Constraint::Rod constraint(first, last, 3.0);
createState(system, state);
Vec3 r1 = first.getBodyOriginLocation(state);
Vec3 r2 = last.getBodyOriginLocation(state);
Vec3 dr = r1-r2;
Vec3 v1 = first.getBodyOriginVelocity(state);
Vec3 v2 = last.getBodyOriginVelocity(state);
Vec3 dv = v1-v2;
Vec3 a1 = first.getBodyOriginAcceleration(state);
Vec3 a2 = last.getBodyOriginAcceleration(state);
Vec3 da = a1-a2;
CONSTRAINT_TEST(dr.norm(), 3.0);
CONSTRAINT_TEST(dr.norm()-3.0, constraint.getPositionError(state));
CONSTRAINT_TEST(dot(dv, dr), 0.0);
CONSTRAINT_TEST(dot(dv, dr), constraint.getVelocityError(state));
MACHINE_TEST(dot(da, dr), -dv.normSqr());
MACHINE_TEST(dot(da, dr)+dv.normSqr(), constraint.getAccelerationError(state));
delete &system;
}
void testWeldConstraint() {
State state;
MultibodySystem& system = createSystem();
SimbodyMatterSubsystem& matter = system.updMatterSubsystem();
MobilizedBody& first = matter.updMobilizedBody(MobilizedBodyIndex(1));
MobilizedBody& last = matter.updMobilizedBody(MobilizedBodyIndex(NUM_BODIES));
Constraint::Weld constraint(first, last);
createState(system, state);
CONSTRAINT_TEST(first.getBodyOriginLocation(state), last.getBodyOriginLocation(state));
CONSTRAINT_TEST(first.getBodyVelocity(state), last.getBodyVelocity(state));
MACHINE_TEST(first.getBodyAcceleration(state), last.getBodyAcceleration(state));
const Rotation& R_G1 = first.getBodyRotation(state);
const Rotation& R_G2 = last.getBodyRotation(state);
// Extra constraints are required for assembly. Without them, this constraint only guarantees
// that the second body's X/Y/Z axis is perpendicular to the first body's Y/Z/X axis.
// Careful: constraint is x2 perp y1, y2 perp z1, z2 perp x1; this isn't the
// same if bodies are interchanged.
CONSTRAINT_TEST(dot(R_G2*Vec3(1, 0, 0), R_G1*Vec3(0, 1, 0)), 0.0);
CONSTRAINT_TEST(dot(R_G2*Vec3(0, 1, 0), R_G1*Vec3(0, 0, 1)), 0.0);
CONSTRAINT_TEST(dot(R_G2*Vec3(0, 0, 1), R_G1*Vec3(1, 0, 0)), 0.0);
delete &system;
}
void testWeldConstraintWithPreAssembly() {
// Different constraints are required for assembly. Without them, this constraint only guarantees
// that the second body's X/Y/Z axis is perpendicular to the first body's Y/Z/X axis. Here we'll
// attempt to point all the axes in roughly the right direction prior to Weld-ing them.
State assemblyState;
MultibodySystem& assemblySystem = createSystem();
SimbodyMatterSubsystem& assemblyMatter = assemblySystem.updMatterSubsystem();
MobilizedBody& afirst = assemblyMatter.updMobilizedBody(MobilizedBodyIndex(1));
MobilizedBody& alast = assemblyMatter.updMobilizedBody(MobilizedBodyIndex(NUM_BODIES));
Constraint::ConstantAngle(afirst, UnitVec3(1,0,0), alast, UnitVec3(1,0,0), 0.5); // 30 degrees
Constraint::ConstantAngle(afirst, UnitVec3(0,1,0), alast, UnitVec3(0,1,0), 0.5);
Constraint::ConstantAngle(afirst, UnitVec3(0,0,1), alast, UnitVec3(0,0,1), 0.5);
Constraint::Ball(afirst, alast); // take care of translation
createState(assemblySystem, assemblyState);
delete &assemblySystem;
// Now rebuild the system using a Weld instead of the three angle constraints, but
// transfer the q's from the State we calculated above to use as a starting guess.
State state;
MultibodySystem& system = createSystem();
SimbodyMatterSubsystem& matter = system.updMatterSubsystem();
MobilizedBody& first = matter.updMobilizedBody(MobilizedBodyIndex(1));
MobilizedBody& last = matter.updMobilizedBody(MobilizedBodyIndex(NUM_BODIES));
Constraint::Weld constraint(first, last);
createState(system, state, assemblyState.getQ());
CONSTRAINT_TEST(first.getBodyOriginLocation(state), last.getBodyOriginLocation(state));
CONSTRAINT_TEST(first.getBodyVelocity(state), last.getBodyVelocity(state));
MACHINE_TEST(first.getBodyAcceleration(state), last.getBodyAcceleration(state));
const Rotation& R_G1 = first.getBodyRotation(state);
const Rotation& R_G2 = last.getBodyRotation(state);
// This is a much more stringent requirement than the one we can ask for without
// the preassembly step. Here we expect the frames to be perfectly aligned.
CONSTRAINT_TEST(~R_G1.x()*R_G2.x(), 1.);
CONSTRAINT_TEST(~R_G1.y()*R_G2.y(), 1.);
CONSTRAINT_TEST(~R_G1.z()*R_G2.z(), 1.);
// Just for fun -- compare Rotation matrices using pointing error.
// ASSERT(R_G1.isSameRotationToWithinAngle(R_G2, TOL));
CONSTRAINT_TEST(R_G1, R_G2);
delete &system;
}
void testDisablingConstraints() {
State state;
MultibodySystem& system = createSystem();
SimbodyMatterSubsystem& matter = system.updMatterSubsystem();
MobilizedBody& first = matter.updMobilizedBody(MobilizedBodyIndex(1));
MobilizedBody& last = matter.updMobilizedBody(MobilizedBodyIndex(NUM_BODIES));
Constraint::Rod constraint(first, last, 3.0);
class DisableHandler : public ScheduledEventHandler {
public:
DisableHandler(Constraint& constraint) : constraint(constraint) {
}
void handleEvent(State& state, Real accuracy, bool& shouldTerminate) const override {
constraint.disable(state);
}
Real getNextEventTime(const State&, bool includeCurrentTime) const override {
return 4.9;
}
Constraint& constraint;
};
system.addEventHandler(new DisableHandler(constraint));
createState(system, state);
const int numQuaternionsInUse = matter.getNumQuaternionsInUse(state);
// This is slow if we do it at very tight tolerance.
const Real LooserConstraintTol = 1e-6;
RungeKuttaMersonIntegrator integ(system);
integ.setAccuracy(10*LooserConstraintTol);
integ.setConstraintTolerance(LooserConstraintTol);
TimeStepper ts(system, integ);
ts.initialize(state);
for (int i = 0; i < 10; i++) {
ts.stepTo(i+1);
if (i < 4) {
CONSTRAINT_TEST(ts.getState().getNQErr(), numQuaternionsInUse+1);
CONSTRAINT_TEST(ts.getState().getNUErr(), 1);
MACHINE_TEST(ts.getState().getNUDotErr(), 1);
Vec3 r1 = first.getBodyOriginLocation(ts.getState());
Vec3 r2 = last.getBodyOriginLocation(ts.getState());
Vec3 dr = r1-r2;
// Verify that the constraint is enforced while enabled.
SimTK_TEST_EQ_TOL(dr.norm(), Real(3), LooserConstraintTol);
}
else {
CONSTRAINT_TEST(ts.getState().getNQErr(), numQuaternionsInUse);
CONSTRAINT_TEST(ts.getState().getNUErr(), 0);
MACHINE_TEST(ts.getState().getNUDotErr(), 0);
Vec3 r1 = first.getBodyOriginLocation(ts.getState());
Vec3 r2 = last.getBodyOriginLocation(ts.getState());
Vec3 dr = r1-r2;
// Verify that the constraint is *not* being enforced any more.
SimTK_TEST_NOTEQ_TOL(dr.norm(), Real(3), LooserConstraintTol);
}
}
delete &system;
}
void testConstraintForces() {
// Weld one body to ground, push on it, verify that it reacts to match the load.
MultibodySystem system;
SimbodyMatterSubsystem matter(system);
GeneralForceSubsystem forces(system);
Body::Rigid body(MassProperties(1.0, Vec3(0), Inertia(1)));
MobilizedBody::Weld welded(matter.Ground(), Transform(),
body, Transform());
MobilizedBody::Free loose(matter.Ground(), Transform(),
body, Transform());
Constraint::Weld glue(matter.Ground(), Transform(),
loose, Transform());
// Apply forces to the body welded straight to ground.
Force::ConstantForce(forces, welded, Vec3(0,0,0), Vec3(1,2,3));
Force::ConstantTorque(forces, welded, Vec3(20,30,40));
// Apply the same forces to the "free" body which is welded by constraint.
Force::ConstantForce(forces, loose, Vec3(0,0,0), Vec3(1,2,3));
Force::ConstantTorque(forces, loose, Vec3(20,30,40));
State state = system.realizeTopology();
system.realize(state, Stage::Acceleration);
Vector_<SpatialVec> mobilizerReactions;
matter.calcMobilizerReactionForces(state, mobilizerReactions);
//NOT IMPLEMENTED YET:
//cout << "Weld constraint reaction on Ground: " << glue.getWeldReactionOnBody1(state) << endl;
//cout << "Weld constraint reaction on Body: " << glue.getWeldReactionOnBody2(state) << endl;
// Note that constraint forces have opposite sign to applied forces, because
// we calculate the multiplier lambda from M udot + ~G lambda = f_applied. We'll negate
// the calculated multipliers to turn these into applied forces.
const Vector mults = -state.getMultipliers();
Vector_<SpatialVec> constraintForces;
Vector mobilityForces;
matter.calcConstraintForcesFromMultipliers(state, mults,
constraintForces, mobilityForces);
MACHINE_TEST(constraintForces[loose.getMobilizedBodyIndex()],
mobilizerReactions[welded.getMobilizedBodyIndex()]);
// This returns just the forces on the weld's two bodies: in this
// case Ground and "loose", in that order.
Vector_<SpatialVec> glueForces =
glue.getConstrainedBodyForcesAsVector(state);
MACHINE_TEST(-glueForces[1], // watch the sign!
mobilizerReactions[welded.getMobilizedBodyIndex()]);
}
// Test methods for multiplication by the various constraint matrices, and
// for forming the whole matrices. The equations of motion are:
// M udot + ~G lambda + f_inertial = f_applied
// G udot = b
// qdot = N * u
// [P]
// where G = [V], and we are also interested in Pq = P*N^-1 which is the
// [A]
// q-space Jacobian Pq = Dperr/Dq. Routines involving these matrices use the
// constraint error routines; routines involving their transposes use the
// constraint force routines -- that is, they use a completely different
// algorithm so need separate tests.
//
// The code for working with G and ~G has flags allowing selection of P,V,A
// submatrices or combinations; that needs testing too. Extracting the
// right constraint-specific segments in the holonomic, nonholonomic, and
// acceleration-only arrays is tricky.
void testConstraintMatrices() {
// Create a chain of bodies
State state;
MultibodySystem& system = createSystem();
SimbodyMatterSubsystem& matter = system.updMatterSubsystem();
MobilizedBody& first = matter.updMobilizedBody(MobilizedBodyIndex(1));
MobilizedBody& second = matter.updMobilizedBody(MobilizedBodyIndex(2));
MobilizedBody& fifth = matter.updMobilizedBody(MobilizedBodyIndex(5));
MobilizedBody& last = matter.updMobilizedBody(MobilizedBodyIndex(NUM_BODIES));
// Add a body on a free joint to body 5 then weld it.
MobilizedBody::Free extra(fifth, Transform(),
MassProperties(1, Vec3(.01,.02,.03), Inertia(1,1.1,1.2)), Transform());
Constraint::Weld weld(extra, fifth);
Constraint::Ball ball(first, last);
Constraint::ConstantAcceleration accel2(second, MobilizerUIndex(1), .01);
Constraint::ConstantSpeed speed5(fifth, MobilizerUIndex(1), .1);
createState(system, state);
const int nu = matter.getNU(state);
const int nq = matter.getNQ(state);
const int nquat = matter.getNumQuaternionsInUse(state);
const int mp = matter.getNQErr(state) - nquat;
const int mv = matter.getNUErr(state) - mp;
const int ma = matter.getNUDotErr(state) - (mp+mv);
const int m = mp+mv+ma;
Matrix G, Gt;
matter.calcG(state, G); // use error routines
matter.calcGTranspose(state, Gt); // use force routines
SimTK_TEST_EQ(G, ~Gt); // match to numerical precision
// Repeat using matrix views that have non-contiguous columns by
// generating them into transposed matrices.
Matrix Gx(G.nrow(),G.ncol()), Gtx(Gt.nrow(),Gt.ncol());
matter.calcG(state, ~Gtx);
matter.calcGTranspose(state, ~Gx);
SimTK_TEST_EQ_TOL(G, ~Gtx, 1e-16); // should be identical
SimTK_TEST_EQ_TOL(Gt, ~Gx, 1e-16);
MatrixView P=G(0,0,mp,nu);
MatrixView V=G(mp,0,mv,nu);
MatrixView A=G(mp+mv,0,ma,nu);
// Calculate Pqx=P*N^-1 here and compare with Pq.
Matrix Pqx(mp, nq);
for (int i=0; i < mp; ++i) {
matter.multiplyByNInv(state, true, ~P[i], ~Pqx[i]);
}
Matrix Pq;
matter.calcPq(state, Pq);
SimTK_TEST_EQ(Pq, Pqx); // to numerical precision
Matrix Pqt;
matter.calcPqTranspose(state, Pqt);
// Check that multiplication method works like explicit multiplication.
Vector lambda = Test::randVector(m);
Vector lambdap = Test::randVector(mp);
Vector uin = Test::randVector(nu);
Vector qin = Test::randVector(nq);
Vector aerrOut, perrOut, fuout, fqout;
matter.multiplyByG(state, uin, aerrOut);
SimTK_TEST(aerrOut.size() == m);
SimTK_TEST_EQ_SIZE(aerrOut, G*uin, nu);
matter.multiplyByGTranspose(state, lambda, fuout);
SimTK_TEST(fuout.size() == nu);
SimTK_TEST_EQ_SIZE(fuout, Gt*lambda, nu);
matter.multiplyByPq(state, qin, perrOut);
SimTK_TEST(perrOut.size() == mp);
SimTK_TEST_EQ_SIZE(perrOut, Pq*qin, nq);
matter.multiplyByPqTranspose(state, lambdap, fqout);
SimTK_TEST(fqout.size() == nq);
SimTK_TEST_EQ_SIZE(fqout, Pqt*lambdap, nq);
Matrix MInv;
matter.calcMInv(state, MInv);
Matrix numGMInvGt = G*MInv*Gt; // O(m^2*n + m*n^2)
Matrix GMInvGt;
matter.calcProjectedMInv(state, GMInvGt); // O(m*n)
SimTK_TEST_EQ(GMInvGt, numGMInvGt);
delete &system;
}
// Test the operator SimbodyMatterSubsystem::calcConstraintAccelerationErrors(),
// which computes pvaerr = G udot - b. For the most part, we just ensure that
// this operator gives results consistent with other methods.
void testConstraintAccelerationErrors() {
// Create a chain of bodies. Copied from testConstraintMatrices().
MultibodySystem& system = createSystem();
SimbodyMatterSubsystem& matter = system.updMatterSubsystem();
MobilizedBody& first = matter.updMobilizedBody(MobilizedBodyIndex(1));
MobilizedBody& second = matter.updMobilizedBody(MobilizedBodyIndex(2));
MobilizedBody& fifth = matter.updMobilizedBody(MobilizedBodyIndex(5));
MobilizedBody& last = matter.updMobilizedBody(MobilizedBodyIndex(NUM_BODIES));
// Add a body on a free joint to body 5 then weld it.
MobilizedBody::Free extra(fifth, Transform(),
MassProperties(1, Vec3(.01,.02,.03), Inertia(1,1.1,1.2)), Transform());
Constraint::Weld weld(extra, fifth);
Constraint::Ball ball(first, last);
Constraint::ConstantAcceleration accel2(second, MobilizerUIndex(1), .01);
Constraint::ConstantSpeed speed5(fifth, MobilizerUIndex(1), .1);
// Obtain constraint errors from realizing to Acceleration.
Vector udotFromForward, pvaerrFromForward;
State state;
{
State stateForward;
createState(system, stateForward); // Realizes to Acceleration.
udotFromForward = stateForward.getUDot();
pvaerrFromForward = stateForward.getUDotErr();
state = stateForward; // This copy assignment invalidates the cache.
}
const int nu = matter.getNU(state);
const int m = matter.getNUDotErr(state);
// Ensure that we get an exception if not realized to Velocity yet.
{
system.realize(state, SimTK::Stage::Position);
SimTK_TEST(state.getSystemStage() == SimTK::Stage::Position);
Vector output; Vector udot(nu);
SimTK_TEST_MUST_THROW_EXC(
matter.calcConstraintAccelerationErrors(state, udot, output),
SimTK::Exception::ErrorCheck);
}
// Obtain constraint errors using the operator.
Vector biasFromOperator; // used in a subsequent test.
{
State stateOperator = state;
// Realizing to Velocity should be sufficient.
system.realize(stateOperator, SimTK::Stage::Velocity);
// With udot=0, errors should be nonzero.
Vector outputWithZeroUDot;
matter.calcConstraintAccelerationErrors
(stateOperator, Vector(nu, 0.0), outputWithZeroUDot);
SimTK_TEST(outputWithZeroUDot.norm() > 1e-6);
biasFromOperator = outputWithZeroUDot; // used in a subsequent test.
// Ensure the operator did not internally realize to a later stage.
SimTK_TEST(stateOperator.getSystemStage() == SimTK::Stage::Velocity);
// With udot from forward dynamics, errors should be close to zero.
Vector pvaerrFromOperator;
matter.calcConstraintAccelerationErrors
(stateOperator, udotFromForward, pvaerrFromOperator);
SimTK_TEST(pvaerrFromOperator.norm() < 1e-10);
// Forward dynamics and the operator should give the same result.
SimTK_TEST_EQ(pvaerrFromOperator, pvaerrFromForward);
}
// Check that the bias term is consistent with that from other methods.
{
State stateCompareBias = state;
system.realize(stateCompareBias, SimTK::Stage::Velocity);
Vector biasFromSepOperator;
matter.calcBiasForAccelerationConstraints(stateCompareBias,
biasFromSepOperator);
SimTK_TEST_EQ(biasFromOperator, biasFromSepOperator);
}
// Compute G using calcConstraintAccelerationErrors; compare to calcG().
// pvaerr = G * udot + -bias(t,q,u)
// pvaerr_j = G * udot_j + (-bias)
// G * udot_j = pvaerr_j - (-bias)
// G_j = G * e_j (where e_j is the unit vector in direction j)
{
State stateCompareG = state;
system.realize(stateCompareG, SimTK::Stage::Velocity);
Matrix GFromCalcG;
matter.calcG(stateCompareG, GFromCalcG);
Matrix GFromOperator(m, nu);
Vector udot(nu, 0.0);
for (int icol = 0; icol < GFromCalcG.ncol(); ++icol) {
udot[icol] = 1.0;
// pvaerr_j = G * e_j + -bias
matter.calcConstraintAccelerationErrors
(stateCompareG, udot, GFromOperator.updCol(icol));
// G_j = G * e_j + (-bias) - (-bias)
GFromOperator.updCol(icol) -= biasFromOperator;
udot[icol] = 0.0;
}
SimTK_TEST_EQ(GFromCalcG, GFromOperator);
}
// Test noncontiguous input and output vectors (similar to TestMassMatrix).
{
system.realize(state, SimTK::Stage::Velocity);
Matrix MatUdot(3, nu); // use middle row
MatUdot.setToNaN();
MatUdot[1] = ~udotFromForward;
Matrix Matpvaerr(3, m); // use middle row
Matpvaerr.setToNaN();
matter.calcConstraintAccelerationErrors(state, ~MatUdot[1],
~Matpvaerr[1]);
SimTK_TEST_EQ(Matpvaerr[1], ~pvaerrFromForward);
}
// Check that we object to wrong-length arguments.
{
Vector output;
SimTK_TEST_MUST_THROW_EXC(matter.calcConstraintAccelerationErrors
(state, Vector(1), output),
SimTK::Exception::ErrorCheck);
}
system.realize(state, SimTK::Stage::Velocity);
// Verify that leaving out arguments makes them act like zeros.
{
Vector outputZeros, outputEmpty;
matter.calcConstraintAccelerationErrors(state, Vector(nu, 0.0),
outputZeros);
matter.calcConstraintAccelerationErrors(state, Vector(),
outputEmpty);
SimTK_TEST_EQ_TOL(outputZeros, outputEmpty, SignificantReal);
}
}
int main() {
SimTK_START_TEST("TestConstraints");
SimTK_SUBTEST(testBallConstraint);
SimTK_SUBTEST(testConstantAngleConstraint);
SimTK_SUBTEST(testConstantOrientationConstraint);
SimTK_SUBTEST(testConstantSpeedConstraint);
SimTK_SUBTEST(testNoSlip1DConstraint);
SimTK_SUBTEST(testPointInPlaneConstraint);
SimTK_SUBTEST(testPointOnLineConstraint);
SimTK_SUBTEST(testRodConstraint);
SimTK_SUBTEST(testWeldConstraint);
SimTK_SUBTEST(testWeldConstraintWithPreAssembly);
SimTK_SUBTEST(testConstraintForces);
SimTK_SUBTEST(testConstraintMatrices);
SimTK_SUBTEST(testConstraintAccelerationErrors);
SimTK_SUBTEST(testDisablingConstraints);
SimTK_END_TEST();
}
|