File: TestElasticFoundationForce.cpp

package info (click to toggle)
simbody 3.7%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 72,892 kB
  • sloc: cpp: 248,827; ansic: 18,240; sh: 29; makefile: 25
file content (284 lines) | stat: -rw-r--r-- 13,700 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
/* -------------------------------------------------------------------------- *
 *                               Simbody(tm)                                  *
 * -------------------------------------------------------------------------- *
 * This is part of the SimTK biosimulation toolkit originating from           *
 * Simbios, the NIH National Center for Physics-Based Simulation of           *
 * Biological Structures at Stanford, funded under the NIH Roadmap for        *
 * Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody.  *
 *                                                                            *
 * Portions copyright (c) 2008-12 Stanford University and the Authors.        *
 * Authors: Peter Eastman, Guillaume Jacquenot                                *
 * Contributors:                                                              *
 *                                                                            *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may    *
 * not use this file except in compliance with the License. You may obtain a  *
 * copy of the License at http://www.apache.org/licenses/LICENSE-2.0.         *
 *                                                                            *
 * Unless required by applicable law or agreed to in writing, software        *
 * distributed under the License is distributed on an "AS IS" BASIS,          *
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.   *
 * See the License for the specific language governing permissions and        *
 * limitations under the License.                                             *
 * -------------------------------------------------------------------------- */

#include "SimTKsimbody.h"

using namespace SimTK;
using namespace std;

const Real TOL = 1e-5;

#define ASSERT(cond) {SimTK_ASSERT_ALWAYS(cond, "Assertion failed");}

template <class T>
void assertEqual(T val1, T val2) {
    ASSERT(abs(val1-val2) < TOL || abs(val1-val2)/max(abs(val1), abs(val2)) < TOL);
}

template <int N>
void assertEqual(Vec<N> val1, Vec<N> val2) {
    for (int i = 0; i < N; ++i)
        assertEqual(val1[i], val2[i]);
}

void testForces() {
    MultibodySystem system;
    SimbodyMatterSubsystem matter(system);
    GeneralContactSubsystem contacts(system);
    GeneralForceSubsystem forces(system);

    // Create a triangle mesh in the shape of a pyramid, with the
    // square base having area 1 (split into two triangles).

    vector<Vec3> vertices;
    vertices.push_back(Vec3(0, 0, 0));
    vertices.push_back(Vec3(1, 0, 0));
    vertices.push_back(Vec3(1, 0, 1));
    vertices.push_back(Vec3(0, 0, 1));
    vertices.push_back(Vec3(0.5, 1, 0.5));
    vector<int> faceIndices;
    int faces[6][3] = {{0, 1, 2}, {0, 2, 3}, {1, 0, 4},
                       {2, 1, 4}, {3, 2, 4}, {0, 3, 4}};
    for (int i = 0; i < 6; i++)
        for (int j = 0; j < 3; j++)
            faceIndices.push_back(faces[i][j]);

    // Create the mobilized bodies and configure the contact model.

    Body::Rigid body(MassProperties(1.0, Vec3(0), Inertia(1)));
    ContactSetIndex setIndex = contacts.createContactSet();
    MobilizedBody::Translation mesh(matter.updGround(), Transform(), body, Transform());
    contacts.addBody(setIndex, mesh, ContactGeometry::TriangleMesh(vertices, faceIndices), Transform());
    contacts.addBody(setIndex, matter.updGround(), ContactGeometry::HalfSpace(), Transform(Rotation(-0.5*Pi, ZAxis), Vec3(0))); // y < 0
    ElasticFoundationForce ef(forces, contacts, setIndex);
    Real stiffness = 1e9, dissipation = 0.01, us = 0.1, ud = 0.05, uv = 0.01, vt = 0.01;
    ef.setBodyParameters(ContactSurfaceIndex(0), stiffness, dissipation, us, ud, uv);
    ef.setTransitionVelocity(vt);
    ASSERT(ef.getTransitionVelocity() == vt);
    State state = system.realizeTopology();

    // Position the pyramid at a variety of positions and check the normal
    // force.

    for (Real depth = -0.1; depth < 0.1; depth += 0.01) {
        mesh.setQToFitTranslation(state, Vec3(0, -depth, 0));
        system.realize(state, Stage::Dynamics);
        Real f = 0;
        if (depth > 0)
            f = stiffness*depth;
        assertEqual(system.getRigidBodyForces(state, Stage::Dynamics)[mesh.getMobilizedBodyIndex()][1], Vec3(0, f, 0));
        assertEqual(system.getRigidBodyForces(state, Stage::Dynamics)[matter.getGround().getMobilizedBodyIndex()][1], Vec3(0, -f, 0));
    }

    // Now do it with a vertical velocity and see if the dissipation force is correct.

    for (Real depth = -0.105; depth < 0.1; depth += 0.01) {
        mesh.setQToFitTranslation(state, Vec3(0, -depth, 0));
        for (Real v = -1.0; v <= 1.0; v += 0.1) {
            mesh.setUToFitLinearVelocity(state, Vec3(0, -v, 0));
            system.realize(state, Stage::Dynamics);
            Real f = (depth > 0 ? stiffness*depth*(1+dissipation*v) : 0);
            if (f < 0)
                f = 0;
            assertEqual(system.getRigidBodyForces(state, Stage::Dynamics)[mesh.getMobilizedBodyIndex()][1], Vec3(0, f, 0));
        }
    }

    // Do it with a horizontal velocity and see if the friction force is correct.

    Vector_<SpatialVec> expectedForce(matter.getNumBodies());
    for (Real depth = -0.105; depth < 0.1; depth += 0.01) {
        mesh.setQToFitTranslation(state, Vec3(0, -depth, 0));
        Real fh = 0;
        if (depth > 0)
            fh = stiffness*depth;
        for (Real v = -1.0; v <= 1.0; v += 0.1) {
            mesh.setUToFitLinearVelocity(state, Vec3(v, 0, 0));
            system.realize(state, Stage::Dynamics);
            const Real vrel = std::abs(v/vt);
            Real ff = (v < 0 ? 1 : -1)*fh*(std::min(vrel, 1.0)*(ud+2*(us-ud)/(1+vrel*vrel))+uv*std::fabs(v));
            const Vec3 totalForce = Vec3(ff, fh, 0);
            expectedForce = SpatialVec(Vec3(0), Vec3(0));
            Vec3 contactPoint1 = mesh.findStationAtGroundPoint(state, Vec3(2.0/3.0, 0, 1.0/3.0));
            mesh.applyForceToBodyPoint(state, contactPoint1, 0.5*totalForce, expectedForce);
            Vec3 contactPoint2 = mesh.findStationAtGroundPoint(state, Vec3(1.0/3.0, 0, 2.0/3.0));
            mesh.applyForceToBodyPoint(state, contactPoint2, 0.5*totalForce, expectedForce);
            SpatialVec actualForce = system.getRigidBodyForces(state, Stage::Dynamics)[mesh.getMobilizedBodyIndex()];
            assertEqual(actualForce[0], expectedForce[mesh.getMobilizedBodyIndex()][0]);
            assertEqual(actualForce[1], expectedForce[mesh.getMobilizedBodyIndex()][1]);
        }
    }
}

/**
 * @brief This test compares the numerical result of a sphere
 *        in contact with a plane, using the elastic foundation
 *        model.
 *        The analytical solution of this problem is given by
 *        the product of the stiffness with the volume of
 *        the sphere in the plane, i.e the volume of a spherical
 *        cap.
 *        The volume of a spherical cap is:
 *          Vcap = Pi*h*h/3.0*(3.0*r-h)
 *        where
 *          r is the radis of the sphere
 *          h the height of the cap. In our case, the penetration
 *          depth
 * @note If we want to go further, we can observe that doubling
 *       the penetration depth results in multiplying the normal
 *       effort by 4.
 *       This is different from Hertz theory, where doubling the
 *       penetration depth results in multiplying
 *       the normal effort by 2^(3/2)~2.68
 *
 */
void testEffSphereOnPlaneOldFormulation(bool verbose = false)
{
    // Material properties for sphere
    const Real stiffness = 1e9;
    const Real dissipation = 0.0, us = 0.0, ud = 0.0, uv = 0.0, vt = 0.0;
    // Sphere radius
    const Real radius = 1.0;
    // Define initial penetration
    const Real initialPenetration = 0.002;
    // Define the number of tests to perform
    const int maxLevel = 6;
    // Define some tolerances for each level in %
    const Real tolerances[6]= {0.15, 0.07, 0.03, 0.02, 0.01, 0.02};
    for (int i=0;i<maxLevel;++i)
    {
        // For each level, penetration is double
        const Real penetration = initialPenetration * pow(2.0,(Real)i);
        // Creation of the classical problem
        MultibodySystem system;
        SimbodyMatterSubsystem matter(system);
        GeneralContactSubsystem contacts(system);
        GeneralForceSubsystem forces(system);
        const ContactSetIndex setIndex = contacts.createContactSet();
        // Creation a sphere with 6 levels of refinement
        const PolygonalMesh sphereMesh(PolygonalMesh::createSphereMesh(radius, 6));
        // Create the mobilized bodies and configure the contact model.
        const Body::Rigid body(MassProperties(1.0, Vec3(0), Inertia(1)));
        const MobilizedBody::Translation mesh(matter.updGround(), Transform(), body, Transform());
        contacts.addBody(setIndex, mesh, ContactGeometry::TriangleMesh(sphereMesh), Transform());
        contacts.addBody(setIndex, matter.updGround(), ContactGeometry::HalfSpace(),
                         Transform(Rotation(-0.5*Pi, ZAxis), Vec3(0.0, penetration-radius, 0.0))); // y < penetration-radius
        ElasticFoundationForce ef(forces, contacts, setIndex);
        ef.setBodyParameters(ContactSurfaceIndex(0), stiffness, dissipation, us, ud, uv);
        ef.setTransitionVelocity(vt);
        const State state = system.realizeTopology();
        system.realize(state, Stage::Dynamics);
        const SpatialVec r = system.getRigidBodyForces(state, Stage::Dynamics)[mesh.getMobilizedBodyIndex()];
        const Real volumeSphericalCap = Pi*penetration*penetration/3.0*(3.0*radius-penetration);
        const Real theoreticalResult = stiffness*volumeSphericalCap;
        const Real numericalResult = r[1][1];
        ASSERT(abs(r[1][0])<TOL);
        ASSERT(abs(r[1][2])<TOL);
        const Real relativeDifference = abs((numericalResult/theoreticalResult)-1.0);
        if (verbose) {
            cout<<"Effort for penetration : "
                <<penetration*1000.0<<" mm -> F = "<<numericalResult<<" N "
                <<"(theoretical result : "<<theoreticalResult<< " N "
                <<" relative difference : "<<100.0*relativeDifference<<" %)"<<endl;
        }
        ASSERT(abs((numericalResult/theoreticalResult)-1.0)<tolerances[i]);
    }
}

void testEffSphereOnPlaneNewFormulation(bool verbose = false)
{
    // Global stiffness of the contact: each material will have
    // twice this stiffness to obtain this global stiffness in the contact
    // 1/kG = 1/k1 + 1/k2
    const Real stiffness = 1e9;
    const Real dissipation = 0.0, us = 0.0, ud = 0.0, uv = 0.0;
    const Real vt = 1.0e-2;
    // Sphere radius
    const Real radius = 1.0;
    // Define initial penetration
    const Real initialPenetration = 0.002;
    const int maxLevel = 6;
    // Define some tolerances for each level in %
    const Real tolerances[6]= {0.15, 0.07, 0.03, 0.02, 0.01, 0.02};
    for (int i=0;i<maxLevel;++i)
    {
        // For each level, penetration is double
        const Real penetration = initialPenetration * pow(2.0,(Real)i);
        // Creation of the classical problem
        MultibodySystem system;
        SimbodyMatterSubsystem matter(system);
        ContactTrackerSubsystem tracker(system);
        CompliantContactSubsystem contactForces(system, tracker);
        contactForces.setTransitionVelocity(vt);
        matter.Ground().updBody().addContactSurface(
            Transform(Rotation(-0.5*Pi, ZAxis), Vec3(0.0,penetration-radius,0.0)), // y < penetration-radius
            ContactSurface(ContactGeometry::HalfSpace(),
                           ContactMaterial(2.0*stiffness, dissipation, us, ud, uv),
                           1.0));
        Body::Rigid body(MassProperties(1.0, Vec3(0), Inertia(1)));
        body.addContactSurface(Transform(),
            ContactSurface(ContactGeometry::TriangleMesh(PolygonalMesh::createSphereMesh(radius, 6)),
                           ContactMaterial(2.0*stiffness, dissipation, us, ud, uv),
                           1.0));
        const MobilizedBody::Translation mesh(matter.updGround(), Transform(), body, Transform());
        const State state = system.realizeTopology();
        system.realize(state, Stage::Dynamics);
        if (verbose) {
            cout << "Num contacts: " << contactForces.getNumContactForces(state) << endl;
        }
        ASSERT(contactForces.getNumContactForces(state)==1);
        const ContactForce& force = contactForces.getContactForce(state,0);
        const Vec3& frc = force.getForceOnSurface2()[1];
        ASSERT(abs(frc[0])<TOL);
        ASSERT(abs(frc[2])<TOL);
        const Real numericalResult = frc[1];
        const Real volumeSphericalCap = Pi*penetration*penetration/3.0*(3.0*radius-penetration);
        const Real theoreticalResult = stiffness*volumeSphericalCap;
        const Real relativeDifference = abs((numericalResult/theoreticalResult)-1.0);
        if (verbose) {
            cout<<force;
            cout<<"Effort for penetration : "
                <<penetration*1000.0<<" mm -> F = "<<numericalResult<<" N "
                <<"(theoretical result : "<<theoreticalResult<< " N "
                <<" relative difference : "<<100.0*relativeDifference<<" %)"<<endl;
        }
        ASSERT(abs((numericalResult/theoreticalResult)-1.0)<tolerances[i]);
    }
}

int main() {
/* timeout on mips */
#ifndef __mips__
    try {
        testForces();
        testEffSphereOnPlaneOldFormulation();
        testEffSphereOnPlaneNewFormulation();
    }
    catch(const std::exception& e) {
        cout << "exception: " << e.what() << endl;
        return 1;
    }
    cout << "Done" << endl;
#endif
    return 0;
}