1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
|
/* -------------------------------------------------------------------------- *
* Simbody(tm) *
* -------------------------------------------------------------------------- *
* This is part of the SimTK biosimulation toolkit originating from *
* Simbios, the NIH National Center for Physics-Based Simulation of *
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody. *
* *
* Portions copyright (c) 2008-12 Stanford University and the Authors. *
* Authors: Peter Eastman, Guillaume Jacquenot *
* Contributors: *
* *
* Licensed under the Apache License, Version 2.0 (the "License"); you may *
* not use this file except in compliance with the License. You may obtain a *
* copy of the License at http://www.apache.org/licenses/LICENSE-2.0. *
* *
* Unless required by applicable law or agreed to in writing, software *
* distributed under the License is distributed on an "AS IS" BASIS, *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
* See the License for the specific language governing permissions and *
* limitations under the License. *
* -------------------------------------------------------------------------- */
#include "SimTKsimbody.h"
using namespace SimTK;
using namespace std;
const Real TOL = 1e-5;
#define ASSERT(cond) {SimTK_ASSERT_ALWAYS(cond, "Assertion failed");}
template <class T>
void assertEqual(T val1, T val2) {
ASSERT(abs(val1-val2) < TOL || abs(val1-val2)/max(abs(val1), abs(val2)) < TOL);
}
template <int N>
void assertEqual(Vec<N> val1, Vec<N> val2) {
for (int i = 0; i < N; ++i)
assertEqual(val1[i], val2[i]);
}
void testForces() {
MultibodySystem system;
SimbodyMatterSubsystem matter(system);
GeneralContactSubsystem contacts(system);
GeneralForceSubsystem forces(system);
// Create a triangle mesh in the shape of a pyramid, with the
// square base having area 1 (split into two triangles).
vector<Vec3> vertices;
vertices.push_back(Vec3(0, 0, 0));
vertices.push_back(Vec3(1, 0, 0));
vertices.push_back(Vec3(1, 0, 1));
vertices.push_back(Vec3(0, 0, 1));
vertices.push_back(Vec3(0.5, 1, 0.5));
vector<int> faceIndices;
int faces[6][3] = {{0, 1, 2}, {0, 2, 3}, {1, 0, 4},
{2, 1, 4}, {3, 2, 4}, {0, 3, 4}};
for (int i = 0; i < 6; i++)
for (int j = 0; j < 3; j++)
faceIndices.push_back(faces[i][j]);
// Create the mobilized bodies and configure the contact model.
Body::Rigid body(MassProperties(1.0, Vec3(0), Inertia(1)));
ContactSetIndex setIndex = contacts.createContactSet();
MobilizedBody::Translation mesh(matter.updGround(), Transform(), body, Transform());
contacts.addBody(setIndex, mesh, ContactGeometry::TriangleMesh(vertices, faceIndices), Transform());
contacts.addBody(setIndex, matter.updGround(), ContactGeometry::HalfSpace(), Transform(Rotation(-0.5*Pi, ZAxis), Vec3(0))); // y < 0
ElasticFoundationForce ef(forces, contacts, setIndex);
Real stiffness = 1e9, dissipation = 0.01, us = 0.1, ud = 0.05, uv = 0.01, vt = 0.01;
ef.setBodyParameters(ContactSurfaceIndex(0), stiffness, dissipation, us, ud, uv);
ef.setTransitionVelocity(vt);
ASSERT(ef.getTransitionVelocity() == vt);
State state = system.realizeTopology();
// Position the pyramid at a variety of positions and check the normal
// force.
for (Real depth = -0.1; depth < 0.1; depth += 0.01) {
mesh.setQToFitTranslation(state, Vec3(0, -depth, 0));
system.realize(state, Stage::Dynamics);
Real f = 0;
if (depth > 0)
f = stiffness*depth;
assertEqual(system.getRigidBodyForces(state, Stage::Dynamics)[mesh.getMobilizedBodyIndex()][1], Vec3(0, f, 0));
assertEqual(system.getRigidBodyForces(state, Stage::Dynamics)[matter.getGround().getMobilizedBodyIndex()][1], Vec3(0, -f, 0));
}
// Now do it with a vertical velocity and see if the dissipation force is correct.
for (Real depth = -0.105; depth < 0.1; depth += 0.01) {
mesh.setQToFitTranslation(state, Vec3(0, -depth, 0));
for (Real v = -1.0; v <= 1.0; v += 0.1) {
mesh.setUToFitLinearVelocity(state, Vec3(0, -v, 0));
system.realize(state, Stage::Dynamics);
Real f = (depth > 0 ? stiffness*depth*(1+dissipation*v) : 0);
if (f < 0)
f = 0;
assertEqual(system.getRigidBodyForces(state, Stage::Dynamics)[mesh.getMobilizedBodyIndex()][1], Vec3(0, f, 0));
}
}
// Do it with a horizontal velocity and see if the friction force is correct.
Vector_<SpatialVec> expectedForce(matter.getNumBodies());
for (Real depth = -0.105; depth < 0.1; depth += 0.01) {
mesh.setQToFitTranslation(state, Vec3(0, -depth, 0));
Real fh = 0;
if (depth > 0)
fh = stiffness*depth;
for (Real v = -1.0; v <= 1.0; v += 0.1) {
mesh.setUToFitLinearVelocity(state, Vec3(v, 0, 0));
system.realize(state, Stage::Dynamics);
const Real vrel = std::abs(v/vt);
Real ff = (v < 0 ? 1 : -1)*fh*(std::min(vrel, 1.0)*(ud+2*(us-ud)/(1+vrel*vrel))+uv*std::fabs(v));
const Vec3 totalForce = Vec3(ff, fh, 0);
expectedForce = SpatialVec(Vec3(0), Vec3(0));
Vec3 contactPoint1 = mesh.findStationAtGroundPoint(state, Vec3(2.0/3.0, 0, 1.0/3.0));
mesh.applyForceToBodyPoint(state, contactPoint1, 0.5*totalForce, expectedForce);
Vec3 contactPoint2 = mesh.findStationAtGroundPoint(state, Vec3(1.0/3.0, 0, 2.0/3.0));
mesh.applyForceToBodyPoint(state, contactPoint2, 0.5*totalForce, expectedForce);
SpatialVec actualForce = system.getRigidBodyForces(state, Stage::Dynamics)[mesh.getMobilizedBodyIndex()];
assertEqual(actualForce[0], expectedForce[mesh.getMobilizedBodyIndex()][0]);
assertEqual(actualForce[1], expectedForce[mesh.getMobilizedBodyIndex()][1]);
}
}
}
/**
* @brief This test compares the numerical result of a sphere
* in contact with a plane, using the elastic foundation
* model.
* The analytical solution of this problem is given by
* the product of the stiffness with the volume of
* the sphere in the plane, i.e the volume of a spherical
* cap.
* The volume of a spherical cap is:
* Vcap = Pi*h*h/3.0*(3.0*r-h)
* where
* r is the radis of the sphere
* h the height of the cap. In our case, the penetration
* depth
* @note If we want to go further, we can observe that doubling
* the penetration depth results in multiplying the normal
* effort by 4.
* This is different from Hertz theory, where doubling the
* penetration depth results in multiplying
* the normal effort by 2^(3/2)~2.68
*
*/
void testEffSphereOnPlaneOldFormulation(bool verbose = false)
{
// Material properties for sphere
const Real stiffness = 1e9;
const Real dissipation = 0.0, us = 0.0, ud = 0.0, uv = 0.0, vt = 0.0;
// Sphere radius
const Real radius = 1.0;
// Define initial penetration
const Real initialPenetration = 0.002;
// Define the number of tests to perform
const int maxLevel = 6;
// Define some tolerances for each level in %
const Real tolerances[6]= {0.15, 0.07, 0.03, 0.02, 0.01, 0.02};
for (int i=0;i<maxLevel;++i)
{
// For each level, penetration is double
const Real penetration = initialPenetration * pow(2.0,(Real)i);
// Creation of the classical problem
MultibodySystem system;
SimbodyMatterSubsystem matter(system);
GeneralContactSubsystem contacts(system);
GeneralForceSubsystem forces(system);
const ContactSetIndex setIndex = contacts.createContactSet();
// Creation a sphere with 6 levels of refinement
const PolygonalMesh sphereMesh(PolygonalMesh::createSphereMesh(radius, 6));
// Create the mobilized bodies and configure the contact model.
const Body::Rigid body(MassProperties(1.0, Vec3(0), Inertia(1)));
const MobilizedBody::Translation mesh(matter.updGround(), Transform(), body, Transform());
contacts.addBody(setIndex, mesh, ContactGeometry::TriangleMesh(sphereMesh), Transform());
contacts.addBody(setIndex, matter.updGround(), ContactGeometry::HalfSpace(),
Transform(Rotation(-0.5*Pi, ZAxis), Vec3(0.0, penetration-radius, 0.0))); // y < penetration-radius
ElasticFoundationForce ef(forces, contacts, setIndex);
ef.setBodyParameters(ContactSurfaceIndex(0), stiffness, dissipation, us, ud, uv);
ef.setTransitionVelocity(vt);
const State state = system.realizeTopology();
system.realize(state, Stage::Dynamics);
const SpatialVec r = system.getRigidBodyForces(state, Stage::Dynamics)[mesh.getMobilizedBodyIndex()];
const Real volumeSphericalCap = Pi*penetration*penetration/3.0*(3.0*radius-penetration);
const Real theoreticalResult = stiffness*volumeSphericalCap;
const Real numericalResult = r[1][1];
ASSERT(abs(r[1][0])<TOL);
ASSERT(abs(r[1][2])<TOL);
const Real relativeDifference = abs((numericalResult/theoreticalResult)-1.0);
if (verbose) {
cout<<"Effort for penetration : "
<<penetration*1000.0<<" mm -> F = "<<numericalResult<<" N "
<<"(theoretical result : "<<theoreticalResult<< " N "
<<" relative difference : "<<100.0*relativeDifference<<" %)"<<endl;
}
ASSERT(abs((numericalResult/theoreticalResult)-1.0)<tolerances[i]);
}
}
void testEffSphereOnPlaneNewFormulation(bool verbose = false)
{
// Global stiffness of the contact: each material will have
// twice this stiffness to obtain this global stiffness in the contact
// 1/kG = 1/k1 + 1/k2
const Real stiffness = 1e9;
const Real dissipation = 0.0, us = 0.0, ud = 0.0, uv = 0.0;
const Real vt = 1.0e-2;
// Sphere radius
const Real radius = 1.0;
// Define initial penetration
const Real initialPenetration = 0.002;
const int maxLevel = 6;
// Define some tolerances for each level in %
const Real tolerances[6]= {0.15, 0.07, 0.03, 0.02, 0.01, 0.02};
for (int i=0;i<maxLevel;++i)
{
// For each level, penetration is double
const Real penetration = initialPenetration * pow(2.0,(Real)i);
// Creation of the classical problem
MultibodySystem system;
SimbodyMatterSubsystem matter(system);
ContactTrackerSubsystem tracker(system);
CompliantContactSubsystem contactForces(system, tracker);
contactForces.setTransitionVelocity(vt);
matter.Ground().updBody().addContactSurface(
Transform(Rotation(-0.5*Pi, ZAxis), Vec3(0.0,penetration-radius,0.0)), // y < penetration-radius
ContactSurface(ContactGeometry::HalfSpace(),
ContactMaterial(2.0*stiffness, dissipation, us, ud, uv),
1.0));
Body::Rigid body(MassProperties(1.0, Vec3(0), Inertia(1)));
body.addContactSurface(Transform(),
ContactSurface(ContactGeometry::TriangleMesh(PolygonalMesh::createSphereMesh(radius, 6)),
ContactMaterial(2.0*stiffness, dissipation, us, ud, uv),
1.0));
const MobilizedBody::Translation mesh(matter.updGround(), Transform(), body, Transform());
const State state = system.realizeTopology();
system.realize(state, Stage::Dynamics);
if (verbose) {
cout << "Num contacts: " << contactForces.getNumContactForces(state) << endl;
}
ASSERT(contactForces.getNumContactForces(state)==1);
const ContactForce& force = contactForces.getContactForce(state,0);
const Vec3& frc = force.getForceOnSurface2()[1];
ASSERT(abs(frc[0])<TOL);
ASSERT(abs(frc[2])<TOL);
const Real numericalResult = frc[1];
const Real volumeSphericalCap = Pi*penetration*penetration/3.0*(3.0*radius-penetration);
const Real theoreticalResult = stiffness*volumeSphericalCap;
const Real relativeDifference = abs((numericalResult/theoreticalResult)-1.0);
if (verbose) {
cout<<force;
cout<<"Effort for penetration : "
<<penetration*1000.0<<" mm -> F = "<<numericalResult<<" N "
<<"(theoretical result : "<<theoreticalResult<< " N "
<<" relative difference : "<<100.0*relativeDifference<<" %)"<<endl;
}
ASSERT(abs((numericalResult/theoreticalResult)-1.0)<tolerances[i]);
}
}
int main() {
/* timeout on mips */
#ifndef __mips__
try {
testForces();
testEffSphereOnPlaneOldFormulation();
testEffSphereOnPlaneNewFormulation();
}
catch(const std::exception& e) {
cout << "exception: " << e.what() << endl;
return 1;
}
cout << "Done" << endl;
#endif
return 0;
}
|