1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
|
/* -------------------------------------------------------------------------- *
* Simbody(tm) *
* -------------------------------------------------------------------------- *
* This is part of the SimTK biosimulation toolkit originating from *
* Simbios, the NIH National Center for Physics-Based Simulation of *
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody. *
* *
* Portions copyright (c) 2007-12 Stanford University and the Authors. *
* Authors: Peter Eastman *
* Contributors: *
* *
* Licensed under the Apache License, Version 2.0 (the "License"); you may *
* not use this file except in compliance with the License. You may obtain a *
* copy of the License at http://www.apache.org/licenses/LICENSE-2.0. *
* *
* Unless required by applicable law or agreed to in writing, software *
* distributed under the License is distributed on an "AS IS" BASIS, *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
* See the License for the specific language governing permissions and *
* limitations under the License. *
* -------------------------------------------------------------------------- */
#include "SimTKsimbody.h"
using namespace SimTK;
using namespace std;
const int NUM_BODIES = 10;
const Real BOND_LENGTH = 0.5;
#define ASSERT(cond) {SimTK_ASSERT_ALWAYS(cond, "Assertion failed");}
#define ASSERT_EQUAL(val1, val2) {ASSERT(std::abs(val1-val2) < 1e-10);}
void verifyForces(const Force& force, const State& state, Vector_<SpatialVec> bodyForces, Vector_<Vec3> particleForces, Vector mobilityForces) {
Vector_<SpatialVec> actualBodyForces(bodyForces.size());
Vector_<Vec3> actualParticleForces(particleForces.size());
Vector actualMobilityForces(mobilityForces.size());
force.calcForceContribution(state, actualBodyForces, actualParticleForces,
actualMobilityForces);
for (int i = 0; i < bodyForces.size(); ++i)
ASSERT((bodyForces[i]-actualBodyForces[i]).norm() < 1e-10);
for (int i = 0; i < particleForces.size(); ++i)
ASSERT((particleForces[i]-actualParticleForces[i]).norm() < 1e-10);
for (int i = 0; i < mobilityForces.size(); ++i)
ASSERT(std::abs(mobilityForces[i]-actualMobilityForces[i]) < 1e-10);
}
class MyForceImpl : public Force::Custom::Implementation {
public:
mutable bool hasRealized[Stage::Report+1];
MyForceImpl() {
for (int i = 0; i < Stage::NValid; i++)
hasRealized[i] = false;
}
void calcForce(const State& state, Vector_<SpatialVec>& bodyForces, Vector_<Vec3>& particleForces, Vector& mobilityForces) const override {
for (int i = 0; i < mobilityForces.size(); ++i)
mobilityForces[i] += i;
}
Real calcPotentialEnergy(const State& state) const override {
return 0.0;
}
void realizeTopology(State& state) const override {
hasRealized[Stage::Topology] = true;
}
void realizeModel(State& state) const override {
hasRealized[Stage::Model] = true;
}
void realizeInstance(const State& state) const override {
hasRealized[Stage::Instance] = true;
}
void realizeTime(const State& state) const override {
hasRealized[Stage::Time] = true;
}
void realizePosition(const State& state) const override {
hasRealized[Stage::Position] = true;
}
void realizeVelocity(const State& state) const override {
hasRealized[Stage::Velocity] = true;
}
void realizeDynamics(const State& state) const override {
hasRealized[Stage::Dynamics] = true;
}
void realizeAcceleration(const State& state) const override {
hasRealized[Stage::Acceleration] = true;
}
void realizeReport(const State& state) const override {
hasRealized[Stage::Report] = true;
}
};
/**
* Test all of the standard Force subclasses, and make sure they generate correct forces.
*/
void testStandardForces() {
// Create a system consisting of a chain of bodies.
MultibodySystem system;
SimbodyMatterSubsystem matter(system);
GeneralForceSubsystem forces(system);
Body::Rigid body(MassProperties(1.0, Vec3(0), Inertia(1)));
for (int i = 0; i < NUM_BODIES; ++i) {
MobilizedBody& parent = matter.updMobilizedBody(MobilizedBodyIndex(matter.getNumBodies()-1));
MobilizedBody::Gimbal b(parent, Transform(Vec3(0)), body, Transform(Vec3(BOND_LENGTH, 0, 0)));
}
// Add one of each type of force.
MobilizedBody& body1 = matter.updMobilizedBody(MobilizedBodyIndex(1));
MobilizedBody& body9 = matter.updMobilizedBody(MobilizedBodyIndex(9));
Force::ConstantForce constantForce(forces, body1, Vec3(0), Vec3(1, 2, 3));
Force::ConstantTorque constantTorque(forces, body1, Vec3(1, 2, 3));
Force::GlobalDamper globalDamper(forces, matter, 2.0);
Force::MobilityConstantForce mobilityConstantForce(forces, body1, 1, 2.0);
Force::MobilityLinearDamper mobilityLinearDamper(forces, body1, 1, 2.0);
Force::MobilityLinearSpring mobilityLinearSpring(forces, body1, 1, 2.0, 1.0);
Force::TwoPointConstantForce twoPointConstantForce(forces, body1, Vec3(0), body9, Vec3(0), 2.0);
Force::TwoPointLinearDamper twoPointLinearDamper(forces, body1, Vec3(0), body9, Vec3(0), 2.0);
Force::TwoPointLinearSpring twoPointLinearSpring(forces, body1, Vec3(0), body9, Vec3(0), 2.0, 0.5);
Force::UniformGravity uniformGravity(forces, matter, Vec3(0, -2.0, 0));
Force::Custom custom(forces, new MyForceImpl());
// Create a random state for it.
system.realizeTopology();
State state = system.getDefaultState();
Random::Uniform random;
for (int i = 0; i < state.getNY(); ++i)
state.updY()[i] = random.getValue();
system.realize(state, Stage::Velocity);
Vec3 pos1 = body1.getBodyOriginLocation(state);
Vec3 pos9 = body9.getBodyOriginLocation(state);
Vec3 delta19 = pos9-pos1;
// Calculate each force component and see if it is correct.
Vector_<SpatialVec> bodyForces(matter.getNumBodies());
Vector_<Vec3> particleForces(0);
Vector mobilityForces(state.getNU());
Real pe = 0;
// Check ConstantForce
bodyForces = SpatialVec(Vec3(0), Vec3(0));
particleForces = Vec3(0);
mobilityForces = 0;
bodyForces[1][1] = Vec3(1, 2, 3);
verifyForces(constantForce, state, bodyForces, particleForces, mobilityForces);
// Check ConstantTorque
bodyForces = SpatialVec(Vec3(0), Vec3(0));
particleForces = Vec3(0);
mobilityForces = 0;
bodyForces[1][0] = Vec3(1, 2, 3);
verifyForces(constantTorque, state, bodyForces, particleForces, mobilityForces);
// Check GlobalDamper
bodyForces = SpatialVec(Vec3(0), Vec3(0));
particleForces = Vec3(0);
mobilityForces = -2.0*state.getU();
verifyForces(globalDamper, state, bodyForces, particleForces, mobilityForces);
// Check MobilityConstantForce
bodyForces = SpatialVec(Vec3(0), Vec3(0));
particleForces = Vec3(0);
mobilityForces = 0;
body1.updOneFromUPartition(state, 1, mobilityForces) = 2.0;
verifyForces(mobilityConstantForce, state, bodyForces, particleForces, mobilityForces);
// Check MobilityLinearDamper
bodyForces = SpatialVec(Vec3(0), Vec3(0));
particleForces = Vec3(0);
mobilityForces = 0;
body1.updOneFromUPartition(state, 1, mobilityForces) = -2.0*body1.getOneU(state, 1);
verifyForces(mobilityLinearDamper, state, bodyForces, particleForces, mobilityForces);
// Check MobilityLinearSpring
bodyForces = SpatialVec(Vec3(0), Vec3(0));
particleForces = Vec3(0);
mobilityForces = 0;
body1.updOneFromUPartition(state, 1, mobilityForces) = -2.0*(body1.getOneQ(state, 1)-1.0);
verifyForces(mobilityLinearSpring, state, bodyForces, particleForces, mobilityForces);
// Check TwoPointConstantForce
bodyForces = SpatialVec(Vec3(0), Vec3(0));
particleForces = Vec3(0);
mobilityForces = 0;
bodyForces[1][1] = -2.0*delta19.normalize();
bodyForces[9][1] = 2.0*delta19.normalize();
verifyForces(twoPointConstantForce, state, bodyForces, particleForces, mobilityForces);
// Check TwoPointLinearDamper
bodyForces = SpatialVec(Vec3(0), Vec3(0));
particleForces = Vec3(0);
mobilityForces = 0;
Vec3 v19 = body9.getBodyOriginVelocity(state)-body1.getBodyOriginVelocity(state);
Real twoPointLinearDamperForce = 2.0*dot(v19, delta19.normalize());
bodyForces[1][1] = twoPointLinearDamperForce*delta19.normalize();
bodyForces[9][1] = -twoPointLinearDamperForce*delta19.normalize();
verifyForces(twoPointLinearDamper, state, bodyForces, particleForces, mobilityForces);
// Check TwoPointLinearSpring
bodyForces = SpatialVec(Vec3(0), Vec3(0));
particleForces = Vec3(0);
mobilityForces = 0;
Real twoPointLinearSpringForce = 2.0*(delta19.norm()-0.5);
bodyForces[1][1] = twoPointLinearSpringForce*delta19.normalize();
bodyForces[9][1] = -twoPointLinearSpringForce*delta19.normalize();
verifyForces(twoPointLinearSpring, state, bodyForces, particleForces, mobilityForces);
// Check UniformGravity
bodyForces = SpatialVec(Vec3(0), Vec3(0, -2.0, 0));
bodyForces[0] = SpatialVec(Vec3(0), Vec3(0));
particleForces = Vec3(0);
mobilityForces = 0;
verifyForces(uniformGravity, state, bodyForces, particleForces, mobilityForces);
// Check Custom
bodyForces = SpatialVec(Vec3(0), Vec3(0));
particleForces = Vec3(0);
for (int i = 0; i < mobilityForces.size(); ++i)
mobilityForces[i] = i;
verifyForces(custom, state, bodyForces, particleForces, mobilityForces);
}
/**
* Test the standard conservative forces to make sure they really conserve energy.
*/
void testEnergyConservation() {
// Create a system consisting of a chain of bodies.
MultibodySystem system;
SimbodyMatterSubsystem matter(system);
GeneralForceSubsystem forces(system);
Body::Rigid body(MassProperties(1.0, Vec3(0), Inertia(1)));
for (int i = 0; i < NUM_BODIES; ++i) {
MobilizedBody& parent = matter.updMobilizedBody(MobilizedBodyIndex(matter.getNumBodies()-1));
MobilizedBody::Gimbal b(parent, Transform(Vec3(0)), body, Transform(Vec3(BOND_LENGTH, 0, 0)));
}
// Add one of each type of conservative force.
MobilizedBody& body1 = matter.updMobilizedBody(MobilizedBodyIndex(1));
MobilizedBody& body9 = matter.updMobilizedBody(MobilizedBodyIndex(9));
Force::MobilityLinearSpring mobilityLinearSpring(forces, body1, 1, 0.1, 1.0);
Force::TwoPointLinearSpring twoPointLinearSpring(forces, body1, Vec3(0), body9, Vec3(0), 1.0, 4.0);
Force::UniformGravity uniformGravity(forces, matter, Vec3(0, -1.0, 0));
// Create a random initial state for it.
system.realizeTopology();
State state = system.getDefaultState();
Random::Uniform random;
for (int i = 0; i < state.getNY(); ++i)
state.updY()[i] = random.getValue();
// Simulate it for a while and see if the energy changes.
system.realize(state, Stage::Dynamics);
Real initialEnergy = system.calcEnergy(state);
RungeKuttaMersonIntegrator integ(system);
integ.setAccuracy(1e-4);
TimeStepper ts(system, integ);
ts.initialize(state);
ts.stepTo(10.0);
system.realize(state, Stage::Dynamics);
Real finalEnergy = system.calcEnergy(ts.getState());
ASSERT(std::abs(initialEnergy/finalEnergy-1.0) < 0.005);
}
/**
* Make sure that all the "realize" methods on a custom force actually get called.
*/
void testCustomRealization() {
MultibodySystem system;
SimbodyMatterSubsystem matter(system);
GeneralForceSubsystem forces(system);
MyForceImpl* impl = new MyForceImpl();
Force::Custom custom(forces, impl);
State state = system.realizeTopology();
for (Stage j = Stage::Model; j <= Stage::Report; j++) {
system.realize(state, j);
for (Stage i = Stage::Topology; i <= Stage::Report; i++)
ASSERT(impl->hasRealized[i] == (i <= j));
}
}
/**
* Test enabling and disabling forces.
*/
void testDisabling() {
MultibodySystem system;
SimbodyMatterSubsystem matter(system);
GeneralForceSubsystem forces(system);
Body::Rigid body(MassProperties(1.0, Vec3(0), Inertia(1)));
MobilizedBody::Free body1(matter.updGround(), Vec3(0), body, Vec3(0));
MobilizedBody::Free body2(matter.updGround(), Vec3(0), body, Vec3(0));
Force::TwoPointLinearSpring spring(forces, body1, Vec3(0), body2, Vec3(0), 2.0, 0.5);
Force::UniformGravity gravity(forces, matter, Vec3(0, -2.0, 0));
// Create an initial state.
State state = system.realizeTopology();
body1.setQToFitTranslation(state, Vec3(0, 1, 0));
body2.setQToFitTranslation(state, Vec3(1, 1, 0));
// These are the contribution of each force to the energy and to the force on body1.
Real springEnergy = 0.5*2.0*0.5*0.5;
SpatialVec springForce(Vec3(0), Vec3(2.0*0.5, 0, 0));
Real gravityEnergy = 2*2.0;
SpatialVec gravityForce(Vec3(0), Vec3(0, -2.0, 0));
// Verify the force and energy for each combination of the forces being enabled or disabled.
system.realize(state, Stage::Dynamics);
ASSERT_EQUAL(springEnergy+gravityEnergy, system.calcEnergy(state));
ASSERT((springForce+gravityForce-system.getRigidBodyForces(state, Stage::Dynamics)[1]).norm() < 1e-10);
ASSERT(!forces.isForceDisabled(state, gravity.getForceIndex()));
ASSERT(!forces.isForceDisabled(state, spring.getForceIndex()));
forces.setForceIsDisabled(state, spring.getForceIndex(), true);
system.realize(state, Stage::Dynamics);
ASSERT_EQUAL(gravityEnergy, system.calcEnergy(state));
ASSERT((gravityForce-system.getRigidBodyForces(state, Stage::Dynamics)[1]).norm() < 1e-10);
ASSERT(!forces.isForceDisabled(state, gravity.getForceIndex()));
ASSERT(forces.isForceDisabled(state, spring.getForceIndex()));
forces.setForceIsDisabled(state, gravity.getForceIndex(), true);
system.realize(state, Stage::Dynamics);
ASSERT_EQUAL(0, system.calcEnergy(state));
ASSERT((system.getRigidBodyForces(state, Stage::Dynamics)[1]).norm() < 1e-10);
ASSERT(forces.isForceDisabled(state, gravity.getForceIndex()));
ASSERT(forces.isForceDisabled(state, spring.getForceIndex()));
forces.setForceIsDisabled(state, spring.getForceIndex(), false);
system.realize(state, Stage::Dynamics);
ASSERT_EQUAL(springEnergy, system.calcEnergy(state));
ASSERT((springForce-system.getRigidBodyForces(state, Stage::Dynamics)[1]).norm() < 1e-10);
ASSERT(forces.isForceDisabled(state, gravity.getForceIndex()));
ASSERT(!forces.isForceDisabled(state, spring.getForceIndex()));
}
int main() {
try {
testStandardForces();
testEnergyConservation();
testCustomRealization();
testDisabling();
}
catch(const std::exception& e) {
cout << "exception: " << e.what() << endl;
return 1;
}
cout << "Done" << endl;
return 0;
}
|